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Abstract In this paper we study a pair of unified and extended fractional integral operator
involving the multivariable A-function, A-function and general class of multivariable polyno-
mials. During this study, we establish five theorems pertaining to Mellin transforms of these
operators. Furthers, some properties of these operators have also been investigated. On account
of the general nature of the functions involved herein, a large number of (known and new) frac-
tional integral operators involved simpler functions can be obtained. We will quote the particular
cases concerning multivariable H-function and the Srivastava-Daoust polynomial.

1 Introduction and Preliminaries

Fractional calculus is a field of applied mathematics that deals with derivatives and integrals of
arbitrary orders. Recently, it has turned out many phenomena in physics, mechanics, chemistry,
biology and other sciences; and can be described very successfully by models using mathemat-
ical tools from fractional calculus. Chaurasia and Srivastava [2], Choi et al. [3], Kumar and
Daiya [11], Kumar et al. [12], and others have studied the fractional calculus pertaining to mul-
tivariable H-function defined by Srivastava and Panda [22].

The multivariable A-function defined by Gautam et al. [6] is an extension of the multivariable
H-function [22]. It is defined and represented in the following manner:
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The complex numbers z; are not zero. Throughout this document, we assume the existence and
absolute convergence conditions of the multivariable A-function. We shall note
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The A- function [6], however the notation and complete definition is presented here in the fol-
lowing manner in terms of the Mellin-Barnes type integral, as given by
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Srivastava and Garg [21] introduced and defined a general class of multi-variable polynomials
as follows
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The coefficients B (L; Ry, . .., Rs) are arbitrary constants, real or complex.

2 Definitions

The pair of new extended fractional integral operators are defined by the following equations
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The kernels 1 (i’—i) and ¢ (Z—:) appearing in (2.1) and (2.2) respectively, are assumed to be
continuous functions such the integrals make sense for wide classes of function f(z).
The conditions for existence of these operators are as follows.
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where j = 1,...,k; j'=1,..., Mj.

Condition (a) ensures that both operators defined in (2.1) and (2.2) exist and belong to. These
operators are extensions of fractional integral operators defined and studied by several authors
like Erdélyi [5], Love [13], Saigo et al. [15], Saxena and Kiryakova [16], Baleanu et al. [1],
Kumar and Daiya [11], Kumar et al. [12], Ram and Kumar [14], Saxena and Kumbhat [18, 19],
etc.
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3 Main results

Theorem 3.1. If f(z) € L, (0,00), 1 < p < 2;0r f(z) € L, (0,00), p > 2, also following
conditions satisfied:
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and the integrals are absolutely convergent, then
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where M, (0, 00) stands for the class of all functions f(z) of L, (0,00) with p > 2, which are
inverse Mellin-transforms of the function of L, (—o0, 00).

Proof. By making Mellin transform of (2.1), we get
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On interchanging the order of integration, which is permissible under the conditions, result (3.1)
follows in view of (2.2). O

Theorem 3.2. If f(x) € L, (0,00), 1 < p < 2;0r f(z) € L, (0,00), p > 2, also following
conditions satisfied.:
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and the integrals are absolutely convergent, then we have

MA{RGP [f(2)]} = M {f(x)} Q5= P[], (3.3)
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where M, (0, 00) stands for the class of all functions f(z) of L, (0,00) with p > 2, which are
inverse Mellin-transforms of the function L, (—oco, c0).
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Proof. By making Mellin transform of (2.2), we get
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Theorem 3.3. If f(z) € L, (0,00) , v(z) € L, (0,0), also satisfy
p e =1,
by d?
Re (a—l—taj )—l—tZul mln Re | —2~ | >max{p~',q"'},
ﬁ] 7 i=1 1<j<m; D;Z>
by FiO)
Re +t v; min Re| —Z- | >0,
( 7 ﬂ] 'J ) ; I<j<m; Dj(l)
and the integrals are absolutely convergent, then have
/0 v(2)QYP [f(z)] do = / f(@)R%P [v(2)] da. (3.5)
Proof. The result of (3.5) can be obtained in view of (2.1) and (2.2). O

4 Inversion formulas

Theorem 4.1. If f(z) € L, (0,00), 1 < p < 2;0r f(z) € L,(0,00), p > 2, also satisfied
following conditions:
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Proof. On taking Mellin transform of (4.1) and then applying Theorem 3.1, we get

M {v(z)}
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which on inverting leads to

Interchanging the order of integration, we obtain

o= [ [ gl

Now in view of (4.3), we obtain the desired result (4.2). O

Theorem 4.2. If f(x) € L, (0,00), 1 < p < 2; or f(z) € L, (0,00), p > 2, also following
conditions satisfied.:
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Proof. On taking Mellin transform of (4.1) and then applying Theorem 3.2, we get

M {w(z)}

M{f@)} = =

which on inverting leads to
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Interchanging the order of integration, we obtain
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Now in view of (4.7), we obtain the desired result (4.6). O
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5 General properties

The properties given below are consequences of the definitions (2.1) and (2.2).
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The properties given below express the homogenelty of operator () and R respectively.

If Q%7 [f(x)] =v(z) then Q%7 [f(cx)] = v(cx). (5.5)
If Rf{f [f(2)] = w(z) then R?P[f(cx)] = w(cz). (5.6)

6 Multivariable H -function

If Ay), B;i), C'J(-i)7 D;w € R and m = 0, the multivariable A-function reduces to multivariable
H-function defined by Srivastava and Panda [22], then we obtain two following operators:
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under the same notations and conditions that (2.2) with A( ) ;”, CJ( ‘), @) ¢ R and m = 0.

We can obtain similar theorems and properties concernlng these operators as given in section 3.
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7 Srivastava-Daoust polynomial
It
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we obtain two following operators concerning the Srivastava-Daoust polynomial [20]:
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under the same notations and conditions that (2.2).
We can obtain similar theorems and properties concerning these operators as given in section 3.

8 Conclusion

We studied a pair of unified and extended fractional integral operator involving the multivariable
A-function, A-function and general class of multivariable polynomials. The functions involved
in the given results are unified and general nature, hence a large number of known results fol-
lows as special cases of our main findings. Further, on suitable specifications of the involved
parameters, many new results involving simpler functions may also be derived.
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