ON GENERALIZED LEFT DERIVATIONS OF 3-PRIME NEAR-RINGS

Adel En-guady and Abdelkarim Boua

Communicated by Ayman Badawi

MSC 2020 Classifications: Primary 16N60; Secondary 16W25.

Keywords and phrases: 3-prime near-rings, Jordan ideals, Left derivations..

The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that improved the quality of our paper.

Abstract Let $\mathcal N$ be a 3-prime near-ring with center $Z(\mathcal N)$ and U a nonzero Lie ideal of $\mathcal N$. The aim of this paper is to prove some theorems showing that N must be commutative if it admits *a nonzero generalized left derivation* F *with associated a left derivation* D *satisfying any one of the following properties:* (i) $F(U) \subseteq Z(\mathcal{N})$, (ii) $F(U^2) = \{0\}$, (iii) $F(u) = u$ *for all* $u \in U$, and (iv) $D(U^2) \subseteq Z(\mathcal{N})$. We also give some examples to show that the hypotheses made in our *results are not superfluous.*

1 Introduction

A right (resp. left) near-ring N is a triple $(N, +, \cdot)$ with two binary operations " + " and "." such that (i) $(N, +)$ is a group (not necessarily abelian), (ii) $(N,.)$ is a semigroup, (iii) $(x + y).z = x.z + y.z$ (resp. $x.(y + z) = x.y + x.z$) for all $x, y, z \in \mathcal{N}$. We denote by $Z(\mathcal{N})$ the multiplicative center of \mathcal{N} , and usually \mathcal{N} will be 3-prime, if, for $x, y \in \mathcal{N}$, $x\mathcal{N}y = \{0\}$ implies $x = 0$ or $y = 0$. A right (resp. left) near-ring $\mathcal N$ is a zero-symmetric if $x.0 = 0$ (resp. $0.x = 0$) for all $x \in \mathcal{N}$, (recall that right distributive yields $0.x = 0$ and left distributive gives $x.0 = 0$). For any pair of elements $x, y \in \mathcal{N}$, $[x, y] = xy - yx$ stands for the Lie product. Recall that \mathcal{N} is said to be 2-torsion free if $2x = 0$ implies $x = 0$ for all $x \in \mathcal{N}$. The Lie ideal U of N is an additive subgroup which has the property $[u, x] \in U$ for all $u \in U, x \in \mathcal{N}$. A Lie ideal U of N is said to be a square closed Lie ideal if $u^2 \in U$ for all $u \in U$. According to [\[12\]](#page-6-1), an additive mapping $D: \mathcal{R} \to \mathcal{R}$ is a left derivation (resp. a Jordan left derivation) if $D(xy) = xD(y) + yD(x)$ (resp. $D(x^2) = 2xD(x)$) for all $x, y \in \mathcal{R}$. Obviously, every left derivation is a Jordan left derivation, but the converse is not generally true (see [\[17\]](#page-6-2), Example 1.1.). Recently, M. Ashraf et al. [\[1\]](#page-6-3) proved that the converse statement is true if the underlying ring is prime and 2-torsion free. According to [\[14\]](#page-6-4), an additive mapping $G : \mathcal{N} \to \mathcal{N}$ is said to be a left generalized derivation of \mathcal{N} if there exists a derivation $d : \tilde{\mathcal{N}} \to \mathcal{N}$ such that $G(xy) = xG(y) + d(xy)$ holds for all $x, y \in \mathcal{N}$. Inspired by the definition of generalized left derivation, Ashraf and Shakir [\[2\]](#page-6-5) introduced the concepts of generalized left derivation and generalized Jordan Left derivation on rings R as follows: an additive mapping $G : \mathcal{R} \to \mathcal{R}$ is called a generalized left derivation (respectively, generalized Jordan left derivation) if there exists a Jordan left derivation $\delta : \mathcal{R} \to \mathcal{R}$ such that $G(xy) = xG(y) + y\delta(y)$ (respectively, $G(x^2) = xG(x) + x\delta(x)$) holds for all $x, y \in \mathcal{R}$. In [\[16\]](#page-6-6), S. Y. Kang and I. S. Chang introduced the concepts of generalized left derivation in algebra as follows: an additive mapping $G : \mathcal{A} \to \mathcal{A}$ is called a generalized left derivation if there exists a left derivation $d : \mathcal{A} \to \mathcal{A}$ such that $G(xy) = xG(y) + yd(x)$ for all $x, y \in \mathcal{N}$. Motivated by the concept of generalized left derivations in algebra (see, [\[16\]](#page-6-6)), we introduce the concept of generalized left derivations in near rings with a similar manner: an additive mapping $F : \mathcal{N} \to \mathcal{N}$ is called a generalized left derivation if there exists a left derivation $D: \mathcal{N} \to \mathcal{N}$ such that $F(xy) = xF(y) + yD(x)$ for all $x, y \in \mathcal{N}$. It is obvious to see that every left derivation on a near-ring N is a generalized left derivation, but the opposite is not true in general. The following example justifies this:

Example 1.1. Let \mathcal{R} be a near-ring. Define the set \mathcal{N} and the maps $D, F : \mathcal{N} \to \mathcal{N}$ by:

$$
\mathcal{N} = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & 0 \\ y & z & 0 \end{pmatrix} \mid x, y, z, 0 \in \mathcal{R} \right\}
$$

$$
F \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & 0 \\ y & z & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & 0 \\ y & 0 & 0 \end{pmatrix}, D \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & 0 \\ y & z & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & z & 0 \end{pmatrix}
$$

It is easy to verify that F is a generalized left derivation of the near-ring N associated with the derivation D, but F is not a left derivation of N .

