SOME RESULTS ON HYPONORMAL OPERATORS

Messaoud Guesba

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 47A05, 47A55; Secondary 447B15.

Keywords and phrases: Normal operator, hyponormal operator, Cartesian decomposition, sum direct, tensor product.

The author would like to thank Professor Harikrishnan Panackal and Editor-in-Chief Ayman Badawi for their constructive comments and valuable suggestions that improved the quality of this paper.

Abstract In this paper we introduce some results on hyponormal operators acting on a complex Hilbert space H . We give sufficient conditions for which the sum and product of two hyponormal operators is a hyponormal operator. Also, we study the sum direct and tensor product of this class.

1 Introduction and Preliminaries

Throughout this paper, $\mathcal{B}(\mathcal{H})$ denotes to the algebra of all bounded linear operators acting on a complex Hilbert space H with inner product $\langle \cdot, \cdot \rangle$ and the corresponding norm $\| \cdot \|$. The symbol I stands for the identity operator on H. If $T \in \mathcal{B}(\mathcal{H})$ then, T^* is its adjoint and $T = A + iB$ is its Cartesian decomposition. Let ker(T) and $\Re(T)$ denote the kernel and range of $T \in \mathcal{B}(\mathcal{H})$, respectively. For any operator T in $\mathcal{B}(\mathcal{H})$ set as usual,

$$
|T| = (T^*T)^{\frac{1}{2}}.
$$

Many classes of operators are defined according to the relation betwen T and T^* , for example T is normal if $TT^* = T^*T$; self-adjoint or hermitian if $T^* = T$; skew-adjiont if $T^* = -T$; positive (denoted by $T \ge 0$) if $\langle Tx, x \rangle \ge 0$ for all $x \in \mathcal{H}$ and seky-normal if $T^2 = T^{*^2}$; quasinormal if $TT^*T = T^*T^2$; projection if $T^2 = T = T^*$; idempotent if $T^2 = T$. For an operator $T \in \mathcal{B}(\mathcal{H})$, if $||Tx|| = ||x||$ for all $x \in \mathcal{H}$ (or equivalently $T^*T = I$), then T is called an isometry; T is called unitary if $TT^* = T^*T = I$. An operator $T \in \mathcal{B}(\mathcal{H})$ is a partial isometry if $||Tx|| = ||x||$ for all $x \in (\ker(T))^{\perp}$. For more facts about these and other classes of operators, we refer the reader to [\[2,](#page-5-1) [3,](#page-5-2) [4,](#page-5-3) [6,](#page-5-4) [7,](#page-5-5) [8,](#page-5-6) [9,](#page-5-7) [10,](#page-5-8) [14,](#page-6-0) [15\]](#page-6-1) and the references therein.

Recall that An operator $T \in \mathcal{B}(\mathcal{H})$ has the unique polar decomposition $T = U|T|$, where $|T| = (T^*T)^{\frac{1}{2}}$ and U is the appropriate partial isometry satisfying ker $(U) = \text{ker}(|T|) = \text{ker}(T)$ and ker (U^*) = ker (T^*) .

An operator $T \in \mathcal{B}(\mathcal{H})$ is called hyponormal if $TT^* \leq T^*T$, which is equivalent to the condition $||T^*x|| \le ||Tx||$ for all $x \in \mathcal{H}$. The notation of hyponormality was first introduced in [\[11\]](#page-5-9). Further, the class of hyponormal operators has been studied by many authors. In recent years this class has been generalized, in some sense, to the larger sets of so called m-hyponormal, p -hyponormal etc see $[1, 13, 17, 18]$ $[1, 13, 17, 18]$ $[1, 13, 17, 18]$ $[1, 13, 17, 18]$ $[1, 13, 17, 18]$ $[1, 13, 17, 18]$ $[1, 13, 17, 18]$.

An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be m-hyponormal, if there exists a positive number m, such that

$$
m^{2} (A - \lambda I)^{*} (A - \lambda I) \ge (A - \lambda I) (A - \lambda I)^{*}
$$
, for, all $\lambda \in \mathbb{C}$

and T is called p-hyponormal for $p > 0$ if

$$
(TT^*)^p \le (T^*T)^p.
$$

Recall that any $T \in \mathcal{B}(\mathcal{H})$ is expressible as $T = A + iB$ where $A, B \in \mathcal{B}(\mathcal{H})$ are self-adjoint operators. Besides,

$$
A = \text{Re}\,T = \frac{T + T^*}{2},
$$

is the real part of T , and

$$
B = \operatorname{Im} T = \frac{T - T^*}{2i},
$$

the imaginary part of T.

