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Abstract In this work, we study Ricci solitons on a new type of warped product manifolds called sequential warped
products. We investigate some hereditary properties and provide some conditions to find Einstein manifolds by considering
the potential field as Killing and conformal vector fields. Also, we derive some results when the potential field is a concurrent
vector field.

1 Introduction
Ricci solitons are a natural generalization of Einstein manifolds. They correspond to self-similar solutions of the Ricci flow
which is defined by Hamilton [14, 15]. Perelman’s solution to the Poincaré Conjecture [19, 20] led to a growing interest
in the Ricci flow and the Ricci solitons. There have been many studies involving the Ricci solitons from several different
perspectives [2, 3, 5, 6, 10, 12, 18, 21, 22, 23, 25].

There have been studies involving Ricci solitons and their generalizations (e.g., quasi-Einstein manifolds, Ricci-harmonic
solitons) in different geometric spaces. These studies attract the attention of mathematicians and physicists as well. Lately,
(singly-multiply) warped product manifolds with this kind of structures studied intensively [1, 11, 13, 16, 26].

A Riemannian manifold (M, g) is said to be Ricci soliton if there exists a smooth vector field X so that the equation

Ric +
1
2
LXg = λg (1.1)

is satisfied for some constant λ, and denoted by (M, g,X, λ). Here, Ric and L denote Ricci tensor and Lie derivative, and
the vector field X ∈ X(M) is called potential field. If the potential field is gradient of a smooth function u on M , then
(M, g,∇u, λ) is called a gradient Ricci soliton and the equation (1.1) turns into

Ric + Hessu = λg. (1.2)

Warped product manifolds, defined by O’Neill and Bishop [4] to construct manifolds with negative curvature, are studied
since the concept has an important role in both geometry and physics, where warped product spaces are used in general
relativity to model the spacetime. Doubly and multiply warped product manifolds are generalizations of the warped product
manifolds[28, 27]. A recent study [8] introduces a new generalization, the sequential warped product manifolds.

In [8], the authors introduced the sequential warped products and calculated curvature tensor, Ricci and scalar curva-
ture. Then they reached some characterizations by using concircular and Killing vector fields. They also show two space-time
applications of the sequential warped products. In [17], the authors found some necessary conditions for a sequential warped
product to be a quasi-Einstein manifold. They also acquired some conditions for an application of sequential warped products
to standard static space-time. In [24], the author introduced sequential warped product submanifolds of Kaehler manifolds
and provided some examples. In [9], the authors studied Ricci soliton warped product manifold and found relations to its
factors. Motivating from the above studies, in this paper, we inquire about Ricci solitons on this new space, sequential
warped product manifolds. We investigate some hereditary properties and provide some conditions to find Einstein manifolds
by considering the potential field as Killing, conformal and concurrent vector fields.

2 Preliminaries
First, we give the definition of the sequential warped product manifolds.

Definition 2.1. Let Mi be Riemannian manifolds with metrics gi for 1 ≤ i ≤ 3 and f : M1 −→ R+ and h : M1 ×
M2 −→ R+ be two smooth positive functions. The sequential warped product manifold M is the triple product manifold
M = (M1 ×f M2) ×h M3 equipped with the metric tensor g = (g1 ⊕ f2g2) ⊕ h2g3. Here the functions f, h are called
warping functions.

From now on, (M, g) will be considered as sequential warped product manifold where Mn = (M
n1
1 ×f M

n2
2 )×hM

n3
3

with the metric g = (g1 ⊕ f2g2) ⊕ h2g3. Here, the warped product manifold (M = M1 ×f M2, g = g1 ⊕ f2g2) is the
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base of warped product manifold M = M ×h M3. The restriction of the warping function h : M = M1 × M2 −→ R to
M1 × {0} is h1 = h|M1×{0}.

We denote ∇, ∇i; Ric, Rici; Hess, Hessi; ∆, ∆i; L, Li for the Levi-Civita connection, Ricci tensor, Hessian, Laplacian
and Lie derivative of the M , and Mi, respectively. Hessian of the M is denoted as Hess. A smooth vector field X can be
expressed as X = X1 +X2 +X3 where Xi ∈ X(Mi) for 1 ≤ i ≤ 3.

The following propositions on sequential warped product manifolds are needed to prove our results.