In [\[6\]](#page-6-7), Bergen showed that if U is a nonzero Lie ideal of a 2-torsion free prime ring R and d is a nonzero derivation of R such that $d(U) \subseteq Z(\mathcal{R})$, then $U \subseteq Z(\mathcal{R})$. In [\[7\]](#page-6-8) and [\[9\]](#page-6-9), the authors used Lie ideals and derivations to make a

number of important discoveries, including the commutativity of addition in near-rings. In [\[15\]](#page-6-10) Öznur Gölbaşi and K. Kaya has proved that if R is a prime ring of characteristic different from 2 which admits a nonzero Lie ideal U and if f is a nonzero generalized derivation associated with d of R. Then we have the following results: (i) If $a \in \mathcal{R}$ and $[a, f(U)] = 0$ then $a \in Z(\mathcal{R})$ or $d(a) = 0$ for all $U \subseteq Z(\mathcal{R})$; (ii) If $f^2(U) = \{0\}$ then $U \subseteq Z(\mathcal{R})$, (iii) If $u^2 \in U$ for all $u \in U$ and f acts as a homomorphism or antihomomorphism on U then either $d = 0$ or $U \subseteq Z(\mathcal{R})$. It is my purpose to extend some comparable results to near-rings with generalized left derivation.

2 Some preliminaries

We start with the following lemmas they are essential for developing the proof of our results.

Lemma 2.1. Let N be a 3-prime near-ring.

- *(i)* [\[4,](#page-6-11) Lemma 1.2 (iii)] *If* $z \in Z(\mathcal{N}) \setminus \{0\}$ *and* $xz \in Z(\mathcal{N})$ *or* $zx \in Z(\mathcal{N})$ *, then* $x \in Z(\mathcal{N})$ *.*
- *(ii)* [\[5,](#page-6-12) Lemma 3 (ii)] *If* $Z(N)$ *contains a nonzero element* z of N *which* $z + z \in Z(N)$ *, then* $(N,+)$ *is abelian.*
- *(iii)* [\[7,](#page-6-8) Lemma 3] *If* $U \subseteq Z(\mathcal{N})$ *, then* $(\mathcal{N}, +)$ *is abelian.*

Lemma 2.2 ([\[13\]](#page-6-13), Theorem 3.1). *Let* N *be a* 3*-prime right near-ring. If* N *admits a nonzero left derivation* d*, then the following properties hold true:*

- *(i) If there exists a nonzero element* a *such that* $d(a) = 0$ *, then* $a \in Z(\mathcal{N})$ *.*
- *(ii)* $(N,+)$ *is abelian, if and only if* N *is a commutative ring.*
- *(iii)* [\[13,](#page-6-13) Lemma 3.2 (i)] $d(U^2) = \{0\}$ *if and only if* N *is a commutative ring.*

Lemma 2.3. *Let* N *be a* 3*-prime right near-ring. If* N *admits a nonzero generalized left derivation* F *associated with a left derivation D such that* $F(a) = 0$ *, then*

$$
a(xD(y) + yD(x)) = xaD(y) + yaD(x)
$$
 for all $x, y \in \mathcal{N}$.

Proof. Using the definition of F, we have

$$
F(xya) = xF(ya) + yaD(x)
$$

= $x(yF(a) + aD(x)) + yaD(x)$
= $xaD(x) + yaD(x)$ for all $x, y \in \mathcal{N}$,

and

$$
\begin{aligned} F(xya) &= xyF(a) + aD(xy) \\ &= a(xD(y) + yD(x)) \ \ \text{for all} \ \ x,y \in \mathcal{N}. \end{aligned}
$$

By combining the last two expressions, we obviously have

$$
a(xD(y) + yD(x)) = xaD(y) + yaD(x)
$$
 for all $x, y \in \mathcal{N}$.

 \Box

3 Identities in 3-prime right near-rings with Lie ideals

Let N be a 2-torsion free 3-prime right near-ring. In [\[3\]](#page-6-14), H. E. Bell proved that if N admits a non-zero generalized derivation f such that $f(\mathcal{N}) \subseteq Z(\mathcal{N})$, then $\mathcal N$ is a commutative ring. Our goal in the following result is to prove the same result by replacing the generalized derivation by a generalized left derivation without using the 2-torsion-free condition of N .

Theorem 3.1. *Let* N *be a* 3*-prime near-ring and* U *be a nonzero Lie ideal of* N *. If* N *admits a generalized left derivation* F *associated with a left derivation* D*, then the following assertions are equivalent:*

- *(i)* $F(U) \subseteq Z(\mathcal{N});$
- (ii) *N* is a commutative ring.

Proof. Clearly, (ii) implies (i) . $(i) \Rightarrow (ii)$ If $Z(\mathcal{N}) = \{0\}$, then

$$
F(U) = \{0\}.\t(3.1)
$$

By [\(3.1\)](#page-1-0), we can write $F([u, v]) = 0$ for all $u, v \in U$, which implies that $F(uv) = F(vu)$ for all $u, v \in U$. Using the definition of F together with (3.1) , we get

$$
uD(v) = vD(u) \text{ for all } u, v \in U. \tag{3.2}
$$

Invoking [\(3.1\)](#page-1-0), then $F[u, nu] = 0$ for all $u \in U, n \in \mathcal{N}$. Since $[u, nu] = [u, n]u$, we get $F([u, n]u) = 0$ for all $u \in U, n \in \mathcal{N}$, which means $[u, n]F(u) + ud([u, n]) = 0$ for all $u \in U, n \in \mathcal{N}$. By [\(3.1\)](#page-1-0), we get $ud([u, n]) = 0$ for all $u \in U, n \in \mathcal{N}$, and from [\(3.2\)](#page-1-1), we arrive at $[u, n]D(u) = 0$ for all $u \in U, n \in \mathcal{N}$, which gives

$$
unD(u) = nuD(u) \text{ for all } u \in U, n \in \mathcal{N}.
$$
 (3.3)

Taking nm in place of n in [\(3.3\)](#page-1-2) and using it again, we may write

 $unmD(u) = nmuD(u)$ for all $u \in U, m, n \in \mathcal{N}$.

