SOME RESULTS ON HYPONORMAL OPERATORS

Messaoud Guesba

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 47A05, 47A55; Secondary 447B15.

Keywords and phrases: Normal operator, hyponormal operator, Cartesian decomposition, sum direct, tensor product.

The author would like to thank Professor Harikrishnan Panackal and Editor-in-Chief Ayman Badawi for their constructive comments and valuable suggestions that improved the quality of this paper.

Abstract In this paper we introduce some results on hyponormal operators acting on a complex Hilbert space \mathcal{H} . We give sufficient conditions for which the sum and product of two hyponormal operators is a hyponormal operator. Also, we study the sum direct and tensor product of this class.

1 Introduction and Preliminaries

Throughout this paper, $\mathcal{B}(\mathcal{H})$ denotes to the algebra of all bounded linear operators acting on a complex Hilbert space \mathcal{H} with inner product $\langle \cdot, \cdot \rangle$ and the corresponding norm $\|\cdot\|$. The symbol I stands for the identity operator on \mathcal{H} . If $T \in \mathcal{B}(\mathcal{H})$ then, T^* is its adjoint and T = A + iB is its Cartesian decomposition. Let ker (T) and $\Re(T)$ denote the kernel and range of $T \in \mathcal{B}(\mathcal{H})$, respectively. For any operator T in $\mathcal{B}(\mathcal{H})$ set as usual,

$$|T| = (T^*T)^{\frac{1}{2}}$$
.

Many classes of operators are defined according to the relation betwen T and T^* , for example T is normal if $TT^* = T^*T$; self-adjoint or hermitian if $T^* = T$; skew-adjiont if $T^* = -T$; positive (denoted by $T \ge 0$) if $\langle Tx, x \rangle \ge 0$ for all $x \in \mathcal{H}$ and seky-normal if $T^2 = T^{*^2}$; quasinormal if $TT^*T = T^*T^2$; projection if $T^2 = T = T^*$; idempotent if $T^2 = T$. For an operator $T \in \mathcal{B}(\mathcal{H})$, if ||Tx|| = ||x|| for all $x \in \mathcal{H}$ (or equivalently $T^*T = I$), then T is called an isometry; T is called unitary if $TT^* = T^*T = I$. An operator $T \in \mathcal{B}(\mathcal{H})$ is a partial isometry if ||Tx|| = ||x|| for all $x \in (\ker(T))^{\perp}$. For more facts about these and other classes of operators, we refer the reader to [2, 3, 4, 6, 7, 8, 9, 10, 14, 15] and the references therein.

Recall that An operator $T \in \mathcal{B}(\mathcal{H})$ has the unique polar decomposition T = U|T|, where $|T| = (T^*T)^{\frac{1}{2}}$ and U is the appropriate partial isometry satisfying ker (U) = ker(|T|) = ker(T) and ker $(U^*) = \text{ker}(T^*)$.

An operator $T \in \mathcal{B}(\mathcal{H})$ is called hyponormal if $TT^* \leq T^*T$, which is equivalent to the condition $||T^*x|| \leq ||Tx||$ for all $x \in \mathcal{H}$. The notation of hyponormality was first introduced in [11]. Further, the class of hyponormal operators has been studied by many authors. In recent years this class has been generalized, in some sense, to the larger sets of so called *m*-hyponormal, *p*-hyponormal etc see [1, 13, 17, 18].

An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be *m*-hyponormal, if there exists a positive number *m*, such that

$$m^{2}(A - \lambda I)^{*}(A - \lambda I) \geq (A - \lambda I)(A - \lambda I)^{*}$$
, for, all $\lambda \in \mathbb{C}$

and T is called p-hyponormal for p > 0 if

$$\left(TT^*\right)^p \le \left(T^*T\right)^p.$$

Recall that any $T \in \mathcal{B}(\mathcal{H})$ is expressible as T = A + iB where $A, B \in \mathcal{B}(\mathcal{H})$ are self-adjoint operators. Besides,

$$A = \operatorname{Re} T = \frac{T + T^*}{2},$$

is the real part of T, and

$$B = \operatorname{Im} T = \frac{T - T^*}{2i},$$

the imaginary part of T.

It is to check that T is normal if and only if AB = BA.

It is well known that a self-adjoint operator can be characterized in the following way an operator T in $\mathcal{B}(\mathcal{H})$ is self-adjoint if and only if $\langle Tx, x \rangle$ is real. In [4] the authors gave another characterization involving inequalities. We denote by (WN) the class of operators in $\mathcal{B}(\mathcal{H})$ satisfying the following inequality:

$$\left(\operatorname{Re} T\right)^2 \le \left|T\right|^2.$$

This class has been introduced by Fong and Istratescu [4]. Notice that this class contains the class of hyponormal operators. Indeed, T is hyponormal implies that

$$(\operatorname{Re} T)^{2} + (\operatorname{Im} T)^{2} \le |T|^{2}.$$

Since $(\text{Im }T)^2$ is a positive operator, then

$$\left(\operatorname{Re}T\right)^2 \le \left|T\right|^2,$$

that is $T \in (WN)$.

The well-known Fuglede-Putnam theorem asserts that if S and T are normal and SX = XT for some operator $X \in \mathcal{B}(\mathcal{H})$, then $S^*X = XT^*$ (see [5]). There have been many generalizations of the Fuglede-Putnam theorem (see for example [19] and the references therein). Resently, in [16] the author proved that if $S, T \in \mathcal{B}(\mathcal{H})$ are hyponormal operators, such that $T^*S = ST^*$ then, the sum and product of S and T are hyponormal.

Our aim in this paper is to give new classical results on hyponormal operators in a complex Hilbert space. More precisely, we show that well-known results related to normal operators hold true also for those operators.

2 Main Results

In this section, we present our results. We first state the following lemma.

Lemma 2.1. [12, Löwner-Heinz's inequality] Let $A, B \in \mathcal{B}(\mathcal{H})$. If $0 \le A \le B$ and $\delta \in (0, 1]$, then

$$0 \le A^{\delta} \le B^{\delta}.$$

Our first result is stated as follows.

Proposition 2.2. Let $T \in \mathcal{B}(\mathcal{H})$ be an ivertible operator with polar decomposition T = U |T|. Then, T is hyponormal if and only if

$$|T| \ge U |T| U^*.$$

Proof. Let T be a hyponormal, then $|T|^2 \ge |T^*|^2$ it follows that

$$U^* |T|^2 U \ge |T|^2 \ge U |T|^2 U^*.$$

By Lemma 2.1, we obtain

$$\left(|T|^{2}\right)^{\frac{1}{2}} \ge \left(U|T|^{2} U^{*}\right)^{\frac{1}{2}},$$

i.e., $|T| \ge U |T| U^*$.

To prove the reverse implication, let $|T| \ge U |T| U^*$ implies that

$$\left|T\right|^2 \ge U \left|T\right|^2 U^*,$$

then $|T|^2 \ge |T^*|^2$. Hence, T is hyponormal.

Our next result reads as follows.

Proposition 2.3. Let T = U |T| be an invertible hyponormal operator. Then, $U |T|^{\frac{1}{2}}$ is also hyponormal.

Proof. By setting $S = U |T|^{\frac{1}{2}}$, we observe that

$$SS^* = U |T| U^* = |T^*|$$

$$\leq |T| = |T|^{\frac{1}{2}} U^* U |T|^{\frac{1}{2}}$$

$$= S^* S.$$

Thus, S is hyponormal.

Proposition 2.4. Let T = U |T| be an invertible hyponormal operator. Then, $U |T|^p$ is also hyponormal, for all $p \in (0, 1]$.

Proof. By setting $S = U |T|^p$, we observe that

$$SS^* = U |T|^{2p} U^* = |T^*|^{2p}$$
$$\leq |T|^{2p} = |T|^p U^* U |T|^p$$
$$= S^* S$$

Thus, S is hyponormal.

Remark 2.5. The hyponormality of T (i.e., $TT^* \leq T^*T$) implies $|T^*| \leq |T|$. But $|T^*| \leq |T|$ does not necessarily imply the hyponormality of T.

Example 2.6. Consider the 2 × 2 matrices $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. Note that $A \le B$ and $A^2 \le B^2$.

We set

$$T = \begin{pmatrix} 0 & & & \\ A & 0 & & \\ & B & 0 & \\ & & B & . & \\ & & & \ddots & \\ & & & & \ddots & \\ & & & & \ddots & \end{pmatrix}$$

Then, we compute

Therefore, $|T^*| \leq |T|$, but T is not hyponormal (because of $A^2 \leq B^2$). One of the main results of this paper reads as follows.

Theorem 2.7. Let $T \in \mathcal{B}(\mathcal{H})$ be a hyponormal operator and T = U |T| be the polar decomposition of T such that $U^{n_0} = U^*$ for some positive integer n_0 . Then T is normal.

Proof. Assume that T is hyponormal. Hence

$$T|^{2} \ge |T^{*}|^{2} = U |T|^{2} U^{*}.$$

By multiplying both sides of this inequality by U and U^{*}, we get $U|T|^2 U^* \ge U|^2 T|^2 U^{*^2}$ whence

$$|T|^{2} \ge U |T|^{2} U^{*} \ge U |^{2}T|^{2} U^{*^{2}}$$

By repeating this process, we reach the following sequence of operators inequalities

$$|T|^{2} \ge |T^{*}|^{2} = U |T|^{2} U^{*} \ge U |^{2}T|^{2} U^{*^{2}} \ge \dots \ge U^{n_{0}+1} |T|^{2} U^{(n_{0}+1)*} \ge \dots$$
(2.1)

Because of $U^{n_0} = U^*$ we can observe that $U^{n_0+1} = U^*U = U^{(n_0+1)^*}$ is the projection onto $\Re(|T|)$.

Hence $U^{n_0+1} |T|^2 U^{(n_0+1)*} = |T|^2$, from which and inequalities (2.1) we obtain $|T|^2 = |T^*|^2$ this completes the proof.

We are now in a position to state the following theorem.

Theorem 2.8. Let $T \in \mathcal{B}(\mathcal{H})$ be a hyponormal operator and T = U |T| be the polar decomposition of T such that $U^{*n} \to I$ or $U^n \to I$ as $n \to \infty$, where limits are taken in the strong operator. Then, T is normal.

Proof. We assume that $U^{*n}x \to x$ as $n \to \infty$ for all $x \in \mathcal{H}$. Let T be a hyponormal operator, it follows from (2.1) that

$$|||T|x|| \ge |||T^*|x|| = |||T|U^*x|| \ge |||T|U^{**}x|| \ge \dots \ge |||T|U^{**}x|| \ge \dots \ge (2.2)$$

Since

$$\begin{split} \left| \left| \left| |T| U^{*} x \right| \right| - \left| |T| x \right| \right| &\leq \left| \left| |T| U^{*} x - |T| x \right| \right| \\ &\leq \left| |T| \left| \left| U^{*} x - x \right| \right| \to 0, \end{split}$$

as $n \to \infty$, we have $|||T| U^{n*} x|| \to |||T| x||$. Hence by (2.2), we get

$$|||T|x|| = |||T^*|x||,$$

so $|T|^2 = |T^*|^2$. Thus, T is normal.

Proposition 2.9. Let $T = A + iB \in \mathcal{B}(\mathcal{H})$ be the Cartesian decomposition of the operator T. Let BA = C + iD be the Cartesian decomposition of BA, then T is hyponormal if and only of $D \ge 0$.

Proof. Since T is hyponormal, we have

$$T^*T - TT^* = 2i\left(AB - BA\right) \ge 0.$$

Thus if BA = C + iD, then the last equation implies that

$$AB = (BA)^* = C - iD,$$

it follows that

$$T^*T - TT^* = 2D \ge 0.$$

This completes the proof.

The following corollary is an immediate consequence of above proposition.

Corollary 2.10. If D = 0, then T is normal.

In order to prove our next result, we need the following lemma.

Lemma 2.11. [19, Theorem 2] Let $T \in \mathcal{B}(\mathcal{H})$ be a *p*-hyponormal operator and $L \in \mathcal{B}(\mathcal{H})$ be a

self-adjoint which satisfies $TL = LT^*$. Then

$$T^*L = LT.$$

The next theorem explain what conditions imply normality for hyponormal operators.

Theorem 2.12. Let $T = A + iB \in \mathcal{B}(\mathcal{H})$ be the Cartesian decomposition of T, with AB is hyponormal. If A is idempotent, then T is normal.

Proof. Assume that A is idempotent, we have

$$(AB) A = A (BA).$$

Let S = AB, then $SA = AS^*$. Then, it follows from Lemma 2.11, that $S^*A = AS$. Thus,

$$BA^2 = A^2 B$$

Since A is idempotent $(A^2 = A)$ then AB = BA. Thus, T is normal.

Theorem 2.13. Let $T = A + iB \in \mathcal{B}(\mathcal{H})$ be the Cartesian decomposition of T. If AB is hyponormal, then T is normal.

Proof. Let W = AB then $WA = AW^*$. Then, by Lemma 2.11, we get $W^*A = AW$ i.e., $BA^2 = A^2B$. Since T is hyponormal, we have

$$T^*T - TT^* = 2i\left(AB - BA\right) \ge 0.$$

Let X = 2i (AB - BA), then $X \ge 0$ and XA = -AX. Now,

$$X^{2}A = X (XA)$$
$$= X (-AX)$$
$$= - (XA) X$$
$$= AX^{2}.$$

Since X is positive, then

$$XA = -AX = 0.$$

Hence

$$A(AB - BA) = (AB - BA)A = 0,$$

implies that

$$\sigma \left(AB - BA \right) = \{0\}.$$

Therefore, AB - BA is quasi-nilpotent and skew-hermitian. Thus,

$$AB - BA = 0.$$

So, T is normal.

In the end of this paper, we study the sum direct and tensor product of such operators.

Theorem 2.14. Let $T_1, T_2, ..., T_m$ be hyponormal operators in $\mathcal{B}(\mathcal{H})$.

Then $(T_1 \oplus T_2 \oplus \dots \oplus T_m)$ and $(T_1 \otimes T_2 \otimes \dots \otimes T_m)$ are hyponormal operators.

Proof. Since

$$(T_1 \oplus T_2 \oplus \dots \oplus T_m) (T_1 \oplus T_2 \oplus \dots \oplus T_m)^* = (T_1 \oplus T_2 \oplus \dots \oplus T_m) (T_1^* \oplus T_2^* \oplus \dots \oplus T_m^*)$$

$$= T_1 T_1^* \oplus \dots \oplus T_m T_m^*$$

$$\leq T_1^* T_1 \oplus \dots \oplus T_m^* T_m$$

$$= (T_1^* \oplus T_2^* \oplus \dots \oplus T_m) (T_1 \oplus T_2 \oplus \dots \oplus T_m)$$

$$= (T_1 \oplus T_2 \oplus \dots \oplus T_m)^* (T_1 \oplus T_2 \oplus \dots \oplus T_m) .$$

Then, $(T_1 \oplus T_2 \oplus \dots \oplus T_m)$ is a hyponormal operator. Now, for $x_1, \dots, x_m \in \mathcal{H}$

$$(T_1 \otimes T_2 \otimes \dots \otimes T_m) (T_1 \otimes T_2 \otimes \dots \otimes T_m)^* (x_1 \otimes \dots \otimes x_m)$$

$$= (T_1 \otimes T_2 \otimes \dots \otimes T_m) (T_1^* \otimes T_2^* \otimes \dots \otimes T_m^*) (x_1 \otimes \dots \otimes x_m)$$

$$= T_1 T_1^* x_1 \otimes \dots \otimes T_m T_m^* x_m$$

$$\leq T_1^* T_1 x_1 \otimes \dots \otimes T_m^* T_m x_m$$

$$= (T_1^* \otimes T_2^* \otimes \dots \otimes T_m^*) (T_1 \otimes T_2 \dots \otimes T_m) (x_1 \otimes \dots \otimes x_m)$$

$$= (T_1 \otimes T_2 \otimes \dots \otimes T_m)^* (T_1 \otimes T_2 \otimes \dots \otimes T_m) (x_1 \otimes \dots \otimes x_m).$$

So,

$$(T_1 \otimes T_2 \otimes \dots \otimes T_m) (T_1 \otimes T_2 \otimes \dots \otimes T_m)^* \leq (T_1 \otimes T_2 \otimes \dots \otimes T_m)^* (T_1 \otimes T_2 \otimes \dots \otimes T_m).$$

Thus, $(T_1 \otimes T_2 \otimes \dots \otimes T_m)$ is a hyponormal operator.

3 Conclusion

This paper aims is to obtain some results on hyponormal operators acting on a complex Hilbert space \mathcal{H} . We gave sufficient conditions for which the sum and product of two hyponormal operators is a hyponormal operator. Also, the sum direct and tensor product of this class has been studied.

References

- [1] Ando. T, On hyponormal operators, Proc. Amer. Math. Soc., 14, 290-291 (1963).
- [2] Embry. M.R, Conditions impling normality in Hilbert space. Pacific J. Math. 18, 457–460 (1966).
- [3] Fong. C.K, Tsui. S.K, A note on positive operators, J. Operator Theory, 5(1), 73-76 (1981).
- [4] Fong. C.K, Istratescu. V.I, Some characterizations of hermitian operators and related classes of operators. Proc. Amer. Math. Soc.76, 107–112 (1979).
- [5] Fuglede. B, A commutativity theorem for normal operators. Proc. Nati. Acad. Sci., 36, 35-40 (1950).
- [6] Furuta. T, Horie. M, A remark on a class of operators, Proc. Japan., 43, 607-609 (1967) .
- [7] Guesba. M, Nadir. M, On n-power-hyponormal operators, Global Journal of Pure and Applied Mathematics. 12 (1), 473–479 (2016).
- [8] Guesba. M, On some numerical radius inequalities for normal operators in Hilbert spaces, J. Interdiscip. Math, 25 (2), 463–470 (2022).
- [9] Guesba. M, Sid Ahmed. O.A. Mahmoud, Paranormal operators in semi-Hilbertian spaces, Afr. Mat. 31, 1409–1428 (2020).
- [10] Guesba. M, Sid Ahmed. O.A. Mahmoud, k-Quasi-A-paranormal operators in semi-Hilbertian spaces, Oper. Matrices, 16 (3), 623–643 (2022).
- [11] Halmos. P.R, Normal dilations and extensions of operators, Summa Bras. Math, 2, 124–134 (1950).
- [12] Heinz. E, Beitrage zur St Orungstheorie der Spektralzerlegung, Math. Ann, 123, 415–438 (1951).
- [13] Huruya. T, A note on *p*-hyponormal operators, 125(12), 3617–3624. Proc. Am. Math. Soc., 1997.

- [14] Rakocevic. V, On class of operators, Mat. Vesnik. 37, 423-426 (1989).
- [15] Ramya. P, Prasad. T and Shine Ial. E, On (m, n)-class Q and (m, n)-class Q^* operators, Palestine Journal of Mathematics, 12 (2), 353–360 (2023).
- [16] Rashid. M.H.M, Some conditions nn non-normal operators which imply normality, Thai Journal of Mathematics, 185–192 (2012).
- [17] Rashid. M.H.M, Prasad. T and Uchiyama. A, Spectral properties for classes of operators related to perinormal operators, Palestine Journal of Mathematics, 12 (3), 484–511 (2023).
- [18] Stampfli. J.G, Hyponormal operators, Pacific J. Math., 12, 1453–1458 (1962).
- [19] Uchiyama. A, Tanahashi. K, Fuglede-Putnam's theorem for *p*-hyponormal or log-hyponormal operators, Glasgow Math. J., 44, 397–410 (2002).

Author information

Messaoud Guesba, Faculty of Exact Sciences, Department of Mathematics El Oued University, 39000, Algeria. E-mail: guesbamessaoud2@gmail.com, guesba-messaoud@univ-eloued.dz

Received: 2023-03-20 Accepted: 2024-03-27