It is to check that T is normal if and only if $AB = BA$.

It is well known that a self-adjoint operator can be characterized in the following way an operator T in $\mathcal{B}(\mathcal{H})$ is self-adjoint if and only if $\langle Tx, x \rangle$ is real. In [\[4\]](#page-5-3) the authors gave another characterization involving inequalities. We denote by (WN) the class of operators in $\mathcal{B}(\mathcal{H})$ satisfying the following inequality:

$$
(\text{Re}\,T)^2 \leq |T|^2.
$$

This class has been introduced by Fong and Istratescu [\[4\]](#page-5-3). Notice that this class contains the class of hyponormal operators. Indeed, T is hyponormal implies that

$$
(\operatorname{Re} T)^2 + (\operatorname{Im} T)^2 \le |T|^2.
$$

Since $(\text{Im } T)^2$ is a positive operator, then

$$
(\text{Re } T)^2 \leq |T|^2,
$$

that is $T \in (WN)$.

The well-known Fuglede-Putnam theorem asserts that if S and T are normal and $SX = XT$ for some operator $X \in \mathcal{B}(\mathcal{H})$, then $S^*X = XT^*$ (see [\[5\]](#page-5-12)). There have been many generalizations of the Fuglede-Putnam theorem (see for example [\[19\]](#page-6-4) and the references therein). Resently, in [\[16\]](#page-6-5) the author proved that if $S, T \in \mathcal{B}(\mathcal{H})$ are hyponormal operators, such that $T^*S = ST^*$ then, the sum and product of S and T are hyponormal.

Our aim in this paper is to give new classical results on hyponormal operators in a complex Hilbert space. More precisely, we show that well-known results related to normal operators hold true also for those operators.

2 Main Results

In this section, we present our results. We first state the following lemma.

Lemma 2.1. *[\[12,](#page-5-13) Löwner-Heinz's inequality] Let* $A, B \in \mathcal{B}(\mathcal{H})$ *. If* $0 \le A \le B$ *and* $\delta \in (0, 1]$ *, then*

$$
0 \le A^{\delta} \le B^{\delta}.
$$

Our first result is stated as follows.

Proposition 2.2. Let $T \in \mathcal{B}(\mathcal{H})$ be an ivertible operator with polar decomposition $T = U |T|$. *Then,* T *is hyponormal if and only if*

$$
|T| \ge U |T| U^*.
$$

Proof. Let T be a hyponormal, then $|T|^2 \ge |T^*|^2$ it follows that

$$
U^* |T|^2 U \ge |T|^2 \ge U |T|^2 U^*.
$$

By Lemma [2.1,](#page-1-0) we obtain

$$
\left(|T|^2\right)^{\frac{1}{2}} \ge \left(U\,|T|^2\,U^*\right)^{\frac{1}{2}},
$$

i.e., $|T| \ge U |T| U^*$.

To prove the reverse implication, let $|T| \ge U |T| U^*$ implies that

$$
\left|T\right|^2 \ge U\left|T\right|^2 U^*,
$$

then $|T|^2 \ge |T^*|^2$. Hence, T is hyponormal.

Our next result reads as follows.

Proposition 2.3. Let $T = U|T|$ be an invertible hyponormal operator. Then, $U|T|^{\frac{1}{2}}$ is also *hyponormal.*

Proof. By setting $S = U |T|^{\frac{1}{2}}$, we observe that

$$
SS^* = U |T| U^* = |T^*|
$$

\n
$$
\leq |T| = |T|^{\frac{1}{2}} U^* U |T|^{\frac{1}{2}}
$$

\n
$$
= S^* S.
$$

Thus, S is hyponormal. \blacksquare

Proposition 2.4. Let $T = U|T|$ be an invertible hyponormal operator. Then, $U|T|^p$ is also *hyponormal, for all* $p \in (0, 1]$ *.*

Proof. By setting $S = U |T|^p$, we observe that

$$
SS^* = U |T|^{2p} U^* = |T^*|^{2p}
$$

\n
$$
\leq |T|^{2p} = |T|^p U^* U |T|^p
$$

\n
$$
= S^* S.
$$

Thus, S is hyponormal. \blacksquare

Remark 2.5. The hyponormality of T (i.e., $TT^* \leq T^*T$) implies $|T^*| \leq |T|$. But $|T^*| \leq |T|$ does not necesarily imply the hyponormality of T.