Which leads to

 $u n m D(u) = num D(u)$ for all $u \in U, m, n \in \mathcal{N}$,

and therefore,

 $[u, n]mD(u) = 0$ for all $u \in U, m \in \mathcal{N}$.

So, $[u, n]\mathcal{N}D(u) = \{0\}$ for all $u \in U, n \in \mathcal{N}$. By the 3-primeness of $\mathcal N$ and Lemma [2.2](#page-1-3)(i), we conclude that $U \subseteq Z(\mathcal{N})$. Using Lemma $2.1(iii)$ $2.1(iii)$ and Lemma $2.2(ii)$ $2.2(ii)$, we deduce that N is a commutative ring.

Now, suppose that $F(U) \subseteq Z(\mathcal{N})$ and $Z(\mathcal{N}) \neq \{0\}$, then there exists $z \in U\setminus\{0\}$ such that $F(z) \in Z(\mathcal{N})$ and $F(z) +$ $F(z) = F(2z) \in Z(\mathcal{N})$, which implies that $(\mathcal{N}, +)$ is abelian by Lemma [2.1](#page-1-4) (ii). Using Lemma [2.2](#page-1-3)(ii), we conclude that N is a commutative ring. \Box

Corollary 3.2. *Let* N *be a* 3*-prime near-ring and* U *be a nonzero Lie ideal of* N *. If* N *admits a generalized left derivation* F *associated with a left derivation* D*, then the following assertions are equivalent:*

(i) $D(\mathcal{N}) \subseteq Z(\mathcal{N});$

(ii) $D(U) \subseteq Z(\mathcal{N});$

(iii) $F(\mathcal{N}) \subseteq Z(\mathcal{N});$

 (iv) *N* is a commutative ring.

Theorem 3.3. *Let* N *be a* 3*-prime near-ring and* U *be a nonzero Lie ideal of* N *. If* N *admits a generalized left derivation* F associated with a left derivation D such that $F(U^2) = \{0\}$, then $\mathcal N$ is a commutative ring.

Proof. Assume that

$$
F(U^2) = \{0\}.\tag{3.4}
$$

Invoking [\(3.4\)](#page-2-0), then $F(v[u, nu]) = 0$ for all $u, v \in U, n \in \mathcal{N}$, using the definition of F and the fact that $[u, nu] =$ $[u, n]u$, we get $vF([u, n]u) + [u, nu]D(v) = 0$ for all $u, v \in U, n \in N$. Using [\(3.4\)](#page-2-0), then the latter equation becomes $[u, n]uD(v) = 0$ for all $u, v \in U, n \in \mathcal{N}$, which gives

$$
unuD(v) = nu2D(v) \text{ for all } u \in U, n \in \mathcal{N}.
$$
 (3.5)

Taking nm in place of n in [\(3.5\)](#page-2-1) and using it, we can write

$$
unmD(v) = nmu2D(v) for all u \in U, m, n \in \mathcal{N}.
$$

Which leads to

$$
unmu D(v) = numu D(v) \text{ for all } u \in U, m, n \in \mathcal{N}.
$$

And therefore,

$$
[u, n]mu D(v) = 0 \text{ for all } u, v \in U, n \in \mathcal{N}.
$$

So $[u, n]\mathcal{N}uD(v) = \{0\}$ for all $u, v \in U, n \in \mathcal{N}$. By the 3-primeness of \mathcal{N} , we may write

$$
[u, n] = 0 \text{ or } uD(v) = 0 \text{ for all } u, v \in U, n \in \mathcal{N}.
$$
\n
$$
(3.6)
$$

Suppose that there exists $u_0 \in U$ such that

$$
u_0 D(v) = 0 \text{ for all } v \in U. \tag{3.7}
$$

Using [\(3.4\)](#page-2-0), then $F(vu_0) = 0$ for all $v \in U$, by the definition of F and [\(3.7\)](#page-2-2), we get

$$
vF(u_0) = 0 \text{ for all } v \in U. \tag{3.8}
$$

Replacing v by [u, n] in [\(3.8\)](#page-2-3) and using it again, we obtain $unF(u_0) = 0$ for all $u \in U, n \in \mathcal{N}$, which gives $U \mathcal{N} F(u_0) =$ ${0}$. Since N is 3-prime and $U \neq {0}$, we obtain

$$
F(u_0) = 0 \tag{3.9}
$$

Using [\(3.4\)](#page-2-0) and [\(3.9\)](#page-2-4) together with the definition of F, we get $u_0D(u_0) = 0$, then $D(u_0^2) = 0$, so $u_0^2 \in Z(\mathcal{N})$ by Lemma [2.2](#page-1-3)(*i*). Furthermore, $D(u_0^3) = 0$ then $u_0^3 \in Z(\mathcal{N})$ by Lemma 2.2(*i*). By lemma [2.1](#page-1-4)(*i*) we get $u_0 \in Z(\mathcal{N})$ or $u_0^2 = 0$. If $u_0^2 = 0$, then $D(u_0^2 n) = 0$ for all $n \in \mathcal{N}$, which implies $u_0 D(u_0 n) + u_0 n D(u_0) = 0$ for all $n \in \mathcal{N}$. Using the lemma [2.3](#page-1-5) and the fact that $u_0D(u_0) = 0$, we get $u_0ND(u_0) = \{0\}$. By the 3-primeness of N together with the lemma [2.2](#page-1-3)(i), we deduce that $u_0 \in Z(\mathcal{N})$, then [\(3.6\)](#page-2-5) becomes $U \subseteq Z(\mathcal{N})$. Using the Lemma [2.1](#page-1-4)(*i*) and Lemma [2.2](#page-1-3)(*ii*), we conclude that \mathcal{N} is a commutative ring.

