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Abstract In this paper we introduce some results on hyponormal operators acting on a com-
plex Hilbert space H. We give sufficient conditions for which the sum and product of two hy-
ponormal operators is a hyponormal operator. Also, we study the sum direct and tensor product
of this class.

1 Introduction and Preliminaries

Throughout this paper, B(H) denotes to the algebra of all bounded linear operators acting on a
complex Hilbert space H with inner product ⟨·, ·⟩ and the corresponding norm ∥·∥. The symbol
I stands for the identity operator on H. If T ∈ B(H) then, T ∗ is its adjoint and T = A+ iB is
its Cartesian decomposition. Let ker (T ) and ℜ (T ) denote the kernel and range of T ∈ B(H),
respectively. For any operator T in B(H) set as usual,

|T | = (T ∗T )
1
2 .

Many classes of operators are defined according to the relation betwen T and T ∗, for example T
is normal if TT ∗ = T ∗T ; self-adjoint or hermitian if T ∗ = T ; skew-adjiont if T ∗ = −T ; positive
(denoted by T ≥ 0) if ⟨Tx, x⟩ ≥ 0 for all x ∈ H and seky-normal if T 2 = T ∗2

; quasinormal if
TT ∗T = T ∗T 2; projection if T 2 = T = T ∗; idempotent if T 2 = T . For an operator T ∈ B(H),
if ∥Tx∥ = ∥x∥ for all x ∈ H (or equivalently T ∗T = I), then T is called an isometry; T is called
unitary if TT ∗ = T ∗T = I . An operator T ∈ B(H) is a partial isometry if ∥Tx∥ = ∥x∥ for all
x ∈ (ker (T ))⊥ . For more facts about these and other classes of operators, we refer the reader
to [2, 3, 4, 6, 7, 8, 9, 10, 14, 15] and the references therein.

Recall that An operator T ∈ B(H) has the unique polar decomposition T = U |T |, where
|T | = (T ∗T )

1
2 and U is the appropriate partial isometry satisfying ker (U) = ker (|T |) = ker (T )

and ker (U∗) = ker (T ∗).
An operator T ∈ B(H) is called hyponormal if TT ∗ ≤ T ∗T , which is equivalent to the

condition ∥T ∗x∥ ≤ ∥Tx∥ for all x ∈ H. The notation of hyponormality was first introduced in
[11]. Further, the class of hyponormal operators has been studied by many authors. In recent
years this class has been generalized, in some sense, to the larger sets of so called m-hyponormal,
p-hyponormal etc see [1, 13, 17, 18].

An operator T ∈ B(H) is said to be m-hyponormal, if there exists a positive number m, such
that

m2 (A− λI)
∗
(A− λI) ≥ (A− λI) (A− λI)

∗ , for, all λ ∈ C
and T is called p-hyponormal for p > 0 if

(TT ∗)
p ≤ (T ∗T )

p .

Recall that any T ∈ B(H) is expressible as T = A+ iB where A,B ∈ B(H) are self-adjoint
operators. Besides,

A = ReT =
T + T ∗

2
,
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is the real part of T , and

B = ImT =
T − T ∗

2i
,

the imaginary part of T .
It is to check that T is normal if and only if AB = BA.
It is well known that a self-adjoint operator can be characterized in the following way an

operator T in B(H) is self-adjoint if and only if ⟨Tx, x⟩ is real. In [4] the authors gave another
characterization involving inequalities. We denote by (WN) the class of operators in B(H)
satisfying the following inequality:

(ReT )2 ≤ |T |2 .

This class has been introduced by Fong and Istratescu [4]. Notice that this class contains the
class of hyponormal operators. Indeed, T is hyponormal implies that

(ReT )2
+ (ImT )

2 ≤ |T |2 .

Since (ImT )
2 is a positive operator, then

(ReT )2 ≤ |T |2 ,

that is T ∈ (WN).
The well-known Fuglede-Putnam theorem asserts that if S and T are normal and SX = XT

for some operator X ∈ B(H), then S∗X = XT ∗ (see [5]). There have been many generalizations
of the Fuglede-Putnam theorem (see for example [19] and the references therein). Resently, in
[16] the author proved that if S, T ∈ B(H) are hyponormal operators, such that T ∗S = ST ∗

then, the sum and product of S and T are hyponormal.
Our aim in this paper is to give new classical results on hyponormal operators in a complex

Hilbert space. More precisely, we show that well-known results related to normal operators hold
true also for those operators.

2 Main Results

In this section, we present our results. We first state the following lemma.

Lemma 2.1. [12, Löwner-Heinz’s inequality] Let A,B ∈ B(H). If 0 ≤ A ≤ B and δ ∈ (0, 1],
then

0 ≤ Aδ ≤ Bδ.

Our first result is stated as follows.

Proposition 2.2. Let T ∈ B(H) be an ivertible operator with polar decomposition T = U |T |.
Then, T is hyponormal if and only if

|T | ≥ U |T |U∗.