Example 2.6. Consider the 2×2 matrices $A =$ $\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right)$ and $B =$ $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. Note that $A \leq B$ and $A^2 \nleq B^2$.

We set

$$
T = \begin{pmatrix} 0 & & & & \\ A & 0 & & & \\ & B & 0 & & \\ & & B & . & \\ & & & & \ddots & \\ & & & & & \ddots \end{pmatrix}
$$

.

Then, we compute

$$
TT^* = \begin{pmatrix} 0 & & & & \\ & A^2 & & & & \\ & & B^2 & & & \\ & & & & \ddots & \\ & & & & & \ddots \end{pmatrix}
$$
 and $T^*T = \begin{pmatrix} A^2 & & & & \\ & B^2 & & & \\ & & & B^2 & & \\ & & & & \ddots & \\ & & & & & \ddots \end{pmatrix}$.

Therefore, $|T^*| \leq |T|$, but T is not hyponormal (because of $A^2 \nleq B^2$). One of the main results of this paper reads as follows.

Theorem 2.7. Let $T \in \mathcal{B}(\mathcal{H})$ be a hyponormal operator and $T = U |T|$ be the polar decomposi*tion of* T such that $U^{n_0} = U^*$ for some positive integer n_0 . Then T is normal.

Proof. Assume that T is hyponormal. Hence

$$
|T|^2 \ge |T^*|^2 = U |T|^2 U^*.
$$

By multiplying both sides of this inequality by U and U^* , we get $U|T|^2U^* \geq U|^2T$ $\int^2 U^{*^2}$ whence

$$
|T|^2 \ge U |T|^2 U^* \ge U |^2 T |^2 U^{*^2}.
$$

By repeating this process, we reach the following sequence of operators inequalities

$$
|T|^2 \ge |T^*|^2 = U|T|^2 U^* \ge U|^2 T|^2 U^{*2} \ge \dots \ge U^{n_0+1} |T|^2 U^{(n_0+1)*} \ge \dots \tag{2.1}
$$

Because of $U^{n_0} = U^*$ we can observe that $U^{n_0+1} = U^*U = U^{(n_0+1)^*}$ is the projection onto $\overline{\Re(|T|)}$.

Hence $U^{n_0+1} |T|^2 U^{(n_0+1)*} = |T|^2$, from which and inequalities [\(2.1\)](#page-3-0) we obtain $|T|^2 = |T^*|^2$ this completes the proof.

We are now in a position to state the following theorem.

Theorem 2.8. Let $T \in \mathcal{B}(\mathcal{H})$ be a hyponormal operator and $T = U |T|$ be the polar decomposi*tion of* T such that $U^{*n} \to I$ or $U^n \to I$ as $n \to \infty$, where limits are taken in the strong operator. *Then,* T *is normal.*

Proof. We assume that $U^{*n}x \to x$ as $n \to \infty$ for all $x \in \mathcal{H}$. Let T be a hyponormal operator, it follows from (2.1) (2.1) (2.1) that

$$
|||T||x|| \ge |||T^*||x|| = |||T||U^*x|| \ge |||T||U^{2*}x|| \ge \dots \ge |||T||U^{n*}x|| \ge \dots \tag{2.2}
$$

Since

$$
\left| \left\| |T| U^{n*} x \right\| - |||T| x|| \right| \leq \left\| |T| U^{n*} x - |T| x \right\|
$$

$$
\leq |||T|| || ||U^{n*} x - x|| \to 0,
$$

as $n \to \infty$, we have $|||T||U^{n*}x|| \to |||T||x||$. Hence by (2.2) (2.2) (2.2) , we get

$$
|||T||x|| = |||T^*||x||,
$$

so $|T|^2 = |T^*|^2$. Thus, T is normal.

Proposition 2.9. Let $T = A + iB \in \mathcal{B}(\mathcal{H})$ be the Cartesian decomposition of the operator T. *Let* BA = C + iD *be the Cartesian decomposition of* BA*, then* T *is hyponormal if and only of* $D \geq 0$.

Proof. Since T is hyponormal, we have

$$
T^*T - TT^* = 2i\left(AB - BA\right) \ge 0.
$$

Thus if $BA = C + iD$, then the last equation implies that

$$
AB = (BA)^* = C - iD,
$$

it follows that

$$
T^*T - TT^* = 2D \ge 0.
$$

This completes the proof. ■

The following corollary is an immediate consequence of above proposition.