Proposition 2.2. [8] Let (M, g) be a sequential warped product and Xi, Yi ∈ X(Mi) for 1 ≤ i ≤ 3. Then,

(i) ∇X1Y1 = ∇1
X1

Y1,

(ii) ∇X1X2 = ∇X2X1 = X1(ln f)X2,

(iii) ∇X2Y2 = ∇2
X2

Y2 − fg2(X2, Y2)∇1f ,

(iv) ∇X3X1 = ∇X1X3 = X1(lnh)X3,

(v) ∇X2X3 = ∇X3X2 = X2(lnh)X3,

(vi) ∇X3Y3 = ∇3
X3

Y3 − hg3(X3, Y3)∇h.

Proposition 2.3. [8] Let (M, g) be a sequential warped product and Xi, Yi ∈ X(Mi) for 1 ≤ i ≤ 3. Then,

(i) Ric(X1, Y1) = Ric1(X1, Y1)− n2
f

Hess1f(X1, Y1)− n3
h

Hessh(X1, Y1),

(ii) Ric(X2, Y2) = Ric2(X2, Y2)− f♯g2 (X2, Y2)− n3
h

Hessh(X2, Y2),

(iii) Ric(X3, Y3) = Ric3(X3, Y3)− h♯g3 (X3, Y3),

(iv) Ric(Xi, Xj) = 0 when i ̸= j

where f♯ = f∆1f + (n2 − 1)
∥∥∇1f

∥∥2 and h♯ = h∆h + (n3 − 1) ∥∇h∥2.

Proposition 2.4. [8] Let (M, g) be a sequential warped product manifold. A vector field X ∈ X(M) satisfies the equation

LXg(Y, Z) =
(
L1
X1

g1

)
(Y1, Z1) + f2

(
L2
X2

g2

)
(Y2, Z2) + h2

(
L3
X3

g3

)
(Y3, Z3)

+2fX1(f)g2(Y2, Z2) + 2h(X1 +X2)(h)g3(Y3, Z3)

for Y, Z ∈ X(M).

Lastly, a vector field V on a Riemannian manifold (M, g) is conformal if there exists a smooth function on M satisfying
the equation

LV g = 2ρg.
If ρ = 0, then V is a Killing vector field.

3 Main Results
In this section, we will study Ricci solitons on sequential warped product manifolds. First, we will examine the inheritance
property as follows.

Proposition 3.1. Let (M, g,X, λ) be a sequential warped product Ricci soliton. Then,

(i) (M1, g1, X1 − n2∇1(ln f)− n3∇1(lnh1), λ) is a Ricci soliton.

(ii) If Hessh = φg, (M2, g2, f
2X2, λf

2+f♯+ n3
h
φf2−fX1(f)) is a Ricci soliton when λf2+f♯+ n3

h
φf2−fX1(f)

is a constant.

(iii) (M3, g3, h
2X3, λh

2 + h♯ − h(X1 +X2)(h)) is a Ricci soliton
when λh2 + h♯ − h(X1 +X2)(h) is a constant.

Proof. Assume that (M, g,X, λ) be a sequential warped product Ricci soliton. For Y, Z ∈ X(M),

Ric(Y, Z) +
1
2
LXg(Y, Z) = λg(Y, Z)

is satisfied. From Proposition 2.3 and Proposition 2.4 , we may write

Ric1(Y1, Z1)−
n2

f
Hess1f(Y1, Z1)−

n3

h
Hessh(Y1, Z1) + Ric2(Y2, Z2)− f♯g2(Y2, Z2)

−
n3

h
Hessh(Y2, Z2) + Ric3(Y3, Z3)− h♯g3(Y3, Z3) +

1
2

(
L1
X1

g1

)
(Y1, Z1) +

1
2
f2

(
L2
X2

g2

)
(Y2, Z2)

+
1
2
h2

(
L3
X3

g3

)
(Y3, Z3) + fX1(f)g2(Y2, Z2) + h(X1 +X2)(h)g3(Y3, Z3)

= λg1(Y1, Z1) + λf2g2(Y2, Z2) + λh2g3(Y3, Z3) (3.1)
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It is noted that

1
2
LXg(Y1, Z1) −

n2

f
Hess1f(Y1, Z1)−

n3

h
Hessh(Y1, Z1)

=
1
2
g1(∇1

Y1
X1, Z1)−

n2

2f
g1(∇1

Y1
∇1f, Z1)−

n3

2h
g1(∇1

Y1
∇1h1, Z1)

+
1
2
g1(Y1,∇1

Z1
X1)−

n2

2f
g1(Y1,∇1

Z1
∇1f)−

n3

2h
g1(Y1,∇1

Z1
∇1h1)

=
1
2
g1

(
∇1

Y1
(X1 − n2∇1(ln f)− n3∇1(lnh1)), Z1

)
+

1
2
g1

(
Y1,∇1

Z1
(X1 − n2∇1(ln f)− n3∇1(lnh1))

)
=

1
2

(
L1
X1−n2∇1(ln f)−n3∇1(ln h1)

g1

)
(Y1, Z1) .