Proof. Let T be a hyponormal, then |T |2 ≥ |T ∗|2 it follows that

U∗ |T |2 U ≥ |T |2 ≥ U |T |2 U∗.

By Lemma 2.1, we obtain (
|T |2

) 1
2 ≥

(
U |T |2 U∗

) 1
2

,

i.e., |T | ≥ U |T |U∗.
To prove the reverse implication, let |T | ≥ U |T |U∗ implies that

|T |2 ≥ U |T |2 U∗,

then |T |2 ≥ |T ∗|2. Hence, T is hyponormal.
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Our next result reads as follows.

Proposition 2.3. Let T = U |T | be an invertible hyponormal operator. Then, U |T |
1
2 is also

hyponormal.

Proof. By setting S = U |T |
1
2 , we observe that

SS∗ = U |T |U∗ = |T ∗|

≤ |T | = |T |
1
2 U∗U |T |

1
2

= S∗S.

Thus, S is hyponormal.

Proposition 2.4. Let T = U |T | be an invertible hyponormal operator. Then, U |T |p is also
hyponormal, for all p ∈ (0, 1].

Proof. By setting S = U |T |p, we observe that

SS∗ = U |T |2p U∗ = |T ∗|2p

≤ |T |2p = |T |p U∗U |T |p

= S∗S.

Thus, S is hyponormal.

Remark 2.5. The hyponormality of T (i.e., TT ∗ ≤ T ∗T ) implies |T ∗| ≤ |T |. But |T ∗| ≤ |T |
does not necesarily imply the hyponormality of T .

Example 2.6. Consider the 2 × 2 matrices A =

(
1 0
0 0

)
and B =

(
2 1
1 1

)
. Note that

A ≤ B and A2 ⩽̸ B2.

We set

T =



0
A 0

B 0
B .

. .

. .


.

Then, we compute

TT ∗ =



0
A2

B2

B2

.

.


and T ∗T =



A2

B2

B2

.

.

.


.

Therefore, |T ∗| ≤ |T |, but T is not hyponormal (because of A2 ⩽̸ B2).
One of the main results of this paper reads as follows.

Theorem 2.7. Let T ∈ B(H) be a hyponormal operator and T = U |T | be the polar decomposi-
tion of T such that Un0 = U∗ for some positive integer n0. Then T is normal.
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Proof. Assume that T is hyponormal. Hence

|T |2 ≥ |T ∗|2 = U |T |2 U∗.

By multiplying both sides of this inequality by U and U∗, we get U |T |2 U∗ ≥ U
∣∣2T ∣∣2 U∗2

whence

|T |2 ≥ U |T |2 U∗ ≥ U
∣∣2T ∣∣2 U∗2

.

By repeating this process, we reach the following sequence of operators inequalities

|T |2 ≥ |T ∗|2 = U |T |2 U∗ ≥ U
∣∣2T ∣∣2 U∗2

≥ ... ≥ Un0+1 |T |2 U (n0+1)∗ ≥ ... (2.1)

Because of Un0 = U∗ we can observe that Un0+1 = U∗U = U (n0+1)∗ is the projection onto
ℜ (|T |).

Hence Un0+1 |T |2 U (n0+1)∗ = |T |2, from which and inequalities (2.1) we obtain |T |2 = |T ∗|2
this completes the proof.

We are now in a position to state the following theorem.

Theorem 2.8. Let T ∈ B(H) be a hyponormal operator and T = U |T | be the polar decomposi-
tion of T such that U∗n → I or Un → I as n → ∞, where limits are taken in the strong operator.
Then, T is normal.

Proof. We assume that U∗nx → x as n → ∞ for all x ∈ H. Let T be a hyponormal operator, it
follows from (2.1) that

∥|T |x∥ ≥ ∥|T ∗|x∥ = ∥|T |U∗x∥ ≥
∥∥∥|T |U 2∗x

∥∥∥ ≥ ... ≥
∥∥∥|T |Un∗x

∥∥∥ ≥ .... (2.2)

Since ∣∣∣∥∥∥|T |Un∗x
∥∥∥− ∥|T |x∥

∣∣∣ ≤
∥∥∥|T |Un∗x− |T |x

∥∥∥
≤ ∥|T |∥

∥∥∥Un∗x− x
∥∥∥→ 0,

as n → ∞, we have
∥∥|T |Un∗x

∥∥→ ∥|T |x∥.
Hence by (2.2), we get

∥|T |x∥ = ∥|T ∗|x∥ ,

so |T |2 = |T ∗|2.
Thus, T is normal.

Proposition 2.9. Let T = A + iB ∈ B(H) be the Cartesian decomposition of the operator T .
Let BA = C + iD be the Cartesian decomposition of BA, then T is hyponormal if and only of
D ≥ 0.

Proof. Since T is hyponormal, we have

T ∗T − TT ∗ = 2i (AB −BA) ≥ 0.