Corollary 2.10. *If* $D = 0$ *, then* T *is normal.*

In order to prove our next result, we need the following lemma.

Lemma 2.11. *[\[19,](#page-6-4) Therorem 2] Let* $T \in \mathcal{B}(\mathcal{H})$ *be a p-hyponormal operator and* $L \in \mathcal{B}(\mathcal{H})$ *be a*

self-adjoint which satisfies $TL = LT^*$. Then

$$
T^*L=LT.
$$

The next theorem explain what conditions imply normality for hyponormal operators.

Theorem 2.12. Let $T = A + iB \in \mathcal{B}(\mathcal{H})$ be the Cartesian decomposition of T, with AB is *hyponormal. If* A *is idempotent, then* T *is normal.*

Proof. Assume that A is idempotent, we have

$$
(AB) A = A (BA).
$$

Let $S = AB$, then $SA = AS^*$. Then, it follows from Lemma [2.11,](#page-4-0) that $S^*A = AS$. Thus,

$$
BA^2 = A^2B.
$$

Since A is idempotent ($A^2 = A$) then $AB = BA$. Thus, T is normal.

Theorem 2.13. Let $T = A + iB \in \mathcal{B}(\mathcal{H})$ be the Cartesian decomposition of T. If AB is *hyponormal, then* T *is normal.*

Proof. Let $W = AB$ then $WA = AW^*$. Then, by Lemma [2.11,](#page-4-0) we get $W^*A = AW$ i.e., $BA^2 = A^2B$. Since T is hyponormal, we have

$$
T^*T - TT^* = 2i\left(AB - BA\right) \ge 0.
$$

Let $X = 2i(AB - BA)$, then $X \ge 0$ and $XA = -AX$. Now,

$$
X^{2}A = X (XA)
$$

= $X (-AX)$
= $-(XA) X$
= AX^{2} .

Since X is positive, then

$$
XA = -AX = 0.
$$

Hence

$$
A(AB - BA) = (AB - BA) A = 0,
$$

implies that

$$
\sigma(AB-BA)=\{0\}.
$$

Therefore, $AB - BA$ is quasi-nilpotent and skew-hermitian. Thus,

$$
AB-BA=0.
$$

So, T is normal. \blacksquare

In the end of this paper, we study the sum direct and tensor product of such operators.

Theorem 2.14. Let T_1 , T_2 ,...., T_m be hyponormal operators in $\mathcal{B}(\mathcal{H})$.

Then $(T_1 \oplus T_2 \oplus \ldots \oplus T_m)$ and $(T_1 \otimes T_2 \otimes \ldots \otimes T_m)$ are hyponormal operators.

Proof. Since

$$
(T_1 \oplus T_2 \oplus \dots \oplus T_m) (T_1 \oplus T_2 \oplus \dots \oplus T_m)^* = (T_1 \oplus T_2 \oplus \dots \oplus T_m) (T_1^* \oplus T_2^* \oplus \dots \oplus T_m^*)
$$

\n
$$
= T_1 T_1^* \oplus \dots \oplus T_m T_m^*
$$

\n
$$
\leq T_1^* T_1 \oplus \dots \oplus T_m^* T_m
$$

\n
$$
= (T_1^* \oplus T_2^* \oplus \dots \oplus T_m) (T_1 \oplus T_2 \oplus \dots \oplus T_m)
$$

\n
$$
= (T_1 \oplus T_2 \oplus \dots \oplus T_m)^* (T_1 \oplus T_2 \oplus \dots \oplus T_m)
$$

Then, $(T_1 \oplus T_2 \oplus \ldots \oplus T_m)$ is a hyponormal operator. Now, for $x_1, \ldots, x_m \in \mathcal{H}$

$$
(T_1 \otimes T_2 \otimes \dots \otimes T_m) (T_1 \otimes T_2 \otimes \dots \otimes T_m)^* (x_1 \otimes \dots \otimes x_m)
$$