Thus, equation 3.1 may be rewritten as

Ric1(Y1, Z1)
1
2

(
L1
X1−n2∇1(ln f)−n3∇1(ln h1)

g1

)
(Y1, Z1)

+Ric2(Y2, Z2) +
1
2
f2

(
L2
X2

g2

)
(Y2, Z2) + Ric3(Y3, Z3) +

1
2
h2

(
L3
X3

g3

)
(Y3, Z3)

= λg1(Y1, Z1) + (λf2 + f♯ − fX1(f) +
n3

h
Hessh(Y2, Z2))g2(Y2, Z2)

+(λh2 + h♯ − h(X1 +X2)(h))g3(Y3, Z3)

and hence, when the arguments are restricted to the factor manifolds, the proof is completed.

Remark 3.2. Let (M, g,X, λ) be a sequential warped product Ricci soliton. When the potential field X is Killing vector
field on M , then

(i)
(
M1, g1,−n2∇1(ln f)− n3∇1(lnh1), λ

)
is a gradient Ricci soliton.

(ii) If Hessh = φg , then M2 is Einstein.

(iii) M3 is Einstein.

This result coincides with the characterization in [8], Theorem 2.4 since the assumption on X causes (M, g) to be an Einstein
manifold.

In the next theorem, we will provide some conditions for a sequential warped product Ricci soliton to be an Einstein
manifold and examine the potential function of a gradient Ricci soliton. In [26], the authors proved that potential function of
a gradient Ricci soliton on a warped product manifold is defined on the base or the warping function is constant. Inspiring
from this point of view, we provide a similar result for sequential warped product gradient Ricci solitons.

Theorem 3.3. Let (M, g,X, λ) be a sequential warped product Ricci soliton.

(a) (M, g) is Einstein if one of the following conditions holds.

(i) X = X3 and X3 is a Killing vector field on M3.

(ii) X1 is a Killing vector field on M1, X2 and X3 are conformal vector fields on M2 and M3 with factors
−2X1(ln f) and −2(X1 +X2)(lnh), respectively.

(iii) X = X2 +X3 so that X2 and X3 are Killing on M2 and M3, respectively and X2(h) = 0.

(b) When X = ∇u for a smooth function u on M , then the warping function h is constant or u is defined on M =
M1 ×f M2. Moreover, if u is defined on M , then the warping function f is constant or u is defined on M1.

Proof. Proof of (a) is omitted here. For (b), assume that (M, g,∇u, λ) is a gradient Ricci soliton. From Theorem 1.1 of
[26], we know that the warping function h is constant or potential function u is defined on M . Suppose that the potential
function u is defined on M , then the potential field can be written as ∇u = (∇u)T + (∇u)⊥ ∈ X(M1 ×f M2).

For Y1 ∈ X(M1) and Z2 ∈ X(M2), the equation (1.2) can be written as

Ric(Y1, Z2) + Hessu(Y1, Z2) = λg(Y1, Z2).

Since Ric(Y1, Z2) = 0 and g(Y1, Z2) = 0, we conclude Hessu(Y1, Z2) = 0. Hence,

0 = Hessu(Y1, Z2) = g(∇Y1∇u, Z2)

= g(∇Y1 (∇u)T, Z2) + g(∇Y1 (∇u)⊥, Z2)

= g1(∇1
Y1
(∇u)T, Z2) + g(

Y1(f)

f
(∇u)⊥, Z2)

= fY1(f)g2((∇u)⊥, Z2)

which means f is constant or u is defined on M1 because Y1, Z2 are arbitrary.
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4 Sequential Warped Product Ricci Solitons with Concurrent Potential Fields
In [7], concurrent vector fields and Ricci solitons are studied in details. A vector field X ∈ X (M) is called a concurrent
vector field if

∇V X = V

for all V ∈ X (M).
We firstly examine concurrent vector fields on sequential warped product manifolds.

Lemma 4.1. X is a concurrent vector field on Mn if and only if X1 is concurrent on M
n1
1 and one of the following conditions

holds.

(i) X2 and X3 are concurrent on M
n2
2 and M

n3
3 , respectively and the functions f, h are constant.

(ii) X2 is concurrent on M2, X3 = 0, f is constant and (X1 +X2)(h) = h.

(iii) X2 = 0, X3 is concurrent on M3, X1(f) = f and h is constant.

(iv) X2 = X3 = 0, X1(f) = f and X1(h) = h.

Proof. Let X be a concurrent vector field on Mn and {∂i}ni=1 be a local basis for X (M). It is enough to check base vectors
on M1 for showing X1 is concurrent, i.e., for 1 ≤ i ≤ n1,

∂i = ∇∂i
X = ∇1

∂i
X1 +

∂i(f)

f
X2 +

∂i(h)

h
X3.

Here X1 must be a concurrent vector field on M1 and the remaining term is zero.
Case 1: When ∂i(f) = ∂i(h) = 0 for 1 ≤ i ≤ n1, f and h1 are constant. For n1 + 1 ≤ j ≤ n1 + n2, i.e., ∂j ∈ X(M2),

∂j = ∇∂j
X =

X1(f)

f
∂j +∇2

∂j
X2 − fg2(∂j , X2)∇1f +

∂j(h)

h
X3

= ∇2
∂j

X2 +
∂j(h)

h
X3

since f is constant. Hence, h must be constant or X3 = 0. For n1 + n2 + 1 ≤ k ≤ n, i.e., ∂k ∈ X(M3),

∂k = ∇∂k
X =

X1(h)

h
∂k +

X2(h)

h
∂k +∇3

∂k
X3 − hg3(∂k, X3)∇h

so there are two options which vanish the last term: if h is constant, then X3 is concurrent; if X3 = 0, then (X1+X2)(h) = h
which proves (i) and (ii).
Case 2: When ∂i(f) = 0 for 1 ≤ i ≤ n1 and X3 = 0, (ii) can be proved by following the same path above.
Case 3: When X2 = 0 and ∂i(h) = 0 for 1 ≤ i ≤ n1, h1 is constant. For n1 + 1 ≤ j ≤ n1 + n2,

∂j =
X1(f)

f
∂j +∇2

∂j
X2 − fg2(∂j , X2)∇1f +

∂j(h)

h
X3

=
X1(f)

f
∂j +

∂j(h)

h
X3

since X2 = 0. Therefore X1(f) = f and ∂j(h) = 0 or X3 = 0.
For n1 + n2 + 1 ≤ k ≤ n,

∂k =
X1(h)

h
∂k +

X2(h)

h
∂k +∇3

∂k
X3 − hg3(∂k, X3)∇h

=
X1(h)

h
∂k +∇3

∂k
X3 − hg3(∂k, X3)∇h

since X2 = 0. If h is constant, then X3 is concurrent. If X3 = 0, then X1(h) = h which proves (iii) and (iv).
Case 4: When X2 = X3 = 0, (iv) is again satisfied.

For the converse, assume that (i) holds and X1 is concurrent. For 1 ≤ i ≤ n1,

∇∂i
X = ∇1

∂i
X1 +

∂i(f)

f
X2 +

∂i(h)

h
X3 = ∇1

∂i
X1 = ∂i,

for n1 + 1 ≤ j ≤ n1 + n2,

∇∂j
X =

X1(f)

f
∂j +∇2

∂j
X2 − fg2(∂j , X2)∇1f +

∂j(h)

h
X3 = ∇2

∂j
X2 = ∂j

and for n1 + n2 + 1 ≤ k ≤ n,

∇∂k
X =

X1(h)

h
∂k +

X2(h)

h
∂k +∇3

∂k
X3 − hg3(∂k, X3)∇h = ∇3

∂k
X3 = ∂k

so X is concurrent. The remaning items could be shown similarly.

In the next theorem, we provide a characterization for the sequential warped product Ricci solitons when the potential
field is concurrent and also show the relation between the potential field and the warping functions f and h.

Theorem 4.2. Let (M, g) be a sequential warped product manifold and X be a concurrent vector field on M = (M1 ×f

M2)×h M3.
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(i) Let (M, g,X, λ) be a sequential warped product Ricci soliton. If X2 and X3 are nonzero, then Mi(1 ≤ i ≤ 3) is
Ricci flat gradient Ricci soliton with λ = 1 and so is M .

(ii) The warping functions f and h are constant if and only if each Xi is a nonzero concurrent vector field on Mi for
1 ≤ i ≤ 3.

Proof. Suppose that (M, g) is a sequential warped product manifold and X is a concurrent vector field on M .
Proof of (i): Assume that (M, g,X, λ) is a Ricci soliton. For Y, Z ∈ X(M),

LXg(Y, Z) = 2g(Y, Z)

and the equation (1.1) becomes
Ric(Y, Z) = (λ− 1)g(Y, Z). (4.1)

Taking Y = Y3 and Z = Z3 in the above equation and using Proposition 2.3 we have

Ric3(Y3, Z3)−
(
h∆h + (n3 − 1) ∥∇h∥2

)
g3(Y3, Z3) = (λ− 1)h2g3(Y3, Z3).

From hypothesis and (i) of Lemma 4.1, h = c is constant and the above equation becomes

Ric3(Y3, Z3) = (λ− 1)c2g3(Y3, Z3) (4.2)

which means M3 is an Einstein manifold with the factor µ = (λ − 1)c2. Since this equation holds for any vector fields in
X(M3), taking Y3 = Z3 = X3 we get

Ric3(X3, X3) = (λ− 1)c2g3(X3, X3). (4.3)

Assume that the set {X3, e1, . . . , en3−1} is a local orthogonal base for X(M3). The Riemannian curvature can be calculated
as follows

R3(X3, ej , X3, ej) = g3

(
R3(X3, ej)X3, ej

)
= g3

(
∇3

X3
∇3

ej
X3 −∇3

ej
∇3

X3
X3 −∇3

[X3,ej ]
X3, ej

)
= 0,

which leads to Ric3(X3, X3) = 0. From the equation (4.3) we get λ = 1. Therefore, M and M3 are Ricci flat from the
equations (4.1) and (4.2), respectively. When Y = Y2 and Z = Z2, we have

0 = Ric(Y, Z) = Ric(Y2, Z2)

= Ric2(Y2, Z2)− f♯g2(Y2, Z2)−
n3

h
Hessh(Y2, Z2)

= Ric2(Y2, Z2)

since f and h are constant. Therefore M2 is Ricci flat. The same argument works for M1. It is obvious that Mi(1 ≤ i ≤ 3)
and M are Ricci soliton with λ = 1. When we choose the potential functions for M and Mi(1 ≤ i ≤ 3),

φ =
1
2
g(X,X), φ1 =

1
2
g1(X1, X1),

φ2 =
1
2
g2(X2, X2), φ3 =

1
2
g3(X3, X3),

then each one of them is a gradient Ricci soliton.
Proof of (ii): For Y ∈ X(M), we get

3∑
i=1

Yi = Y = ∇Y X =

3∑
j,k=1

∇Yj
Xk.

After some calculation, we have the system following system

Y1 = ∇1
Y1
X1 − fg2(X2, Y2)∇1f − hg3(X3, Y3)(∇h)T ,

Y2 = ∇2
Y2
X2 +

Y1(f)

f
X2 +

X1(f)

f
Y2 − hg3(X3, Y3)(∇h)⊥,

Y3 = ∇3
Y3
X3 +

Y1(h)

h
X3 +

Y2(h)

h
X3 +

X1(h)

h
Y3 +

X2(h)

h
Y3.

Now suppose that the warping functions f and h are constant. Then, it is clear that each Xi is concurrent on Mi for
1 ≤ i ≤ 3.

Conversely, assume that each nonzero Xi is concurrent for 1 ≤ i ≤ 3, then the equations Y1 = ∇1
Y1
X1, Y2 = ∇2

Y2
X2

and Y3 = ∇3
Y3
X3 are satisfied.

Here choosing Y = Y1 + Y2 + 0 in the last equation of the above system, we have (Y1 + Y2)(h) = 0. Since Y1 + Y2 is
an arbitrary, the function h must be constant. Therefore, we reach

fg2(X2, Y2)∇1f = 0.

Here, Y2 is arbitrary and X2 is nonzero, hence f must be constant.
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