Corollary 3.4. *Let* N *be a* 3*-prime near-ring,* U *be a nonzero Lie ideal of* N *and* F *is a generalized left derivation associated with a left derivation* D. *Then*

- *(i)* If $D(U^2) = \{0\}$, then N is a commutative ring.
- (*ii*) If $D(\mathcal{N}^2) = \{0\}$, then $\mathcal N$ *is a commutative ring.*
- *(iii)* If $F(\mathcal{N}^2) = \{0\}$, then $\mathcal N$ is a commutative ring.

The following example proves that the 3-primeness of N cannot be omitted in the Theorem [3.1.](#page-1-6)

Example 3.5. Let \mathcal{R} be a right near-ring which is not abelian. Define \mathcal{N} , U , d and F by:

$$
\mathcal{N} = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & 0 \\ y & z & 0 \end{pmatrix} \mid x, y, z, 0 \in \mathcal{R} \right\}, \ U = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ p & 0 & 0 \end{pmatrix} \mid p, 0 \in \mathcal{R} \right\},
$$

$$
D \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & 0 \\ y & z & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & z & 0 \end{pmatrix} \text{ and } F \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & 0 \\ y & z & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & 0 \\ y & 0 & 0 \end{pmatrix}
$$

Then N is a right near-ring which is not 3-prime, U is a nonzero Lie ideal of N, D is a nonzero left derivation of N which is not a derivation and F is a nonzero generalized left derivation with associated left derivation D of N which is not a left derivation. It is easy to see that

- (i) $F(U) \subseteq Z(\mathcal{N});$
- (ii) $F(U^2) = \{0\}.$

However, $\mathcal N$ is not a commutative ring.

Theorem 3.6. *Let* N *be a* 3*-prime near-ring and* U *be a nonzero closed Lie ideal of* N *. If* N *admits a generalized left derivation* F associated with a left derivation D such that $F(u) = u$ *for all* $u \in U$ *, then* N is a commutative ring.

Proof. Suppose that $F(u) = u$ for all $u \in U$, then $F([u, nu]) = [u, nu]$ for all $u \in U, n \in \mathcal{N}$. Using the definition of F with $[u, nu] = [u, n]u$, we get $uD([u, n]) = 0$ for all $u \in U, n \in \mathcal{N}$. Replace n with nu in the above equation and use it, we arrive at $u[u, n]D(u) = 0$ for all $u \in U, n \in \mathcal{N}$, which implies

$$
u(unD(u) - nuD(u)) = 0 \text{ for all } u \in U, n \in \mathcal{N}.
$$
\n(3.10)

Since $u^2 \in U$, by hypothesis given, we have $F(u^2) = u^2$ for all $u \in U$, and by the defintion of F, we obtain $uD(u) = 0$ for all $u \in U$, and therefore [\(3.10\)](#page-3-0) becomes $u^2 n D(u) = 0$ for all $u \in U$, $n \in \mathcal{N}$, which gives $u^2 \mathcal{N} D(u) = \{0\}$ for all $u \in U$. By the 3-primeness of \mathcal{N} , we deduce that

$$
u^2 = 0 \text{ or } D(u) = 0 \text{ for all } u \in U. \tag{3.11}
$$

By Lemma $2.2(i)$ $2.2(i)$, (3.11) becomes

$$
u^2 = 0 \text{ or } u \in Z(\mathcal{N}) \text{ for all } u \in U. \tag{3.12}
$$

Suppose that there exists an element $u_0 \in U$ such that $u_0^2 = 0$, then $D(u_0^2 n) = 0$ for all $n \in \mathcal{N}$, which implies that

$$
u_0 D(u_0 n) + u_0 n D(u_0) = 0 \text{ for all } n \in \mathcal{N}.
$$
 (3.13)

On the other hand $F([u_0, nu_0]) = [u_0, nu_0]$ for all $n \in \mathcal{N}$, it follows that $F(u_0nu_0) = u_0nu_0$ for all $n \in \mathcal{N}$. Using the definition of F and $F(u_0) = u_0$, and simplifying we get $u_0D(u_0n) = 0$ for all $n \in \mathcal{N}$, then [\(3.13\)](#page-3-2) becomes $u_0nD(u_0) = 0$ for all $n \in \mathcal{N}$, thus $u_0 \mathcal{N}d(u_0) = \{0\}$ for all $u \in U$. By the 3-primeness of \mathcal{N} and Lemma [2.2](#page-1-3)(*i*), we deduce $u_0 \in Z(\mathcal{N})$, and therefore [\(3.12\)](#page-3-3) becomes $u \in Z(\mathcal{N})$ for all $u \in U$, which implies that $U \subseteq Z(\mathcal{N})$. Using Lemma [2.1](#page-1-4)(*iii*) and Lemma [2.2](#page-1-3)(*ii*), we conclude that N is a commutative ring. \Box

Corollary 3.7. *Let* N *be a* 3*-prime near-ring,* U *be a nonzero closed Lie ideal of* N *and* F *is a generalized left derivation associated with a left derivation* D *of* N . *Then*