= $(T_1 \otimes T_2 \otimes \dots \otimes T_m) (T_1^* \otimes T_2^* \otimes \dots \otimes T_m^*) (x_1 \otimes \dots \otimes x_m)$
= $T_1 T_1^* x_1 \otimes \dots \dots \otimes T_m T_m^* x_m$
 $\leq T_1^* T_1 x_1 \otimes \dots \dots \otimes T_m^* T_m x_m$
= $(T_1^* \otimes T_2^* \otimes \dots \otimes T_m^*) (T_1 \otimes T_2 \dots \otimes T_m) (x_1 \otimes \dots \otimes x_m)$
= $(T_1 \otimes T_2 \otimes \dots \otimes T_m)^* (T_1 \otimes T_2 \otimes \dots \otimes T_m) (x_1 \otimes \dots \otimes x_m).$

So,

$$
(T_1 \otimes T_2 \otimes \dots \otimes T_m) (T_1 \otimes T_2 \otimes \dots \otimes T_m)^* \le (T_1 \otimes T_2 \otimes \dots \otimes T_m)^* (T_1 \otimes T_2 \otimes \dots \otimes T_m).
$$

Thus, $(T_1 \otimes T_2 \otimes \dots \otimes T_m)$ is a hyponormal operator.

3 Conclusion

This paper aims is to obtain some results on hyponormal operators acting on a complex Hilbert space H . We gave sufficient conditions for which the sum and product of two hyponormal operators is a hyponormal operator. Also, the sum direct and tensor product of this class has been studied.

References

- [1] Ando. T, On hyponormal operators, Proc. Amer. Math. Soc., 14, 290–291 (1963).
- [2] Embry. M.R, Conditions impling normality in Hilbert space. Pacific J. Math. 18, 457–460 (1966).
- [3] Fong. C.K, Tsui. S.K, A note on positive operators, J. Operator Theory, 5(1), 73–76 (1981).
- [4] Fong. C.K, Istratescu. V.I, Some characterizations of hermitian operators and related classes of operators. Proc. Amer. Math. Soc.76, 107–112 (1979).
- [5] Fuglede. B, A commutativity theorem for normal operators. Proc. Nati. Acad. Sci., 36, 35–40 (1950).
- [6] Furuta. T, Horie. M, A remark on a class of operators, Proc. Japan., 43, 607–609 (1967).
- [7] Guesba. M, Nadir. M, On n-power-hyponormal operators, Global Journal of Pure and Applied Mathematics. 12 (1), 473–479 (2016).
- [8] Guesba. M, On some numerical radius inequalities for normal operators in Hilbert spaces, J. Interdiscip. Math, 25 (2), 463–470 (2022).
- [9] Guesba. M, Sid Ahmed. O.A. Mahmoud, Paranormal operators in semi-Hilbertian spaces, Afr. Mat. 31, 1409–1428 (2020).
- [10] Guesba. M, Sid Ahmed. O.A. Mahmoud, k-Quasi-A-paranormal operators in semi-Hilbertian spaces, Oper. Matrices, 16 (3), 623–643 (2022).
- [11] Halmos. P.R, Normal dilations and extensions of operators, Summa Bras. Math, 2, 124–134 (1950).
- [12] Heinz. E, Beitrage zur St Orungstheorie der Spektralzerlegung, Math. Ann, 123, 415–438 (1951).
- [13] Huruya. T, A note on p-hyponormal operators, 125(12), 3617–3624. Proc. Am. Math. Soc., 1997.
- [14] Rakocevic. V, On class of operators, Mat. Vesnik. 37, 423-426 (1989).
- [15] Ramya. P, Prasad. T and Shine lal. E, On (m, n) -class Q and (m, n) -class Q^* operators, Palestine Journal of Mathematics, 12 (2), 353–360 (2023).
- [16] Rashid. M.H.M, Some conditions nn non-normal operators which imply normality, Thai Journal of Mathematics, 185–192 (2012).
- [17] Rashid. M.H.M, Prasad. T and Uchiyama. A, Spectral properties for classes of operators related to perinormal operators, Palestine Journal of Mathematics, 12 (3), 484–511 (2023).
- [18] Stampfli. J.G, Hyponormal operators, Pacific J. Math., 12, 1453-1458 (1962).
- [19] Uchiyama. A, Tanahashi. K, Fuglede-Putnam's theorem for p-hyponormal or log-hyponormal operators, Glasgow Math. J., 44, 397–410 (2002).

Author information

Messaoud Guesba, Faculty of Exact Sciences, Department of Mathematics El Oued University, 39000, Algeria. E-mail: guesbamessaoud2@gmail.com, guesba-messaoud@univ-eloued.dz

Received: 2023-03-20
Accepted: 2024-03-27 Accepted: