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Abstract Let N be a 3-prime near-ring with center Z(N ) and U a nonzero Lie ideal of N .
The aim of this paper is to prove some theorems showing that N must be commutative if it admits
a nonzero generalized left derivation F with associated a left derivation D satisfying any one of
the following properties: (i) F (U) ⊆ Z(N ), (ii) F (U2) = {0}, (iii) F (u) = u for all u ∈ U ,
and (iv) D(U2) ⊆ Z(N ). We also give some examples to show that the hypotheses made in our
results are not superfluous.

1 Introduction
A right (resp. left) near-ring N is a triple (N ,+, .) with two binary operations ” + ” and ”.” such that (i) (N ,+) is a
group (not necessarily abelian), (ii) (N , .) is a semigroup, (iii) (x + y).z = x.z + y.z (resp. x.(y + z) = x.y + x.z)
for all x, y, z ∈ N . We denote by Z(N ) the multiplicative center of N , and usually N will be 3-prime, if, for x, y ∈ N ,
xNy = {0} implies x = 0 or y = 0. A right (resp. left) near-ring N is a zero-symmetric if x.0 = 0 (resp. 0.x = 0)
for all x ∈ N , (recall that right distributive yields 0.x = 0 and left distributive gives x.0 = 0). For any pair of elements
x, y ∈ N , [x, y] = xy − yx stands for the Lie product. Recall that N is said to be 2-torsion free if 2x = 0 implies x = 0
for all x ∈ N . The Lie ideal U of N is an additive subgroup which has the property [u, x] ∈ U for all u ∈ U, x ∈ N . A
Lie ideal U of N is said to be a square closed Lie ideal if u2 ∈ U for all u ∈ U . According to [12], an additive mapping
D : R → R is a left derivation (resp. a Jordan left derivation) if D(xy) = xD(y) + yD(x) (resp. D(x2) = 2xD(x))
for all x, y ∈ R. Obviously, every left derivation is a Jordan left derivation, but the converse is not generally true (see [17],
Example 1.1.). Recently, M. Ashraf et al. [1] proved that the converse statement is true if the underlying ring is prime and
2-torsion free. According to [14], an additive mapping G : N → N is said to be a left generalized derivation of N if there
exists a derivation d : N → N such that G(xy) = xG(y) + d(x)y holds for all x, y ∈ N . Inspired by the definition of
generalized left derivation, Ashraf and Shakir [2] introduced the concepts of generalized left derivation and generalized Jordan
left derivation on rings R as follows: an additive mapping G : R → R is called a generalized left derivation (respectively,
generalized Jordan left derivation) if there exists a Jordan left derivation δ : R → R such that G(xy) = xG(y) + yδ(y)
(respectively, G(x2) = xG(x) + xδ(x)) holds for all x, y ∈ R. In [16], S. Y. Kang and I. S. Chang introduced the concepts
of generalized left derivation in algebra as follows: an additive mapping G : A → A is called a generalized left derivation if
there exists a left derivation d : A → A such that G(xy) = xG(y) + yd(x) for all x, y ∈ N . Motivated by the concept of
generalized left derivations in algebra (see, [16]), we introduce the concept of generalized left derivations in near rings with
a similar manner: an additive mapping F : N → N is called a generalized left derivation if there exists a left derivation
D : N → N such that F (xy) = xF (y) + yD(x) for all x, y ∈ N . It is obvious to see that every left derivation on a
near-ring N is a generalized left derivation, but the opposite is not true in general. The following example justifies this:

Example 1.1. Let R be a near-ring. Define the set N and the maps D,F : N → N by:

N =


0 0 0
x 0 0
y z 0

 |x, y, z, 0 ∈ R


F

0 0 0
x 0 0
y z 0

 =

0 0 0
x 0 0
y 0 0

 , D

0 0 0
x 0 0
y z 0

 =

0 0 0
0 0 0
0 z 0


It is easy to verify that F is a generalized left derivation of the near-ring N associated with the derivation D, but F is

not a left derivation of N .