- *(i) If* $F(x) = x$ *for all* $x \in \mathcal{N}$ *, then* \mathcal{N} *is a commutative ring.*
- *(ii) If* $D(u) = u$ *for all* $u \in U$ *, then* N *is a commutative ring.*
- *(iii) If* $D(x) = x$ *for all* $x \in \mathcal{N}$ *, then* $\mathcal N$ *is a commutative ring.*

The following example proves that the 3-primeness of N cannot be omitted in the Theorem [3.6.](#page-3-4)

Example 3.8. Let \mathcal{R} be a 2-torsion left near-ring which is not abelian. Define \mathcal{N} , U , D and F by:

$$
\mathcal{N} = \left\{ \begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & z & 0 \end{pmatrix} \mid x, y, z, 0 \in \mathcal{R} \right\}, \ U = \left\{ \begin{pmatrix} 0 & p & 0 \\ 0 & 0 & 0 \\ 0 & q & 0 \end{pmatrix} \mid p, q, 0 \in \mathcal{R} \right\},
$$

$$
D \begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & z & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & y \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ and } F \begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & z & 0 \end{pmatrix} = \begin{pmatrix} 0 & x & 0 \\ 0 & 0 & 0 \\ 0 & z & 0 \end{pmatrix}.
$$

Then N is a left near-ring which is not 3-prime, U is a nonzero closed Lie ideal of N , D is a nonzero left derivation of N which is not a derivation and F is a nonzero generalized left derivation with associated left derivation d of $\mathcal N$ which is not a left derivation. It is also easy to see that $F(u) = u$ for all $u \in U$. However, N is not a commutative ring.

4 Some results involving left derivations

In [\[5\]](#page-6-12), H. E. Bell and G. Mason proved the following results: (i) If $\mathcal N$ is a 3-prime 2-torsion-free near-ring which admits a nonzero derivation D for which $D(\mathcal{N}) \subseteq Z(\mathcal{N})$, then N is a commutative ring; (*ii*) If N is 3-prime and 2-torsion-free and D is a derivation such that $D^2 = 0$, then $D = 0$. In the present section, our goal is to extend the above study to the setting of left derivations.

Theorem 4.1. *Let* N *be a* 2*-torsion free* 3*-prime near-ring and* U *be a nonzero Lie ideal of* N *. If* N *admits a nonzero left derivation* D*, then the following assertions are equivalent:*

- (i) $D(U^2) \subseteq Z(\mathcal{N});$
- (ii) *N* is a commutative ring.

Proof. It is easy to see that $(ii) \Rightarrow (i)$.

 $(i) \Rightarrow (ii)$ If $Z(\mathcal{N}) = \{0\}$, then $D(U^2) = \{0\}$ and, by Lemma [2.2](#page-1-3) (iii) we find that $\mathcal N$ is a commutative ring. Now, suppose that $D(U^2) \subseteq Z(\mathcal{N})$ and $Z(\mathcal{N}) \neq \{0\}$, then $D(u^2) \in Z(\mathcal{N})$ for all $u \in U$, which gives $2uD(u) \in$ $Z(\mathcal{N})$ for all $u \in U$. Substituting $[u, nu]$ for u in the last equation and using the fact that $[u, nu] = [u, n]u$, we obtain $2[u, nu]D([u, n]u) \in Z(\mathcal{N})$ for all $u \in U, n \in \mathcal{N}$, By Lemma [2.1](#page-1-4) (*i*), we get

$$
2[u, nu] \in Z(\mathcal{N}) \text{ or } D([u, nu]) = 0 \text{ for all } u \in U, n \in \mathcal{N}.
$$
\n
$$
(4.1)
$$

In view of Lemma 2.2 (i) , (4.1) becomes

$$
2[u, nu] \in Z(\mathcal{N}) \text{ for all } u \in U, n \in \mathcal{N}.
$$
\n
$$
(4.2)
$$

Replacing n by nu in [\(4.2\)](#page-4-0), we obtain $2[u, nu]u \in Z(\mathcal{N})$ for all $u \in U, n \in \mathcal{N}$. Invoking Lemma [2.1](#page-1-4) (i) together with the 2-torsion freeness of N , we get

$$
u \in Z(\mathcal{N}) \text{ or } [u, nu] = 0 \text{ for all } u \in U, n \in \mathcal{N}.
$$
 (4.3)

Which implies that $[u, nu] = 0$ for all $u \in U$, $n \in \mathcal{N}$, then $unu = nu^2$ for all $u \in U$, $n \in \mathcal{N}$. Substituting nm for n in last equation and using it, we obtain $[u, n]Nu = \{0\}$ for all $u \in U, n \in \mathcal{N}$ and by 3-primeness of N, we deduce $u \in Z(\mathcal{N})$, then $(4, 3)$ becomes $U \subset Z(\mathcal{N})$. The Lemma 21 (ii) and Lemma 22 (ii) assure that N is a commutati then [\(4.3\)](#page-4-1) becomes $U \subseteq Z(\mathcal{N})$. The Lemma [2.1](#page-1-4)(*iii*) and Lemma [2.2](#page-1-3)(*ii*) assure that N is a commutative ring.

Corollary 4.2. *Let* N *be a* 2*-torsion free* 3*-prime near-ring. If* N *admits a left derivation* D*, then the following assertions are equivalent:*

- (i) $D(\mathcal{N}^2) \subseteq Z(\mathcal{N});$
- (ii) *N* is a commutative ring.

Theorem 4.3. *Let* N *be a* 2*-torsion free* 3*-prime near-ring and* U *be a nonzero Lie ideal of* N *. If* N *admits a left derivation* D*, then the following assertions are equivalent:*

- (*i*) $D^2(U) = \{0\};$
- (*ii*) $D^2(U^2) = \{0\};$
- *(iii)* N *is a commutative ring.*

Proof. It is obvious that (iii) implies (i) and (ii) .

