ON GENERALIZED LEFT DERIVATIONS OF 3-PRIME NEAR-RINGS

Adel En-guady and Abdelkarim Boua

Communicated by Ayman Badawi

MSC 2020 Classifications: Primary 16N60; Secondary 16W25.

Keywords and phrases: 3-prime near-rings, Jordan ideals, Left derivations..

The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that improved the quality of our paper.

Abstract Let \mathcal{N} be a 3-prime near-ring with center $Z(\mathcal{N})$ and U a nonzero Lie ideal of \mathcal{N} . The aim of this paper is to prove some theorems showing that \mathcal{N} must be commutative if it admits a nonzero generalized left derivation F with associated a left derivation D satisfying any one of the following properties: (i) $F(U) \subseteq Z(\mathcal{N})$, (ii) $F(U^2) = \{0\}$, (iii) F(u) = u for all $u \in U$, and (iv) $D(U^2) \subseteq Z(\mathcal{N})$. We also give some examples to show that the hypotheses made in our results are not superfluous.

1 Introduction

A right (resp. left) near-ring \mathcal{N} is a triple $(\mathcal{N}, +, .)$ with two binary operations "+" and "." such that $(i) (\mathcal{N}, +)$ is a for all $x, y, z \in \mathcal{N}$. We denote by $Z(\mathcal{N})$ the multiplicative center of \mathcal{N} , and usually \mathcal{N} will be 3-prime, if, for $x, y \in \mathcal{N}$, $x \in \mathcal{N} = \{0, 1, 2, \dots, N\}$ is a semigroup, (iii) (x + y).z = x.z + y.z (resp. x.(y + z) = x.y + x.z) for all $x, y, z \in \mathcal{N}$. We denote by $Z(\mathcal{N})$ the multiplicative center of \mathcal{N} , and usually \mathcal{N} will be 3-prime, if, for $x, y \in \mathcal{N}$, $x\mathcal{N}y = \{0\}$ implies x = 0 or y = 0. A right (resp. left) near-ring \mathcal{N} is a zero-symmetric if x.0 = 0 (resp. 0.x = 0) for all $x \in \mathcal{N}$, (recall that right distributive yields 0.x = 0 and left distributive gives x.0 = 0). For any pair of elements $x, y \in \mathcal{N}, [x, y] = xy - yx$ stands for the Lie product. Recall that \mathcal{N} is said to be 2-torsion free if 2x = 0 implies x = 0for all $x \in \mathcal{N}$. The Lie ideal U of \mathcal{N} is an additive subgroup which has the property $[u, x] \in U$ for all $u \in U, x \in \mathcal{N}$. A Lie ideal U of \mathcal{N} is said to be a square closed Lie ideal if $u^2 \in U$ for all $u \in U$. According to [12], an additive mapping $D: \mathcal{R} \to \mathcal{R}$ is a left derivation (resp. a Jordan left derivation) if D(xy) = xD(y) + yD(x) (resp. $D(x^2) = 2xD(x)$) for all $x, y \in \mathcal{R}$. Obviously, every left derivation is a Jordan left derivation, but the converse is not generally true (see [17], Example 1.1.). Recently, M. Ashraf et al. [1] proved that the converse statement is true if the underlying ring is prime and 2-torsion free. According to [14], an additive mapping $G: \mathcal{N} \to \mathcal{N}$ is said to be a left generalized derivation of \mathcal{N} if there exists a derivation $d: \mathcal{N} \to \mathcal{N}$ such that G(xy) = xG(y) + d(x)y holds for all $x, y \in \mathcal{N}$. Inspired by the definition of generalized left derivation, Ashraf and Shakir [2] introduced the concepts of generalized left derivation and generalized Jordan left derivation on rings \mathcal{R} as follows: an additive mapping $G: \mathcal{R} \to \mathcal{R}$ is called a generalized left derivation (respectively, generalized Jordan left derivation) if there exists a Jordan left derivation $\delta : \mathcal{R} \to \mathcal{R}$ such that $G(xy) = xG(y) + y\delta(y)$ (respectively, $G(x^2) = xG(x) + x\delta(x)$) holds for all $x, y \in \mathcal{R}$. In [16], S. Y. Kang and I. S. Chang introduced the concepts of generalized left derivation in algebra as follows: an additive mapping $G: \mathcal{A} \to \mathcal{A}$ is called a generalized left derivation if there exists a left derivation $d: \mathcal{A} \to \mathcal{A}$ such that G(xy) = xG(y) + yd(x) for all $x, y \in \mathcal{N}$. Motivated by the concept of generalized left derivations in algebra (see, [16]), we introduce the concept of generalized left derivations in near rings with a similar manner: an additive mapping $F: \mathcal{N} \to \mathcal{N}$ is called a generalized left derivation if there exists a left derivation $D: \mathcal{N} \to \mathcal{N}$ such that $F(xy) \stackrel{i}{=} xF(y) + yD(x)$ for all $x, y \in \mathcal{N}$. It is obvious to see that every left derivation on a near-ring \mathcal{N} is a generalized left derivation, but the opposite is not true in general. The following example justifies this:

Example 1.1. Let \mathcal{R} be a near-ring. Define the set \mathcal{N} and the maps $D, F : \mathcal{N} \to \mathcal{N}$ by:

$$\mathcal{N} = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & 0 \\ y & z & 0 \end{pmatrix} | x, y, z, 0 \in \mathcal{R} \right\}$$
$$F \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & 0 \\ y & z & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & 0 \\ y & 0 & 0 \end{pmatrix}, D \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & 0 \\ y & z & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & z & 0 \end{pmatrix}$$

It is easy to verify that F is a generalized left derivation of the near-ring \mathcal{N} associated with the derivation D, but F is not a left derivation of \mathcal{N} .

In [6], Bergen showed that if U is a nonzero Lie ideal of a 2-torsion free prime ring \mathcal{R} and d is a nonzero derivation of \mathcal{R} such that $d(U) \subseteq Z(\mathcal{R})$, then $U \subseteq Z(\mathcal{R})$. In [7] and [9], the authors used Lie ideals and derivations to make a

number of important discoveries, including the commutativity of addition in near-rings. In [15] Öznur Gölbaşi and K. Kaya has proved that if \mathcal{R} is a prime ring of characteristic different from 2 which admits a nonzero Lie ideal U and if f is a nonzero generalized derivation associated with d of \mathcal{R} . Then we have the following results: (i) If $a \in \mathcal{R}$ and [a, f(U)] = 0 then $a \in Z(\mathcal{R})$ or d(a) = 0 for all $U \subseteq Z(\mathcal{R})$; (ii) If $f^2(U) = \{0\}$ then $U \subseteq Z(\mathcal{R})$, (iii) If $u^2 \in U$ for all $u \in U$ and f acts as a homomorphism or antihomomorphism on U then either d = 0 or $U \subseteq Z(\mathcal{R})$. It is my purpose to extend some comparable results to near-rings with generalized left derivation.

2 Some preliminaries

We start with the following lemmas they are essential for developing the proof of our results.

Lemma 2.1. Let \mathcal{N} be a 3-prime near-ring.

- (i) [4, Lemma 1.2 (iii)] If $z \in Z(\mathcal{N}) \setminus \{0\}$ and $xz \in Z(\mathcal{N})$ or $zx \in Z(\mathcal{N})$, then $x \in Z(\mathcal{N})$.
- (ii) [5, Lemma 3 (ii)] If $Z(\mathcal{N})$ contains a nonzero element z of \mathcal{N} which $z + z \in Z(\mathcal{N})$, then $(\mathcal{N}, +)$ is abelian.
- (iii) [7, Lemma 3] If $U \subseteq Z(\mathcal{N})$, then $(\mathcal{N}, +)$ is abelian.

Lemma 2.2 ([13], Theorem 3.1). Let \mathcal{N} be a 3-prime right near-ring. If \mathcal{N} admits a nonzero left derivation d, then the following properties hold true:

- (i) If there exists a nonzero element a such that d(a) = 0, then $a \in Z(\mathcal{N})$.
- (ii) $(\mathcal{N}, +)$ is abelian, if and only if \mathcal{N} is a commutative ring.
- (iii) [13, Lemma 3.2 (i)] $d(U^2) = \{0\}$ if and only if \mathcal{N} is a commutative ring.

Lemma 2.3. Let \mathcal{N} be a 3-prime right near-ring. If \mathcal{N} admits a nonzero generalized left derivation F associated with a left derivation D such that F(a) = 0, then

$$a(xD(y) + yD(x)) = xaD(y) + yaD(x)$$
 for all $x, y \in \mathcal{N}$.

Proof. Using the definition of F, we have

$$F(xya) = xF(ya) + yaD(x)$$

= $x(yF(a) + aD(x)) + yaD(x)$
= $xaD(x) + yaD(x)$ for all $x, y \in \mathcal{N}$.

and

$$\begin{split} F(xya) &= xyF(a) + aD(xy) \\ &= a(xD(y) + yD(x)) \ \text{for all} \ x,y \in \mathcal{N}. \end{split}$$

By combining the last two expressions, we obviously have

$$a(xD(y) + yD(x)) = xaD(y) + yaD(x)$$
 for all $x, y \in \mathcal{N}$.

3 Identities in 3-prime right near-rings with Lie ideals

Let \mathcal{N} be a 2-torsion free 3-prime right near-ring. In [3], H. E. Bell proved that if \mathcal{N} admits a non-zero generalized derivation f such that $f(\mathcal{N}) \subseteq Z(\mathcal{N})$, then \mathcal{N} is a commutative ring. Our goal in the following result is to prove the same result by replacing the generalized derivation by a generalized left derivation without using the 2-torsion-free condition of \mathcal{N} .

Theorem 3.1. Let N be a 3-prime near-ring and U be a nonzero Lie ideal of N. If N admits a generalized left derivation F associated with a left derivation D, then the following assertions are equivalent:

- (i) $F(U) \subseteq Z(\mathcal{N});$
- (ii) \mathcal{N} is a commutative ring.

 $\begin{array}{l} \textit{Proof.} \ \ \text{Clearly,} \ (ii) \ \text{implies} \ (i). \\ (i) \Rightarrow (ii) \ \text{If} \ Z(\mathcal{N}) = \{0\}, \ \text{then} \end{array}$

$$F(U) = \{0\}. \tag{3.1}$$

By (3.1), we can write F([u, v]) = 0 for all $u, v \in U$, which implies that F(uv) = F(vu) for all $u, v \in U$. Using the definition of F together with (3.1), we get

$$uD(v) = vD(u) \text{ for all } u, v \in U.$$
(3.2)

Invoking (3.1), then F[u, nu] = 0 for all $u \in U, n \in \mathcal{N}$. Since [u, nu] = [u, n]u, we get F([u, n]u) = 0 for all $u \in U, n \in \mathcal{N}$, which means [u, n]F(u) + ud([u, n]) = 0 for all $u \in U, n \in \mathcal{N}$. By (3.1), we get ud([u, n]) = 0 for all $u \in U, n \in \mathcal{N}$, and from (3.2), we arrive at [u, n]D(u) = 0 for all $u \in U, n \in \mathcal{N}$, which gives

$$unD(u) = nuD(u)$$
 for all $u \in U, n \in \mathcal{N}$. (3.3)

Taking nm in place of n in (3.3) and using it again, we may write

unmD(u) = nmuD(u) for all $u \in U, m, n \in \mathcal{N}$.

Which leads to

unmD(u) = numD(u) for all $u \in U, m, n \in \mathcal{N}$,

and therefore,

[u, n]mD(u) = 0 for all $u \in U, m \in \mathcal{N}$.

So, $[u, n]\mathcal{N}D(u) = \{0\}$ for all $u \in U, n \in \mathcal{N}$. By the 3-primeness of \mathcal{N} and Lemma 2.2(*i*), we conclude that $U \subseteq Z(\mathcal{N})$. Using Lemma 2.1(*iii*) and Lemma 2.2(*ii*), we deduce that \mathcal{N} is a commutative ring. Now suppose that $F(U) \subseteq Z(\mathcal{N})$ and $Z(\mathcal{N}) \neq \{0\}$ then there exists $z \in U \setminus \{0\}$ such that $F(z) \in Z(\mathcal{N})$ and F(z) + I

Now, suppose that $F(U) \subseteq Z(\mathcal{N})$ and $Z(\mathcal{N}) \neq \{0\}$, then there exists $z \in U \setminus \{0\}$ such that $F(z) \in Z(\mathcal{N})$ and $F(z) + F(z) = F(2z) \in Z(\mathcal{N})$, which implies that $(\mathcal{N}, +)$ is abelian by Lemma 2.1 (*ii*). Using Lemma 2.2(*ii*), we conclude that \mathcal{N} is a commutative ring.

Corollary 3.2. Let N be a 3-prime near-ring and U be a nonzero Lie ideal of N. If N admits a generalized left derivation F associated with a left derivation D, then the following assertions are equivalent:

(i) $D(\mathcal{N}) \subseteq Z(\mathcal{N});$

(ii) $D(U) \subseteq Z(\mathcal{N});$

(*iii*) $F(\mathcal{N}) \subseteq Z(\mathcal{N});$

(iv) \mathcal{N} is a commutative ring.

Theorem 3.3. Let \mathcal{N} be a 3-prime near-ring and U be a nonzero Lie ideal of \mathcal{N} . If \mathcal{N} admits a generalized left derivation F associated with a left derivation D such that $F(U^2) = \{0\}$, then \mathcal{N} is a commutative ring.

Proof. Assume that

$$F(U^2) = \{0\}. \tag{3.4}$$

Invoking (3.4), then F(v[u, nu]) = 0 for all $u, v \in U, n \in \mathcal{N}$, using the definition of F and the fact that [u, nu] = [u, n]u, we get vF([u, n]u) + [u, nu]D(v) = 0 for all $u, v \in U, n \in \mathcal{N}$. Using (3.4), then the latter equation becomes [u, n]uD(v) = 0 for all $u, v \in U, n \in \mathcal{N}$, which gives

$$unuD(v) = nu^2D(v)$$
 for all $u \in U, n \in \mathcal{N}$. (3.5)

Taking nm in place of n in (3.5) and using it, we can write

$$unmD(v) = nmu^2D(v)$$
 for all $u \in U, m, n \in \mathcal{N}$.

Which leads to

$$unmuD(v) = numuD(v)$$
 for all $u \in U, m, n \in \mathcal{N}$.

And therefore,

$$[u, n]muD(v) = 0$$
 for all $u, v \in U, n \in \mathcal{N}$.

So $[u, n]\mathcal{N}uD(v) = \{0\}$ for all $u, v \in U, n \in \mathcal{N}$. By the 3-primeness of \mathcal{N} , we may write

$$[u, n] = 0 \text{ or } uD(v) = 0 \text{ for all } u, v \in U, n \in \mathcal{N}.$$
(3.6)

Suppose that there exists $u_0 \in U$ such that

$$u_0 D(v) = 0 \text{ for all } v \in U. \tag{3.7}$$

Using (3.4), then $F(vu_0) = 0$ for all $v \in U$, by the definition of F and (3.7), we get

$$vF(u_0) = 0 \text{ for all } v \in U.$$
(3.8)

Replacing v by [u, n] in (3.8) and using it again, we obtain $unF(u_0) = 0$ for all $u \in U, n \in \mathcal{N}$, which gives $U\mathcal{N}F(u_0) = \{0\}$. Since \mathcal{N} is 3-prime and $U \neq \{0\}$, we obtain

$$F(u_0) = 0 \tag{3.9}$$

Using (3.4) and (3.9) together with the definition of F, we get $u_0 D(u_0) = 0$, then $D(u_0^2) = 0$, so $u_0^2 \in Z(\mathcal{N})$ by Lemma 2.2(*i*). Furthermore, $D(u_0^3) = 0$ then $u_0^3 \in Z(\mathcal{N})$ by Lemma 2.2(*i*). By lemma 2.1(*i*) we get $u_0 \in Z(\mathcal{N})$ or $u_0^2 = 0$. If $u_0^2 = 0$, then $D(u_0^2n) = 0$ for all $n \in \mathcal{N}$, which implies $u_0 D(u_0n) + u_0 n D(u_0) = 0$ for all $n \in \mathcal{N}$. Using the lemma 2.3 and the fact that $u_0 D(u_0) = 0$, we get $u_0 \mathcal{N} D(u_0) = \{0\}$. By the 3-primeness of \mathcal{N} together with the lemma 2.2(*i*), we deduce that $u_0 \in Z(\mathcal{N})$, then (3.6) becomes $U \subseteq Z(\mathcal{N})$. Using the Lemma 2.1(*i*) and Lemma 2.2(*ii*), we conclude that \mathcal{N} is a commutative ring.

Corollary 3.4. Let N be a 3-prime near-ring, U be a nonzero Lie ideal of N and F is a generalized left derivation associated with a left derivation D. Then

- (i) If $D(U^2) = \{0\}$, then \mathcal{N} is a commutative ring.
- (ii) If $D(\mathcal{N}^2) = \{0\}$, then \mathcal{N} is a commutative ring.
- (iii) If $F(\mathcal{N}^2) = \{0\}$, then \mathcal{N} is a commutative ring.

The following example proves that the 3-primeness of \mathcal{N} cannot be omitted in the Theorem 3.1.

Example 3.5. Let \mathcal{R} be a right near-ring which is not abelian. Define \mathcal{N} , U, d and F by:

$$\mathcal{N} = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & 0 \\ y & z & 0 \end{pmatrix} \mid x, y, z, 0 \in \mathcal{R} \right\}, \ U = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ p & 0 & 0 \end{pmatrix} \mid p, 0 \in \mathcal{R} \right\},$$
$$D \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & 0 \\ y & z & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & z & 0 \end{pmatrix} \text{ and } F \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & 0 \\ y & z & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & 0 \\ y & 0 & 0 \end{pmatrix}$$

Then \mathcal{N} is a right near-ring which is not 3-prime, U is a nonzero Lie ideal of \mathcal{N} , D is a nonzero left derivation of \mathcal{N} which is not a derivation and F is a nonzero generalized left derivation with associated left derivation D of \mathcal{N} which is not a left derivation. It is easy to see that

(i) $F(U) \subseteq Z(\mathcal{N});$

(ii) $F(U^2) = \{0\}.$

However, \mathcal{N} is not a commutative ring.

Theorem 3.6. Let \mathcal{N} be a 3-prime near-ring and U be a nonzero closed Lie ideal of \mathcal{N} . If \mathcal{N} admits a generalized left derivation F associated with a left derivation D such that F(u) = u for all $u \in U$, then \mathcal{N} is a commutative ring.

Proof. Suppose that F(u) = u for all $u \in U$, then F([u, nu]) = [u, nu] for all $u \in U, n \in \mathcal{N}$. Using the definition of F with [u, nu] = [u, n]u, we get uD([u, n]) = 0 for all $u \in U, n \in \mathcal{N}$. Replace n with nu in the above equation and use it, we arrive at u[u, n]D(u) = 0 for all $u \in U, n \in \mathcal{N}$, which implies

$$u(unD(u) - nuD(u)) = 0 \text{ for all } u \in U, n \in \mathcal{N}.$$
(3.10)

Since $u^2 \in U$, by hypothesis given, we have $F(u^2) = u^2$ for all $u \in U$, and by the definition of F, we obtain uD(u) = 0 for all $u \in U$, and therefore (3.10) becomes $u^2nD(u) = 0$ for all $u \in U$, $n \in \mathcal{N}$, which gives $u^2\mathcal{N}D(u) = \{0\}$ for all $u \in U$. By the 3-primeness of \mathcal{N} , we deduce that

$$u^2 = 0 \text{ or } D(u) = 0 \text{ for all } u \in U.$$
 (3.11)

By Lemma 2.2(i), (3.11) becomes

$$u^2 = 0 \text{ or } u \in Z(\mathcal{N}) \text{ for all } u \in U.$$
 (3.12)

Suppose that there exists an element $u_0 \in U$ such that $u_0^2 = 0$, then $D(u_0^2 n) = 0$ for all $n \in \mathcal{N}$, which implies that

$$u_0 D(u_0 n) + u_0 n D(u_0) = 0 \text{ for all } n \in \mathcal{N}.$$
 (3.13)

On the other hand $F([u_0, nu_0]) = [u_0, nu_0]$ for all $n \in \mathcal{N}$, it follows that $F(u_0 nu_0) = u_0 nu_0$ for all $n \in \mathcal{N}$. Using the definition of F and $F(u_0) = u_0$, and simplifying we get $u_0 D(u_0 n) = 0$ for all $n \in \mathcal{N}$, then (3.13) becomes $u_0 nD(u_0) = 0$ for all $n \in \mathcal{N}$, thus $u_0 \mathcal{N} d(u_0) = \{0\}$ for all $u \in U$. By the 3-primeness of \mathcal{N} and Lemma 2.2(*i*), we deduce $u_0 \in Z(\mathcal{N})$, and therefore (3.12) becomes $u \in Z(\mathcal{N})$ for all $u \in U$, which implies that $U \subseteq Z(\mathcal{N})$. Using Lemma 2.1(*iii*) and Lemma 2.2(*ii*), we conclude that \mathcal{N} is a commutative ring.

Corollary 3.7. Let \mathcal{N} be a 3-prime near-ring, U be a nonzero closed Lie ideal of \mathcal{N} and F is a generalized left derivation associated with a left derivation D of \mathcal{N} . Then

- (i) If F(x) = x for all $x \in \mathcal{N}$, then \mathcal{N} is a commutative ring.
- (ii) If D(u) = u for all $u \in U$, then \mathcal{N} is a commutative ring.
- (iii) If D(x) = x for all $x \in \mathcal{N}$, then \mathcal{N} is a commutative ring.

The following example proves that the 3-primeness of \mathcal{N} cannot be omitted in the Theorem 3.6.

Example 3.8. Let \mathcal{R} be a 2-torsion left near-ring which is not abelian. Define \mathcal{N}, U, D and F by:

$$\mathcal{N} = \left\{ \begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & z & 0 \end{pmatrix} \mid x, y, z, 0 \in \mathcal{R} \right\}, \ U = \left\{ \begin{pmatrix} 0 & p & 0 \\ 0 & 0 & 0 \\ 0 & q & 0 \end{pmatrix} \mid p, q, 0 \in \mathcal{R} \right\},$$
$$D \begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & z & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & y \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ and } F \begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & z & 0 \end{pmatrix} = \begin{pmatrix} 0 & x & 0 \\ 0 & 0 & 0 \\ 0 & z & 0 \end{pmatrix}.$$

Then \mathcal{N} is a left near-ring which is not 3-prime, U is a nonzero closed Lie ideal of \mathcal{N} , D is a nonzero left derivation of \mathcal{N} which is not a derivation and F is a nonzero generalized left derivation with associated left derivation d of \mathcal{N} which is not a left derivation. It is also easy to see that F(u) = u for all $u \in U$. However, \mathcal{N} is not a commutative ring.

4 Some results involving left derivations

In [5], H. E. Bell and G. Mason proved the following results: (i) If \mathcal{N} is a 3-prime 2-torsion-free near-ring which admits a nonzero derivation D for which $D(\mathcal{N}) \subseteq Z(\mathcal{N})$, then \mathcal{N} is a commutative ring; (ii) If \mathcal{N} is 3-prime and 2-torsion-free and D is a derivation such that $D^2 = 0$, then D = 0. In the present section, our goal is to extend the above study to the setting of left derivations.

Theorem 4.1. Let \mathcal{N} be a 2-torsion free 3-prime near-ring and U be a nonzero Lie ideal of \mathcal{N} . If \mathcal{N} admits a nonzero left derivation D, then the following assertions are equivalent:

- (i) $D(U^2) \subseteq Z(\mathcal{N});$
- (ii) \mathcal{N} is a commutative ring.

Proof. It is easy to see that $(ii) \Rightarrow (i)$

 $(i) \Rightarrow (ii)$ If $Z(\mathcal{N}) = \{0\}$, then $D(U^2) = \{0\}$ and, by Lemma 2.2 (*iii*) we find that \mathcal{N} is a commutative ring. Now, suppose that $D(U^2) \subseteq Z(\mathcal{N})$ and $Z(\mathcal{N}) \neq \{0\}$, then $D(u^2) \in Z(\mathcal{N})$ for all $u \in U$, which gives $2uD(u) \in Z(\mathcal{N})$ for all $u \in U$. Substituting [u, nu] for u in the last equation and using the fact that [u, nu] = [u, n]u, we obtain $2[u, nu]D([u, n]u) \in Z(\mathcal{N})$ for all $u \in U$, $n \in \mathcal{N}$, By Lemma 2.1 (*i*), we get

$$2[u, nu] \in Z(\mathcal{N}) \text{ or } D([u, nu]) = 0 \text{ for all } u \in U, n \in \mathcal{N}.$$

$$(4.1)$$

In view of Lemma 2.2 (i), (4.1) becomes

$$2[u, nu] \in Z(\mathcal{N}) \text{ for all } u \in U, n \in \mathcal{N}.$$

$$(4.2)$$

Replacing n by nu in (4.2), we obtain $2[u, nu]u \in Z(\mathcal{N})$ for all $u \in U, n \in \mathcal{N}$. Invoking Lemma 2.1 (i) together with the 2-torsion freeness of \mathcal{N} , we get

$$u \in Z(\mathcal{N}) \text{ or } [u, nu] = 0 \text{ for all } u \in U, n \in \mathcal{N}.$$
 (4.3)

Which implies that [u, nu] = 0 for all $u \in U, n \in \mathcal{N}$, then $unu = nu^2$ for all $u \in U, n \in \mathcal{N}$. Substituting nm for n in last equation and using it, we obtain $[u, n]\mathcal{N}u = \{0\}$ for all $u \in U, n \in \mathcal{N}$ and by 3-primeness of \mathcal{N} , we deduce $u \in Z(\mathcal{N})$, then (4.3) becomes $U \subseteq Z(\mathcal{N})$. The Lemma 2.1(*iii*) and Lemma 2.2(*ii*) assure that \mathcal{N} is a commutative ring. 'n

Corollary 4.2. Let N be a 2-torsion free 3-prime near-ring. If N admits a left derivation D, then the following assertions are equivalent:

- (i) $D(\mathcal{N}^2) \subseteq Z(\mathcal{N});$
- (ii) \mathcal{N} is a commutative ring.

Theorem 4.3. Let \mathcal{N} be a 2-torsion free 3-prime near-ring and U be a nonzero Lie ideal of \mathcal{N} . If \mathcal{N} admits a left derivation *D*, then the following assertions are equivalent:

- (i) $D^2(U) = \{0\};$
- (*ii*) $D^2(U^2) = \{0\};$
- (iii) \mathcal{N} is a commutative ring.

Proof. It is obvious that (iii) implies (i) and (ii).

 $(i) \Rightarrow (iii)$ Suppose that $D^2(U) = \{0\}$. By Lemma 2.2 (i), we get $D(U) \subseteq Z(\mathcal{N})$ and using Theorem 3.1, we conclude that \mathcal{N} is a commutative ring. (*ii*) \Rightarrow (*iii*) Assume that $D^2(U^2) = \{0\}$. Using Lemma 2.2 (*i*), we obtain $D(U^2) \subseteq Z(\mathcal{N})$, and by Theorem 4.1, we find

that \mathcal{N} is a commutative ring.

Corollary 4.4. Let N be a 2-torsion free 3-prime near-ring. If N admits a left derivation D such that $D^2 = 0$, then D = 0.

Proof. Suppose $D^2 = 0$, using the theorem 3.3, then \mathcal{N} is a commutative ring. So $0 = D^2(x^2)y = 2D(x)D(x)y$ for all $x, y \in \mathcal{N}$, and the 2-torsion freeness of \mathcal{N} forces that $D(x)\mathcal{N}D(x) = \{0\}$ for all $x \in \mathcal{N}$. So D = 0 by the 3-primeness of \mathcal{N}

The following example proves that the 3-primeness of \mathcal{N} in Theorems 4.3 cannot be omitted.

Example 4.5. Let \mathcal{R} be a 2-torsion free right near-ring which is not abelian. Define \mathcal{N} , J and D by:

$$\mathcal{N} = \left\{ \begin{pmatrix} 0 & r & s \\ 0 & 0 & t \\ 0 & 0 & 0 \end{pmatrix} \mid r, s, t, 0 \in \mathcal{R} \right\}, U = \left\{ \begin{pmatrix} 0 & 0 & p \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mid p, 0 \in \mathcal{R} \right\}$$

 $\begin{bmatrix} 0 & 0 \end{bmatrix}$. Then, \mathcal{N} is a right near-ring which is not 3-prime, U is a nonzero Lie ideal of \mathcal{N} , and 0 0

D is a nonzero left derivation of $\hat{\mathcal{N}}$ which is not a derivation. We can easily see that

(i) $D(U^2) \subseteq Z(\mathcal{N});$

(ii) $D^2(U) = \{0\};$

(iii) $D^2(U^2) = \{0\}.$

But \mathcal{N} is not a commutative ring.

5 Results in right near-rings involving Lie ideals and right centralizers

The notion of generalized left derivations with D = 0 includes the notion of right centralizers (multipliers). An additive mapping $T: \mathcal{N} \to \mathcal{N}$ is a right centralizer (multiplier) if T(xy) = xT(y) for all $x, y \in \mathcal{N}$. Our goal in this section is to establish similar results in [[8], Theorems 3.1, 3.11 and 4.1]. Furthermore, we investigate the structure of a 3-prime right near-ring \mathcal{N} admitting a nonzero right centralizer T which satisfies certain differential identities on Lie ideals.

Theorem 5.1. Let \mathcal{N} be a 3-prime near-ring and U be a nonzero Lie ideal of \mathcal{N} . If \mathcal{N} admits a nonzero right multiplier Tsuch that $T([u, n]) \in Z(\mathcal{N})$ for all $u \in U, n \in \mathcal{N}$, then $(\mathcal{N}, +)$ is abelian.

Proof. Suppose that $Z(\mathcal{N}) = \{0\}$, then T([u, n]) = 0 for all $u \in U, n \in \mathcal{N}$. It follows that T(un) = T(nu) for all $u \in U, n \in \mathcal{N}$, using the definition of T, then uT(n) = nT(u) for all $u \in U, n \in \mathcal{N}$. Replacing u by [u, m] in the last equation and using our assumption, then [u, m]T(n) = 0 for all $u \in U, n, m \in \mathcal{N}$. Now substituting xy instead of n and using the definition of T, we find [u, m]xT(y) = 0 for all $u \in U, m, x, y \in \mathcal{N}$, which gives $[u, m]\mathcal{N}T(y) = \{0\}$ for all $u \in U, m, y \in \mathcal{N}$. Since $T \neq 0$, we deduce from the 3-primeness of \mathcal{N} that $U \subseteq Z(\mathcal{N})$, and Lemma 2.1 (i) assure that $(\mathcal{N}, +)$ is abelian.

Now assume that $Z(\mathcal{N}) \neq \{0\}$ and $T([u, n]) \in Z(\mathcal{N})$ for all $u \in U, n \in \mathcal{N}$, then $T([[u, n], n[u, n]]) \in Z(\mathcal{N})$ for all $u \in U, n \in \mathcal{N}$, using the definition of T and the fact that [[u, n], n[u, n]] = [[u, n], n][u, n] for all $u \in U, n \in \mathcal{N}$, we

demonstrations with the necessary modifications, we can easily find $u_0 \in Z(\mathcal{N})$, which gives $[[u_0, n], n] \in Z(\mathcal{N})$ for all $n \in \mathcal{N}$, then the latter expression becomes $[[u, n], n] \in Z(\mathcal{N})$ for all $u \in U, n \in \mathcal{N}$. Substituting n[u, n] instead of n, we obtain $[[u, n], n][u, n] \in Z(\mathcal{N})$ for all $u \in U, n \in \mathcal{N}$. By Lemma 2.1 (i), we can see that $[u, n] \in Z(\mathcal{N})$ for all $u \in U, n \in \mathcal{N}$. Now substituting nu instead of n in the above equation, by Lemma 2.1 (i) we can obtain $U \subseteq Z(\mathcal{N})$ which assure that $(\mathcal{N}, +)$ is abelian by Lemma 2.1 (i).

Theorem 5.2. Let N be a 3-prime near-ring and U a nonzero Lie ideal of N. There is no nonzero right multiplier T satisfying any one of the following assertions:

(*i*) $T(U) = \{0\};$

(*ii*) $T(U^2) = \{0\}$.

Proof. (i) Suppose that $T(U) = \{0\}$, then T([u, n]) = 0 for all $u \in U, n \in \mathcal{N}$. Which implies T(un) = T(nu) for all $u \in U, n \in \mathcal{N}$, using the definition of T, then uT(n) = nT(u) for all $u \in U, n \in \mathcal{N}$. Using our hypothesis, then uT(n) = 0 for all $u \in U, n \in \mathcal{N}$. Replacing n by nm, we can easily arrive at $U\mathcal{N}T(m) = \{0\}$ for all $m \in \mathcal{N}$. Since \mathcal{N} is 3-prime, we find that $U = \{0\}$ or T = 0, a contradiction. (*ii*) Suppose that $T(U^2) = \{0\}$, then $T(u^2) = \{0\}$

$$= 0$$
 for all $u \in U$, it follows that

uT(u) = 0 for all $u \in U$. (5.1)

Using our hypothesis, then T([u, nu]) = 0 for all $u \in U, n \in \mathcal{N}$, thus $T(unu) = T(nu^2)$ for all $u \in U, n \in \mathcal{N}$, using the definition of T and (5.1), we find that unT(u) = 0 for all $u \in U, n \in \mathcal{N}$, which gives $u\mathcal{N}T(u) = \{0\}$ for all $u \in U$. By the 3-primeness of \mathcal{N} , we deduce that T(u) = 0 for all $u \in U$, which leads to a contradiction by (i).

6 Left near-ring involving Lie ideals and generalized left derivations

The present section is motivated by [9, Lemma 3 (iii)] and [5, Theorem 2]. Our goal is to extend these results to 3-prime near rings admitting a non-zero left derivation.

Theorem 6.1. Let \mathcal{N} be a 3-prime near-ring, D be a left derivation of \mathcal{N} and U be a nonzero Lie ideal of \mathcal{N} . Then, we have the following results:

(i) If aD(x) = 0 for all $x \in \mathcal{N}$, then a = 0;

(ii) If D([u, n]) = [u, n] for all $u \in U, n \in \mathcal{N}$, then $(\mathcal{N}, +)$ is abelian.

Proof. (i) Suppose that aD(x) = 0 for all $x \in \mathcal{N}$. Replacing x by xy, we obtain axD(y) + ayD(x) = 0 for all $x, y \in \mathcal{N}$. Taking ya instead of y in the above equation, we get axD(ya) = 0 for all $x, y \in \mathcal{N}$, which gives ax(yD(a) + aD(y)) = 0for all $x, y \in \mathcal{N}$, using our hypothesis, we find that axyD(a) = 0 for all $x, y \in \mathcal{N}$, it follows that $ax\mathcal{N}D(a) = \{0\}$ for all $x \in \mathcal{N}$. By the 3-primeness of \mathcal{N} , we deduce that ax = 0 or D(a) = 0 for all $x \in \mathcal{N}$, which implies that axa = 0 or D(a) = 0 for all $x \in \mathcal{N}$ and the 3-primeness hypothesis yields a = 0 or D(a) = 0. If D(a) = 0, then

D(axy) = aD(xy) + xyD(a) = 0 for all $x, y \in \mathcal{N}$.