In [6], Bergen showed that if U is a nonzero Lie ideal of a 2-torsion free prime ring R and d is a nonzero derivation
of R such that d(U) ⊆ Z(R), then U ⊆ Z(R). In [7] and [9], the authors used Lie ideals and derivations to make a
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number of important discoveries, including the commutativity of addition in near-rings. In [15] Öznur Gölbaşi and K. Kaya
has proved that if R is a prime ring of characteristic different from 2 which admits a nonzero Lie ideal U and if f is a nonzero
generalized derivation associated with d of R. Then we have the following results: (i) If a ∈ R and [a, f(U)] = 0 then
a ∈ Z(R) or d(a) = 0 for all U ⊆ Z(R); (ii) If f2(U) = {0} then U ⊆ Z(R), (iii) If u2 ∈ U for all u ∈ U and
f acts as a homomorphism or antihomomorphism on U then either d = 0 or U ⊆ Z(R). It is my purpose to extend some
comparable results to near-rings with generalized left derivation.

2 Some preliminaries
We start with the following lemmas they are essential for developing the proof of our results.

Lemma 2.1. Let N be a 3-prime near-ring.

(i) [4, Lemma 1.2 (iii)] If z ∈ Z(N ) ∖ {0} and xz ∈ Z(N ) or zx ∈ Z(N ), then x ∈ Z(N ).

(ii) [5, Lemma 3 (ii)] If Z(N ) contains a nonzero element z of N which z + z ∈ Z(N ), then (N ,+) is abelian.

(iii) [7, Lemma 3] If U ⊆ Z(N ), then (N ,+) is abelian.

Lemma 2.2 ([13], Theorem 3.1). Let N be a 3-prime right near-ring. If N admits a nonzero left derivation d, then the
following properties hold true:

(i) If there exists a nonzero element a such that d(a) = 0, then a ∈ Z(N ).

(ii) (N ,+) is abelian, if and only if N is a commutative ring.

(iii) [13, Lemma 3.2 (i)] d(U2) = {0} if and only if N is a commutative ring.

Lemma 2.3. Let N be a 3-prime right near-ring. If N admits a nonzero generalized left derivation F associated with a left
derivation D such that F (a) = 0, then

a(xD(y) + yD(x)) = xaD(y) + yaD(x) for all x, y ∈ N .

Proof. Using the definition of F , we have

F (xya) = xF (ya) + yaD(x)

= x(yF (a) + aD(x)) + yaD(x)

= xaD(x) + yaD(x) for all x, y ∈ N ,

and

F (xya) = xyF (a) + aD(xy)

= a(xD(y) + yD(x)) for all x, y ∈ N .

By combining the last two expressions, we obviously have

a(xD(y) + yD(x)) = xaD(y) + yaD(x) for all x, y ∈ N .

3 Identities in 3-prime right near-rings with Lie ideals
Let N be a 2-torsion free 3-prime right near-ring. In [3], H. E. Bell proved that if N admits a non-zero generalized derivation
f such that f(N ) ⊆ Z(N ), then N is a commutative ring. Our goal in the following result is to prove the same result by
replacing the generalized derivation by a generalized left derivation without using the 2-torsion-free condition of N .

Theorem 3.1. Let N be a 3-prime near-ring and U be a nonzero Lie ideal of N . If N admits a generalized left derivation F
associated with a left derivation D, then the following assertions are equivalent:

(i) F (U) ⊆ Z(N );

(ii) N is a commutative ring.

Proof. Clearly, (ii) implies (i).
(i) ⇒ (ii) If Z(N ) = {0}, then

F (U) = {0}. (3.1)

By (3.1), we can write F ([u, v]) = 0 for all u, v ∈ U , which implies that F (uv) = F (vu) for all u, v ∈ U . Using the
definition of F together with (3.1), we get

uD(v) = vD(u) for all u, v ∈ U. (3.2)

Invoking (3.1), then F [u, nu] = 0 for all u ∈ U, n ∈ N . Since [u, nu] = [u, n]u, we get F ([u, n]u) = 0 for all
u ∈ U, n ∈ N , which means [u, n]F (u) + ud([u, n]) = 0 for all u ∈ U, n ∈ N . By (3.1), we get ud([u, n]) = 0 for all
u ∈ U, n ∈ N , and from (3.2), we arrive at [u, n]D(u) = 0 for all u ∈ U, n ∈ N , which gives

unD(u) = nuD(u) for all u ∈ U, n ∈ N . (3.3)

Taking nm in place of n in (3.3) and using it again, we may write

unmD(u) = nmuD(u) for all u ∈ U,m, n ∈ N .
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Which leads to
unmD(u) = numD(u) for all u ∈ U,m, n ∈ N ,

and therefore,
[u, n]mD(u) = 0 for all u ∈ U,m ∈ N .

So, [u, n]ND(u) = {0} for all u ∈ U, n ∈ N . By the 3-primeness of N and Lemma 2.2(i), we conclude that U ⊆ Z(N ).
Using Lemma 2.1(iii) and Lemma 2.2(ii), we deduce that N is a commutative ring.
Now, suppose that F (U) ⊆ Z(N ) and Z(N ) ̸= {0}, then there exists z ∈ U\{0} such that F (z) ∈ Z(N ) and F (z) +
F (z) = F (2z) ∈ Z(N ), which implies that (N ,+) is abelian by Lemma 2.1 (ii). Using Lemma 2.2(ii), we conclude that
N is a commutative ring.

Corollary 3.2. Let N be a 3-prime near-ring and U be a nonzero Lie ideal of N . If N admits a generalized left derivation
F associated with a left derivation D, then the following assertions are equivalent:

(i) D(N ) ⊆ Z(N );
(ii) D(U) ⊆ Z(N );

(iii) F (N ) ⊆ Z(N );
(iv) N is a commutative ring.

Theorem 3.3. Let N be a 3-prime near-ring and U be a nonzero Lie ideal of N . If N admits a generalized left derivation F
associated with a left derivation D such that F (U2) = {0}, then N is a commutative ring.

Proof. Assume that
F (U2) = {0}. (3.4)

Invoking (3.4), then F (v[u, nu]) = 0 for all u, v ∈ U, n ∈ N , using the definition of F and the fact that [u, nu] =
[u, n]u, we get vF ([u, n]u) + [u, nu]D(v) = 0 for all u, v ∈ U, n ∈ N . Using (3.4), then the latter equation becomes
[u, n]uD(v) = 0 for all u, v ∈ U, n ∈ N , which gives

unuD(v) = nu2D(v) for all u ∈ U, n ∈ N . (3.5)

Taking nm in place of n in (3.5) and using it, we can write

unmD(v) = nmu2D(v) for all u ∈ U,m, n ∈ N .

Which leads to
unmuD(v) = numuD(v) for all u ∈ U,m, n ∈ N .

And therefore,
[u, n]muD(v) = 0 for all u, v ∈ U, n ∈ N .

So [u, n]NuD(v) = {0} for all u, v ∈ U, n ∈ N . By the 3-primeness of N , we may write

[u, n] = 0 or uD(v) = 0 for all u, v ∈ U, n ∈ N . (3.6)

Suppose that there exists u0 ∈ U such that
u0D(v) = 0 for all v ∈ U. (3.7)

Using (3.4), then F (vu0) = 0 for all v ∈ U , by the definition of F and (3.7), we get

vF (u0) = 0 for all v ∈ U. (3.8)

Replacing v by [u, n] in (3.8) and using it again, we obtain unF (u0) = 0 for all u ∈ U, n ∈ N , which gives UNF (u0) =
{0}. Since N is 3-prime and U ̸= {0}, we obtain

F (u0) = 0 (3.9)
Using (3.4) and (3.9) together with the definition of F , we get u0D(u0) = 0, then D(u2

0) = 0, so u2
0 ∈ Z(N ) by Lemma

2.2(i). Furthermore, D(u3
0) = 0 then u3

0 ∈ Z(N ) by Lemma 2.2(i). By lemma 2.1(i) we get u0 ∈ Z(N ) or u2
0 = 0.

If u2
0 = 0, then D(u2

0n) = 0 for all n ∈ N , which implies uoD(u0n) + u0nD(u0) = 0 for all n ∈ N . Using the lemma
2.3 and the fact that u0D(u0) = 0, we get u0ND(u0) = {0}. By the 3-primeness of N together with the lemma 2.2(i), we
deduce that u0 ∈ Z(N ), then (3.6) becomes U ⊆ Z(N ). Using the Lemma 2.1(i) and Lemma 2.2(ii), we conclude that N
is a commutative ring.

Corollary 3.4. Let N be a 3-prime near-ring, U be a nonzero Lie ideal of N and F is a generalized left derivation associated
with a left derivation D. Then

(i) If D(U2) = {0}, then N is a commutative ring.
(ii) If D(N 2) = {0}, then N is a commutative ring.

(iii) If F (N 2) = {0}, then N is a commutative ring.

The following example proves that the 3-primeness of N cannot be omitted in the Theorem 3.1.

Example 3.5. Let R be a right near-ring which is not abelian. Define N , U , d and F by:

N =


0 0 0
x 0 0
y z 0

 |x, y, z, 0 ∈ R

 , U =


0 0 0

0 0 0
p 0 0

 | p, 0 ∈ R

 ,

D

0 0 0
x 0 0
y z 0

 =

0 0 0
0 0 0
0 z 0

 and F

0 0 0
x 0 0
y z 0

 =

0 0 0
x 0 0
y 0 0


Then N is a right near-ring which is not 3-prime, U is a nonzero Lie ideal of N , D is a nonzero left derivation of N which
is not a derivation and F is a nonzero generalized left derivation with associated left derivation D of N which is not a left
derivation. It is easy to see that
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(i) F (U) ⊆ Z(N );

(ii) F (U2) = {0}.
However, N is not a commutative ring.

Theorem 3.6. Let N be a 3-prime near-ring and U be a nonzero closed Lie ideal of N . If N admits a generalized left
derivation F associated with a left derivation D such that F (u) = u for all u ∈ U , then N is a commutative ring.

Proof. Suppose that F (u) = u for all u ∈ U , then F ([u, nu]) = [u, nu] for all u ∈ U, n ∈ N . Using the definition of F
with [u, nu] = [u, n]u, we get uD([u, n]) = 0 for all u ∈ U, n ∈ N . Replace n with nu in the above equation and use it,
we arrive at u[u, n]D(u) = 0 for all u ∈ U, n ∈ N , which implies

u(unD(u)− nuD(u)) = 0 for all u ∈ U, n ∈ N . (3.10)

Since u2 ∈ U , by hypothesis given, we have F (u2) = u2 for all u ∈ U , and by the defintion of F , we obtain uD(u) = 0
for all u ∈ U , and therefore (3.10) becomes u2nD(u) = 0 for all u ∈ U, n ∈ N , which gives u2ND(u) = {0} for all
u ∈ U . By the 3-primeness of N , we deduce that

u2 = 0 or D(u) = 0 for all u ∈ U. (3.11)

By Lemma 2.2(i), (3.11) becomes
u2 = 0 or u ∈ Z(N ) for all u ∈ U. (3.12)

Suppose that there exists an element u0 ∈ U such that u2
0 = 0, then D(u2

0n) = 0 for all n ∈ N , which implies that

u0D(u0n) + u0nD(u0) = 0 for all n ∈ N . (3.13)

On the other hand F ([u0, nu0]) = [u0, nu0] for all n ∈ N , it follows that F (u0nu0) = u0nu0 for all n ∈ N . Using the
definition of F and F (u0) = u0, and simplifying we get u0D(u0n) = 0 for all n ∈ N , then (3.13) becomes u0nD(u0) = 0
for all n ∈ N , thus u0Nd(u0) = {0} for all u ∈ U . By the 3-primeness of N and Lemma 2.2(i), we deduce u0 ∈ Z(N ),
and therefore (3.12) becomes u ∈ Z(N ) for all u ∈ U , which implies that U ⊆ Z(N ). Using Lemma 2.1(iii) and Lemma
2.2(ii), we conclude that N is a commutative ring.

Corollary 3.7. Let N be a 3-prime near-ring, U be a nonzero closed Lie ideal of N and F is a generalized left derivation
associated with a left derivation D of N . Then

(i) If F (x) = x for all x ∈ N , then N is a commutative ring.

(ii) If D(u) = u for all u ∈ U , then N is a commutative ring.

(iii) If D(x) = x for all x ∈ N , then N is a commutative ring.

The following example proves that the 3-primeness of N cannot be omitted in the Theorem 3.6.

Example 3.8. Let R be a 2-torsion left near-ring which is not abelian. Define N , U , D and F by:

N =


0 x y

0 0 0
0 z 0

 |x, y, z, 0 ∈ R

 , U =


0 p 0

0 0 0
0 q 0

 | p, q, 0 ∈ R

 ,

D

0 x y

0 0 0
0 z 0

 =

0 0 y

0 0 0
0 0 0

 and F

0 x y

0 0 0
0 z 0

 =

0 x 0
0 0 0
0 z 0

 .

Then N is a left near-ring which is not 3-prime, U is a nonzero closed Lie ideal of N , D is a nonzero left derivation of N
which is not a derivation and F is a nonzero generalized left derivation with associated left derivation d of N which is not a
left derivation. It is also easy to see that F (u) = u for all u ∈ U. However, N is not a commutative ring.

4 Some results involving left derivations
In [5], H. E. Bell and G. Mason proved the following results: (i) If N is a 3-prime 2-torsion-free near-ring which admits a
nonzero derivation D for which D(N ) ⊆ Z(N ), then N is a commutative ring; (ii) If N is 3-prime and 2-torsion-free and
D is a derivation such that D2 = 0, then D = 0. In the present section, our goal is to extend the above study to the setting
of left derivations.

Theorem 4.1. Let N be a 2-torsion free 3-prime near-ring and U be a nonzero Lie ideal of N . If N admits a nonzero left
derivation D, then the following assertions are equivalent:

(i) D(U2) ⊆ Z(N );

(ii) N is a commutative ring.

Proof. It is easy to see that (ii) ⇒ (i).
(i) ⇒ (ii) If Z(N ) = {0}, then D(U2) = {0} and, by Lemma 2.2 (iii) we find that N is a commutative ring.
Now, suppose that D(U2) ⊆ Z(N ) and Z(N ) ̸= {0}, then D(u2) ∈ Z(N ) for all u ∈ U , which gives 2uD(u) ∈
Z(N ) for all u ∈ U . Substituting [u, nu] for u in the last equation and using the fact that [u, nu] = [u, n]u, we obtain
2[u, nu]D([u, n]u) ∈ Z(N ) for all u ∈ U, n ∈ N , By Lemma 2.1 (i), we get

2[u, nu] ∈ Z(N ) or D([u, nu]) = 0 for all u ∈ U, n ∈ N . (4.1)
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In view of Lemma 2.2 (i), (4.1) becomes

2[u, nu] ∈ Z(N ) for all u ∈ U, n ∈ N . (4.2)

Replacing n by nu in (4.2), we obtain 2[u, nu]u ∈ Z(N ) for all u ∈ U, n ∈ N . Invoking Lemma 2.1 (i) together with the
2-torsion freeness of N , we get

u ∈ Z(N ) or [u, nu] = 0 for all u ∈ U, n ∈ N . (4.3)

Which implies that [u, nu] = 0 for all u ∈ U, n ∈ N , then unu = nu2 for all u ∈ U, n ∈ N . Substituting nm for n in last
equation and using it, we obtain [u, n]Nu = {0} for all u ∈ U, n ∈ N and by 3-primeness of N , we deduce u ∈ Z(N ),
then (4.3) becomes U ⊆ Z(N ). The Lemma 2.1(iii) and Lemma 2.2(ii) assure that N is a commutative ring.

Corollary 4.2. Let N be a 2-torsion free 3-prime near-ring. If N admits a left derivation D, then the following assertions
are equivalent:

(i) D(N 2) ⊆ Z(N );

(ii) N is a commutative ring .

Theorem 4.3. Let N be a 2-torsion free 3-prime near-ring and U be a nonzero Lie ideal of N . If N admits a left derivation
D, then the following assertions are equivalent:

(i) D2(U) = {0};

(ii) D2(U2) = {0};

(iii) N is a commutative ring.

Proof. It is obvious that (iii) implies (i) and (ii) .
(i) ⇒ (iii) Suppose that D2(U) = {0}. By Lemma 2.2 (i), we get D(U) ⊆ Z(N ) and using Theorem 3.1, we conclude
that N is a commutative ring.
(ii) ⇒ (iii) Assume that D2(U2) = {0}. Using Lemma 2.2 (i), we obtain D(U2) ⊆ Z(N ), and by Theorem 4.1, we find
that N is a commutative ring.

Corollary 4.4. Let N be a 2-torsion free 3-prime near-ring. If N admits a left derivation D such that D2 = 0, then D = 0.

Proof. Suppose D2 = 0, using the theorem 3.3, then N is a commutative ring. So 0 = D2(x2)y = 2D(x)D(x)y for all
x, y ∈ N , and the 2-torsion freeness of N forces that D(x)ND(x) = {0} for all x ∈ N . So D = 0 by the 3-primeness of
N .

The following example proves that the 3-primeness of N in Theorems 4.3 cannot be omitted.

Example 4.5. Let R be a 2-torsion free right near-ring which is not abelian. Define N , J and D by:

N =


0 r s

0 0 t

0 0 0

 | r, s, t, 0 ∈ R

 , U =


0 0 p

0 0 0
0 0 0

 | p, 0 ∈ R

 ,

D

0 r s

0 0 t

0 0 0

 =

0 r 0
0 0 0
0 o 0

 . Then, N is a right near-ring which is not 3-prime, U is a nonzero Lie ideal of N , and

D is a nonzero left derivation of N which is not a derivation. We can easily see that
(i) D(U2) ⊆ Z(N );

(ii) D2(U) = {0};

(iii) D2(U2) = {0}.
But N is not a commutative ring.

5 Results in right near-rings involving Lie ideals and right centralizers
The notion of generalized left derivations with D = 0 includes the notion of right centralizers (multipliers). An additive
mapping T : N → N is a right centralizer (multiplier) if T (xy) = xT (y) for all x, y ∈ N . Our goal in this section is
to establish similar results in [[8], Theorems 3.1, 3.11 and 4.1]. Furthermore, we investigate the structure of a 3-prime right
near-ring N admitting a nonzero right centralizer T which satisfies certain differential identities on Lie ideals.

Theorem 5.1. Let N be a 3-prime near-ring and U be a nonzero Lie ideal of N . If N admits a nonzero right multiplier T
such that T ([u, n]) ∈ Z(N ) for all u ∈ U, n ∈ N , then (N ,+) is abelian.

Proof. Suppose that Z(N ) = {0}, then T ([u, n]) = 0 for all u ∈ U, n ∈ N . It follows that T (un) = T (nu) for all
u ∈ U, n ∈ N , using the definition of T , then uT (n) = nT (u) for all u ∈ U, n ∈ N . Replacing u by [u,m] in the last
equation and using our assumption, then [u,m]T (n) = 0 for all u ∈ U, n,m ∈ N . Now substituting xy instead of n and
using the definition of T , we find [u,m]xT (y) = 0 for all u ∈ U,m, x, y ∈ N , which gives [u,m]NT (y) = {0} for all
u ∈ U,m, y ∈ N . Since T ̸= 0, we deduce from the 3-primeness of N that U ⊆ Z(N ), and Lemma 2.1 (i) assure that
(N ,+) is abelian.
Now assume that Z(N ) ̸= {0} and T ([u, n]) ∈ Z(N ) for all u ∈ U, n ∈ N , then T ([[u, n], n[u, n]]) ∈ Z(N ) for all
u ∈ U, n ∈ N , using the definition of T and the fact that [[u, n], n[u, n]] = [[u, n], n][u, n] for all u ∈ U, n ∈ N , we
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obtain [[u, n], n]T ([u, n]) ∈ Z(N ) for all u ∈ U, n ∈ N , using Lemma 2.1 (i), then [[u, n], n] ∈ Z(N ) or T ([u, n]) = 0
for all u ∈ U, n ∈ N . If there exists u0 ∈ U ∖ {0} such that T ([u0, n]) = 0 for all n ∈ N , using the same previous
demonstrations with the necessary modifications, we can easily find u0 ∈ Z(N ), which gives [[u0, n], n] ∈ Z(N ) for all
n ∈ N , then the latter expression becomes [[u, n], n] ∈ Z(N ) for all u ∈ U, n ∈ N . Substituting n[u, n] instead of n,
we obtain [[u, n], n][u, n] ∈ Z(N ) for all u ∈ U, n ∈ N . By Lemma 2.1 (i), we can see that [u, n] ∈ Z(N ) for all
u ∈ U, n ∈ N . Now substituting nu instead of n in the above equation, by Lemma 2.1 (i) we can obtain U ⊆ Z(N ) which
assure that (N ,+) is abelian by Lemma 2.1 (i).

Theorem 5.2. Let N be a 3-prime near-ring and U a nonzero Lie ideal of N . There is no nonzero right multiplier T satisfying
any one of the following assertions:
(i) T (U) = {0};
(ii) T (U2) = {0}.

Proof. (i) Suppose that T (U) = {0}, then T ([u, n]) = 0 for all u ∈ U, n ∈ N . Which implies T (un) = T (nu) for
all u ∈ U, n ∈ N , using the definition of T , then uT (n) = nT (u) for all u ∈ U, n ∈ N . Using our hypothesis, then
uT (n) = 0 for all u ∈ U, n ∈ N . Replacing n by nm, we can easily arrive at UNT (m) = {0} for all m ∈ N . Since N
is 3-prime, we find that U = {0} or T = 0, a contradiction.
(ii) Suppose that T (U2) = {0}, then T (u2) = 0 for all u ∈ U , it follows that

uT (u) = 0 for all u ∈ U. (5.1)
Using our hypothesis, then T ([u, nu]) = 0 for all u ∈ U, n ∈ N , thus T (unu) = T (nu2) for all u ∈ U, n ∈ N , using the
definition of T and (5.1), we find that unT (u) = 0 for all u ∈ U, n ∈ N , which gives uNT (u) = {0} for all u ∈ U . By
the 3-primeness of N , we deduce that T (u) = 0 for all u ∈ U , which leads to a contradiction by (i).

6 Left near-ring involving Lie ideals and generalized left derivations
The present section is motivated by [9, Lemma 3 (iii)] and [5, Theorem 2]. Our goal is to extend these results to 3-prime near
rings admitting a non-zero left derivation.

Theorem 6.1. Let N be a 3-prime near-ring, D be a left derivation of N and U be a nonzero Lie ideal of N . Then, we have
the following results:

(i) If aD(x) = 0 for all x ∈ N , then a = 0;
(ii) If D([u, n]) = [u, n] for all u ∈ U, n ∈ N , then (N ,+) is abelian.

Proof. (i) Suppose that aD(x) = 0 for all x ∈ N . Replacing x by xy, we obtain axD(y)+ayD(x) = 0 for all x, y ∈ N .
Taking ya instead of y in the above equation, we get axD(ya) = 0 for all x, y ∈ N , which gives ax(yD(a)+ aD(y)) = 0
for all x, y ∈ N , using our hypothesis, we find that axyD(a) = 0 for all x, y ∈ N , it follows that axND(a) = {0} for
all x ∈ N . By the 3-primeness of N , we deduce that ax = 0 or D(a) = 0 for all x ∈ N , which implies that axa = 0 or
D(a) = 0 for all x ∈ N and the 3-primeness hypothesis yields a = 0 or D(a) = 0.
If D(a) = 0, then

D(axy) = aD(xy) + xyD(a) = 0 for all x, y ∈ N .

On the other hand
D(axy) = axD(y) + yD(xa)

= axD(y) + y(xD(a) + aD(x))

= axD(y) for all x, y ∈ N .

Comparing the two last expressions, we obtain axD(y) = 0 for all x, y ∈ N , which implies that aND(y) = {0} for all
y ∈ N and by the 3-primeness of N , we conclude that a = 0.
(ii) Assume that

D([u, n]) = [u, n] for all u ∈ U, n ∈ N . (6.1)
Substituting un for n in (6.1) and using it together with the definition of D, one can easily see that

[u, n]D(u) = 0 for all u ∈ U, n ∈ N . (6.2)
Applying D to both sides of the equation (6.1) and invoking it, we find that

[u, n]D2(u) +D(u)D([u, n]) = 0 for all u ∈ U, n ∈ N . (6.3)
Taking [v,m] instead of u in (6.3) and using (6.2), it is obvious to see that

[[v,m], n][v,m] = 0 for all v ∈ U, n,m ∈ N . (6.4)
Applying D to both sides of the equation (6.4) and invoking it, we find that

[v,m][[v,m], n] = 0 for all v ∈ U, n,m ∈ N . (6.5)
Which implies that

[v,m]2n = [v,m]n[v,m] for all v ∈ U, n,m ∈ N
Taking nt in place of n in above equation and using it, we may write

[v,m]2nt = [v,m]nt[v,m] for all v ∈ U, n,m ∈ N .

Which gives
[v,m]n[v,m]t = [v,m]nt[v,m] for all v ∈ U, n,m, t ∈ N .

And therefore,
[v,m]n[[v,m], t] = 0 for all v ∈ U, n,m, t ∈ N .

So, [v,m]N [[v,m], t] = {0} for all , v ∈ U,m, t ∈ N . By the 3-primeness of N , we can write
[v,m] ∈ Z(N ) for all v ∈ U,m ∈ N . (6.6)

Putting vm instead of v in (6.6) one can easily find v[v,m] ∈ Z(N ) for all , v ∈ U,m ∈ N and by Lemma 2.1(i), we
deduce that v ∈ Z(N ) or [v,m] = 0 for all , v ∈ U,m ∈ N , which leads to U ⊆ Z(N ) and by lemma 2.1(iii), we
conclude that (N ,+) is abelian.
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