 (i) ⇒ (iii) Suppose that $D^2(U) = \{0\}$. By Lemma [2.2](#page-1-3) (i) , we get $D(U) \subseteq Z(\mathcal{N})$ and using Theorem [3.1,](#page-1-6) we conclude that $\mathcal N$ is a commutative ring.

 $(ii) \Rightarrow (iii)$ Assume that $D^2(U^2) = \{0\}$. Using Lemma [2.2](#page-1-3) (i), we obtain $D(U^2) \subseteq Z(\mathcal{N})$, and by Theorem [4.1,](#page-3-6) we find that N is a commutative ring.

$$
\qquad \qquad \Box
$$

Corollary 4.4. Let N be a 2-torsion free 3-prime near-ring. If N admits a left derivation D such that $D^2 = 0$, then $D = 0$.

Proof. Suppose $D^2 = 0$, using the theorem [3.3,](#page-2-6) then N is a commutative ring. So $0 = D^2(x^2)y = 2D(x)D(x)y$ for all $x, y \in \mathcal{N}$, and the 2-torsion freeness of $\mathcal N$ forces that $D(x)\mathcal N D(x) = \{0\}$ for all $x \in \mathcal N$. So $D = 0$ by the 3-primeness of $\mathcal N$. \mathcal{N} .

The following example proves that the 3-primeness of N in Theorems [4.3](#page-4-2) cannot be omitted.

Example 4.5. Let \mathcal{R} be a 2-torsion free right near-ring which is not abelian. Define \mathcal{N} , J and D by:

$$
\mathcal{N} = \left\{ \begin{pmatrix} 0 & r & s \\ 0 & 0 & t \\ 0 & 0 & 0 \end{pmatrix} \mid r, s, t, 0 \in \mathcal{R} \right\}, U = \left\{ \begin{pmatrix} 0 & 0 & p \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mid p, 0 \in \mathcal{R} \right\},
$$

D $\sqrt{2}$ $\overline{ }$ $0 \quad r \quad s$ $\mathbf 0$ 0 0 0 \setminus $\Big\} =$ $\sqrt{ }$ $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $0 \quad r \quad 0$ $\sqrt{0}$ A. . Then, $\mathcal N$ is a right near-ring which is not 3-prime, U is a nonzero Lie ideal of $\mathcal N,$ and

D is a nonzero left derivation of $\hat{\mathcal{N}}$ which is not a derivation. We can easily see that

(i) $D(U^2) \subseteq Z(\mathcal{N});$

- (ii) $D^2(U) = \{0\};$
- (iii) $D^2(U^2) = \{0\}.$

But N is not a commutative ring.

5 Results in right near-rings involving Lie ideals and right centralizers

The notion of generalized left derivations with $D = 0$ includes the notion of right centralizers (multipliers). An additive mapping $T : \tilde{\mathcal{N}} \to \mathcal{N}$ is a right centralizer (multiplier) if $T(xy) = xT(y)$ for all $x, y \in \mathcal{N}$. Our goal in this section is to establish similar results in [[\[8\]](#page-6-15), Theorems 3.1, 3.11 and 4.1]. Furthermore, we investigate the structure of a 3-prime right near-ring $\mathcal N$ admitting a nonzero right centralizer T which satisfies certain differential identities on Lie ideals.

Theorem 5.1. *Let* N *be a* 3*-prime near-ring and* U *be a nonzero Lie ideal of* N *. If* N *admits a nonzero right multiplier* T *such that* $T([u, n]) \in Z(\mathcal{N})$ *for all* $u \in U, n \in \mathcal{N}$ *, then* $(\mathcal{N}, +)$ *is abelian.*

Proof. Suppose that $Z(\mathcal{N}) = \{0\}$, then $T([u, n]) = 0$ for all $u \in U, n \in \mathcal{N}$. It follows that $T(un) = T(nu)$ for all $u \in U, n \in \mathcal{N}$, using the definition of T, then $u\tilde{T}(n) = nT(u)$ for all $u \in U, n \in \mathcal{N}$. Replacing u by $[u, m]$ in the last equation and using our assumption, then $[u, m]T(n) = 0$ for all $u \in U, n, m \in \mathcal{N}$. Now substituting xy instead of n and using the definition of T, we find $[u, m]xT(y) = 0$ for all $u \in U, m, x, y \in \mathcal{N}$, which gives $[u, m] \mathcal{N}T(y) = \{0\}$ for all $u \in U, m, y \in \mathcal{N}$. Since $T \neq 0$, we deduce from the 3-primeness of N that $U \subseteq Z(\mathcal{N})$, and Lemma [2.1](#page-1-4) (i) assure that $(N,+)$ is abelian.

Now assume that $Z(\mathcal{N}) \neq \{0\}$ and $T([u, n]) \in Z(\mathcal{N})$ for all $u \in U, n \in \mathcal{N}$, then $T([[u, n], n[u, n]]) \in Z(\mathcal{N})$ for all $u \in U, n \in \mathcal{N}$, using the definition of T and the fact that $[[u, n], n[u, n]] = [[u, n], n][u, n]$ for all $u \in U, n \in \mathcal{N}$, we