Thus if BA = C + iD, then the last equation implies that

AB = (BA)
∗
= C − iD,

it follows that
T ∗T − TT ∗ = 2D ≥ 0.

This completes the proof.

The following corollary is an immediate consequence of above proposition.

Corollary 2.10. If D = 0, then T is normal.
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In order to prove our next result, we need the following lemma.

Lemma 2.11. [19, Therorem 2] Let T ∈ B(H) be a p-hyponormal operator and L ∈ B(H) be a

self-adjoint which satisfies TL = LT ∗. Then

T ∗L = LT .

The next theorem explain what conditions imply normality for hyponormal operators.

Theorem 2.12. Let T = A + iB ∈ B(H) be the Cartesian decomposition of T , with AB is
hyponormal. If A is idempotent, then T is normal.

Proof. Assume that A is idempotent, we have

(AB)A = A (BA) .

Let S = AB, then SA = AS∗. Then, it follows from Lemma 2.11, that S∗A = AS.
Thus,

BA2 = A2B.

Since A is idempotent (A2 = A) then AB = BA. Thus, T is normal.

Theorem 2.13. Let T = A + iB ∈ B(H) be the Cartesian decomposition of T . If AB is
hyponormal, then T is normal.

Proof. Let W = AB then WA = AW ∗. Then, by Lemma 2.11, we get W ∗A = AW i.e.,
BA2 = A2B. Since T is hyponormal, we have

T ∗T − TT ∗ = 2i (AB −BA) ≥ 0.

Let X = 2i (AB −BA), then X ≥ 0 and XA = −AX .
Now,

X2A = X (XA)

= X (−AX)

= − (XA)X

= AX2.

Since X is positive, then
XA = −AX = 0.

Hence
A (AB −BA) = (AB −BA)A = 0,

implies that
σ (AB −BA) = {0} .

Therefore, AB −BA is quasi-nilpotent and skew-hermitian.
Thus,

AB −BA = 0.

So, T is normal.

In the end of this paper, we study the sum direct and tensor product of such operators.

Theorem 2.14. Let T1, T2,....., Tm be hyponormal operators in B(H).

Then (T1 ⊕ T2 ⊕ ......⊕ Tm) and (T1 ⊗ T2 ⊗ ......⊗ Tm) are hyponormal operators.
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Proof. Since

(T1 ⊕ T2 ⊕ ......⊕ Tm) (T1 ⊕ T2 ⊕ ......⊕ Tm)
∗

= (T1 ⊕ T2 ⊕ ......⊕ Tm) (T ∗
1 ⊕ T ∗

2 ⊕ ......⊕ T ∗
m)

= T1T
∗
1 ⊕ ..........⊕ TmT ∗

m

≤ T ∗
1 T1 ⊕ ..........⊕ T ∗

mTm

= (T ∗
1 ⊕ T ∗

2 ⊕ ......⊕ T ∗
m) (T1 ⊕ T2 ⊕ ......⊕ Tm)

= (T1 ⊕ T2 ⊕ ......⊕ Tm)
∗
(T1 ⊕ T2 ⊕ ......⊕ Tm) .

Then, (T1 ⊕ T2 ⊕ ......⊕ Tm) is a hyponormal operator.
Now, for x1, ......., xm ∈ H

(T1 ⊗ T2 ⊗ ......⊗ Tm) (T1 ⊗ T2 ⊗ ......⊗ Tm)
∗
(x1 ⊗ ......⊗ xm)

= (T1 ⊗ T2 ⊗ ......⊗ Tm) (T ∗
1 ⊗ T ∗

2 ⊗ .......⊗ T ∗
m) (x1 ⊗ ......⊗ xm)

= T1T
∗
1 x1 ⊗ .........⊗ TmT ∗

mxm

≤ T ∗
1 T1x1 ⊗ .........⊗ T ∗

mTmxm

= (T ∗
1 ⊗ T ∗

2 ⊗ ......⊗ T ∗
m) (T1 ⊗ T2......⊗ Tm) (x1 ⊗ ......⊗ xm)

= (T1 ⊗ T2 ⊗ ......⊗ Tm)
∗
(T1 ⊗ T2 ⊗ ......⊗ Tm) (x1 ⊗ ......⊗ xm) .

So,

(T1 ⊗ T2 ⊗ ......⊗ Tm) (T1 ⊗ T2 ⊗ ......⊗ Tm)
∗ ≤ (T1 ⊗ T2 ⊗ ......⊗ Tm)

∗
(T1 ⊗ T2 ⊗ ......⊗ Tm) .

Thus, (T1 ⊗ T2 ⊗ ......⊗ Tm) is a hyponormal operator.

3 Conclusion

This paper aims is to obtain some results on hyponormal operators acting on a complex Hilbert
space H. We gave sufficient conditions for which the sum and product of two hyponormal
operators is a hyponormal operator. Also, the sum direct and tensor product of this class has
been studied.
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