obtain $[[u, n], n]T([u, n]) \in Z(\mathcal{N})$ for all $u \in U, n \in \mathcal{N}$, using Lemma [2.1](#page-1-4) (i) , then $[[u, n], n] \in Z(\mathcal{N})$ or $T([u, n]) = 0$ for all $u \in U$, $n \in \mathcal{N}$. If there exists $u_0 \in U \setminus \{0\}$ such that $T([u_0, n]) = 0$ for all $n \in \mathcal{N}$, using the same previous demonstrations with the necessary modifications, we can easily find $u_0 \in Z(\mathcal{N})$, which gives $[[u_0, n], n] \in Z(\mathcal{N})$ for all $n \in \mathcal{N}$, then the latter expression becomes $[[u, n], n] \in Z(\mathcal{N})$ for all $u \in U, n \in \mathcal{N}$. Substituting $n[u, n]$ instead of n, we obtain $[[u, n], n][u, n] \in Z(\mathcal{N})$ for all $u \in U, n \in \mathcal{N}$. By Lemma [2.1](#page-1-4) (i), we can see that $[u, n] \in Z(\mathcal{N})$ for all $u \in U, n \in \mathcal{N}$. Now substituting nu instead of n in the above equation, by Lemma [2.1](#page-1-4) (i) we can obtain $U \subseteq Z(\mathcal{N})$ which assure that $(N,+)$ is abelian by Lemma [2.1](#page-1-4) (*i*). \Box

Theorem 5.2. *Let* N *be a* 3*-prime near-ring and* U *a nonzero Lie ideal of* N *. There is no nonzero right multiplier* T *satisfying any one of the following assertions:*

(*i*) $T(U) = \{0\};$

(*ii*) $T(U^2) = \{0\}.$

Proof. (i) Suppose that $T(U) = \{0\}$, then $T([u, n]) = 0$ for all $u \in U, n \in \mathcal{N}$. Which implies $T(un) = T(nu)$ for all $u \in U$, $n \in \mathcal{N}$, using the definition of T, then $uT(n) = nT(u)$ for all $u \in U$, $n \in \mathcal{N}$. Using our hypothesis, then $uT(n) = 0$ for all $u \in U, n \in \mathcal{N}$. Replacing n by nm, we can easily arrive at $U\mathcal{N}T(m) = \{0\}$ for all $m \in \mathcal{N}$. Since \mathcal{N} is 3-prime, we find that $U = \{0\}$ or $T = 0$, a contradiction.
(*ii*) Suppose that $T(U^2) = \{0\}$ then $T(u^2) = 0$ for all u. (*ii*) Suppose that $T(U^2) = \{0\}$, then $T(u)$

$$
T(u^2) = 0
$$
 for all $u \in U$, it follows that

$$
uT(u) = 0 \text{ for all } u \in U. \tag{5.1}
$$

Using our hypothesis, then $T([u, nu]) = 0$ for all $u \in U$, $n \in \mathcal{N}$, thus $T(unu) = T(nu^2)$ for all $u \in U$, $n \in \mathcal{N}$, using the definition of T and [\(5.1\)](#page-5-0), we find that $unT(u) = 0$ for all $u \in U$, $n \in \mathcal{N}$, which gives $uNT(u) = \{0\}$ for all $u \in U$. By the 3-primeness of N, we deduce that $T(u) = 0$ for all $u \in U$, which leads to a contradiction by (i) .

6 Left near-ring involving Lie ideals and generalized left derivations

The present section is motivated by [\[9,](#page-6-9) Lemma 3 (iii)] and [\[5,](#page-6-12) Theorem 2]. Our goal is to extend these results to 3-prime near rings admitting a non-zero left derivation.

Theorem 6.1. *Let* N *be a* 3*-prime near-ring,* D *be a left derivation of* N *and* U *be a nonzero Lie ideal of* N *. Then, we have the following results:*

- *(i) If* $aD(x) = 0$ *for all* $x \in \mathcal{N}$ *, then* $a = 0$ *;*
- *(ii) If* $D([u, n]) = [u, n]$ *for all* $u \in U, n \in \mathcal{N}$ *, then* $(\mathcal{N}, +)$ *is abelian.*

Proof. (i) Suppose that $aD(x) = 0$ for all $x \in \mathcal{N}$. Replacing x by xy, we obtain $axD(y) + ayD(x) = 0$ for all $x, y \in \mathcal{N}$. Taking ya instead of y in the above equation, we get $axD(ya) = 0$ for all $x, y \in \mathcal{N}$, which gives $ax(yD(a) + aD(y)) = 0$ for all $x, y \in \mathcal{N}$, using our hypothesis, we find that $axyD(a) = 0$ for all $x, y \in \mathcal{N}$, it follows that $axND(a) = \{0\}$ for all $x \in \mathcal{N}$. By the 3-primeness of \mathcal{N} , we deduce that $ax = 0$ or $D(a) = 0$ for all $x \in \mathcal{N}$, which implies that $axa = 0$ or $D(a) = 0$ for all $x \in \mathcal{N}$ and the 3-primeness hypothesis yields $a = 0$ or $D(a) = 0$. If $D(a) = 0$, then

 $D(axy) = aD(xy) + xyD(a) = 0$ for all $x, y \in \mathcal{N}$.

On the other hand

$$
D(axy) = axD(y) + yD(xa)
$$

= $axD(y) + y(xD(a) + aD(x))$

$$
= axD(y) for all x, y \in \mathcal{N}.
$$

Comparing the two last expressions, we obtain $axD(y) = 0$ for all $x, y \in \mathcal{N}$, which implies that $aND(y) = \{0\}$ for all $y \in \mathcal{N}$ and by the 3-primeness of \mathcal{N} , we conclude that $a = 0$. (ii) Assume that

$$
D([u, n]) = [u, n] \text{ for all } u \in U, n \in \mathcal{N}.
$$
\n
$$
(6.1)
$$

Substituting un for n in (6.1) and using it together with the definition of D, one can easily see that $[u, n]D(u) = 0$ for all $u \in U, n \in \mathcal{N}$. (6.2)

$$
[u, h]D(u) = 0 \text{ for all } u \in \mathcal{O}, n \in \mathcal{I}.
$$

Applying *D* to both sides of the equation (6.1) and invoking it, we find that

$$
[u, n]D^{2}(u) + D(u)D([u, n]) = 0 \text{ for all } u \in U, n \in \mathcal{N}.
$$
 (6.3)

Taking
$$
[v, m]
$$
 instead of u in (6.3) and using (6.2), it is obvious to see that
\n
$$
[[v, m], n][v, m] = 0 \text{ for all } v \in U, n, m \in \mathcal{N}.
$$
\n(6.4)

Applying D to both sides of the equation (6.4) and invoking it, we find that

$$
[v, m][[v, m], n] = 0 \text{ for all } v \in U, n, m \in \mathcal{N}.
$$
\n
$$
(6.5)
$$

Which implies that

 $[v, m]^2 n = [v, m] n [v, m]$ for all $v \in U, n, m \in \mathcal{N}$

Taking nt in place of n in above equation and using it, we may write

$$
[v, m]^2 nt = [v, m]nt[v, m] \text{ for all } v \in U, n, m \in \mathcal{N}.
$$

Which gives

 $[v, m]n[v, m]t = [v, m]nt[v, m]$ for all $v \in U, n, m, t \in \mathcal{N}$.

And therefore,

 $[v, m]n[[v, m], t] = 0$ for all $v \in U, n, m, t \in \mathcal{N}$.

So, $[v, m] \mathcal{N}[[v, m], t] = \{0\}$ for all $, v \in U, m, t \in \mathcal{N}$. By the 3-primeness of \mathcal{N} , we can write

 $[v, m] \in Z(\mathcal{N})$ for all $v \in U, m \in \mathcal{N}$. (6.6)

Putting vm instead of v in [\(6.6\)](#page-5-5) one can easily find v[v, m] $\in Z(\mathcal{N})$ for all , $v \in U, m \in \mathcal{N}$ and by Lemma [2.1](#page-1-4)(i), we deduce that $v \in Z(\mathcal{N})$ or $[v, m] = 0$ for all , $v \in U, m \in \mathcal{N}$, which leads to $U \subseteq Z(\mathcal{N})$ and by lemma [2.1](#page-1-4)(*iii*), we conclude that $(\mathcal{N}, +)$ is abelian. conclude that $(\mathcal{N}, +)$ is abelian.

References

- [1] M. Ashraf, N. Rehman, *On Lie ideals and Jordan left derivation of prime rings*, Arch. Math. (Brno), 36 (2000), 201-206.
- [2] M. Ashraf and S. Ali, *On generalized Jordan left derivations in rings*, Bull. Korean Math. Soc. 45 (2008), no 2, 253-261.
- [3] H. E. Bell, *On Prime Near-Rings with Generalized Derivation*, Int. J. Math. and Math. Sci, (2008), Article ID 490316, 5 pages.
- [4] H. E. Bell, *On derivations in near-rings II. Nearrings, nearfields and K-loops*, (Hamburg, 1995) Math. Appl, Dordrecht: Kluwer Acad. Publ., 426(1997), 191-197.
- [5] H. E. Bell and G. Mason, *On derivations in near-rings. Near-rings and near-fields*, North Holland Math. Stud, 137(1987), 31-35.
- [6] J. Bergen, I. N. Herstein and J.W. Kerr, *Lie ideals and derivations of prime rings*, J. Algebra., 71 (1981), 259-267.
- [7] A. Boua and A. A. M. Kamal, *Lie ideals and Jordan ideals in* 3*-prime near-rings with derivations*, JP J. Alg, Number Theory Appl, 55(2) (2014), 131-139.
- [8] A. Boua and H. E. Bell, *Jordan Ideals and Derivations Satisfying Algebraic Identities*, Bull. Iran. Math. Soc., 44 (2018), 1543-1554.
- [9] A. Boua, A. Ali, and I. UL Huque, *Several Algebraic Identities in Prime near-rings*, Kragujevac J. Math, 42 (2) (2018), 249-258.
- [10] A. Boua, L. Oukhtite and A. Raji, *Semigruop ideals with semiderivations in-3 prime near-rings*, Palestine J. Math, 3 (2014), 438-444.
- [11] A. Boua, L. Oukhtite and A. Raji, *on 3-prime near-rings with generalized derivations*, Palestine Journal of Mathematics, 5 (1) (2016), 12-16.
- [12] M. Brěasar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc., 110(1)(1990) 7-16.
- [13] A. En-guady and A. Boua, *On Lie ideals with left derivations in 3-prime near-rings*, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), (2022), 123-132.
- [14] Ö. Gölbaşi, *Some results on near-rings with generalized derivations*, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 51 (2), (2005), 21-26.
- [15] Ö. Gölbaşi and K. Kaya, *On lie ideals with generalized derivations*, Sib. Math. J. 47(5), (2006), 862-866.
- [16] S. Y. Kang and I. S, *Approximation of Generalized Left Derivations*, Abstr. Appl. Anal. Article ID 915292, 8 pages.
- [17] S. M. A. Zaidi, M. Ashraf and A. Shakir, *On Jordan Ideal and left derivation in prime rings*, Int. J. Math. Math. Sci., 37 (2004), 1957-1964.

Author information

Adel En-guady, Polydisciplinary Faculty of Taza Sidi Mohammed Ben Abdellah University, Morroco. E-mail: abdelkarimboua@yahoo.fr Abdelkarim Boua, Polydisciplinary Faculty of Taza Sidi Mohammed Ben Abdellah University, Morroco. E-mail: adel.enguady@usmba.ac.ma

Received: 2023-03-25 Accepted: 2023-10-28