On the other hand

$$D(axy) = axD(y) + yD(xa)$$
$$= axD(y) + y(xD(a) + aD(x))$$

= axD(y) for all $x, y \in \mathcal{N}$.

Comparing the two last expressions, we obtain axD(y) = 0 for all $x, y \in \mathcal{N}$, which implies that $a\mathcal{N}D(y) = \{0\}$ for all $y \in \mathcal{N}$ and by the 3-primeness of \mathcal{N} , we conclude that a = 0. (ii) Assume that

$$D([u,n]) = [u,n] \text{ for all } u \in U, n \in \mathcal{N}.$$
(6.1)

Substituting un for n in (6.1) and using it together with the definition of D, one can easily see that [n]D(u) = 0 for all $u \in U$. (

$$[u, n]D(u) = 0 \text{ for all } u \in U, n \in \mathcal{N}.$$
(6.2)

Applying
$$D$$
 to both sides of the equation (6.1) and invoking it, we find that

$$[u, n]D^{2}(u) + D(u)D([u, n]) = 0 \text{ for all } u \in U, n \in \mathcal{N}.$$
Taking $[v, m]$ instead of u in (6.3) and using (6.2), it is obvious to see that
$$(6.3)$$

$$[[v,m],n][v,m] = 0 \text{ for all } v \in U, n, m \in \mathcal{N}.$$

$$(6.4)$$

Applying D to both sides of the equation (6.4) and invoking it, we find that

$$[v,m][[v,m],n] = 0 \text{ for all } v \in U, n, m \in \mathcal{N}.$$
(6.5)

Which implies that

 $[v,m]^2 n = [v,m]n[v,m]$ for all $v \in U, n, m \in \mathcal{N}$

[v]

Taking nt in place of n in above equation and using it, we may write

$$[v,m]^2 nt = [v,m]nt[v,m]$$
 for all $v \in U, n, m \in \mathcal{N}$.

Which gives

[v,m]n[v,m]t = [v,m]nt[v,m] for all $v \in U, n, m, t \in \mathcal{N}$.

And therefore,

[v,m]n[[v,m],t] = 0 for all $v \in U, n, m, t \in \mathcal{N}$.

So, $[v, m]\mathcal{N}[[v, m], t] = \{0\}$ for all , $v \in U, m, t \in \mathcal{N}$. By the 3-primeness of \mathcal{N} , we can write

$$[m] \in Z(\mathcal{N})$$
 for all $v \in U, m \in \mathcal{N}$

(6.6)

Putting vm instead of v in (6.6) one can easily find $v[v,m] \in Z(\mathcal{N})$ for all $v \in U, m \in \mathcal{N}$ and by Lemma 2.1(i), we deduce that $v \in Z(\mathcal{N})$ or [v, m] = 0 for all $v \in U, m \in \mathcal{N}$, which leads to $U \subseteq Z(\mathcal{N})$ and by lemma 2.1(iii), we conclude that $(\mathcal{N}, +)$ is abelian.

References

- M. Ashraf, N. Rehman, On Lie ideals and Jordan left derivation of prime rings, Arch. Math. (Brno), 36 (2000), 201-206.
- [2] M. Ashraf and S. Ali, On generalized Jordan left derivations in rings, Bull. Korean Math. Soc. 45 (2008), no 2, 253-261.
- [3] H. E. Bell, On Prime Near-Rings with Generalized Derivation, Int. J. Math. and Math. Sci, (2008), Article ID 490316, 5 pages.
- [4] H. E. Bell, On derivations in near-rings II. Nearrings, nearfields and K-loops, (Hamburg, 1995) Math. Appl, Dordrecht: Kluwer Acad. Publ., 426(1997), 191-197.
- [5] H. E. Bell and G. Mason, On derivations in near-rings. Near-rings and near-fields, North Holland Math. Stud, 137(1987), 31-35.
- [6] J. Bergen, I. N. Herstein and J.W. Kerr, *Lie ideals and derivations of prime rings*, J. Algebra., 71 (1981), 259-267.
- [7] A. Boua and A. A. M. Kamal, *Lie ideals and Jordan ideals in 3-prime near-rings with derivations*, JP J. Alg, Number Theory Appl, 55(2) (2014), 131-139.
- [8] A. Boua and H. E. Bell, Jordan Ideals and Derivations Satisfying Algebraic Identities, Bull. Iran. Math. Soc., 44 (2018), 1543-1554.
- [9] A. Boua, A. Ali, and I. UL Huque, Several Algebraic Identities in Prime near-rings, Kragujevac J. Math, 42 (2) (2018), 249-258.
- [10] A. Boua, L. Oukhtite and A. Raji, Semigruop ideals with semiderivations in-3 prime near-rings, Palestine J. Math, 3 (2014), 438-444.
- [11] A. Boua, L. Oukhtite and A. Raji, on 3-prime near-rings with generalized derivations, Palestine Journal of Mathematics, 5 (1) (2016), 12-16.
- [12] M. Brěasar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc., 110(1)(1990) 7-16.
- [13] A. En-guady and A. Boua, On Lie ideals with left derivations in 3-prime near-rings, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), (2022), 123-132.
- [14] Ö. Gölbaşi, Some results on near-rings with generalized derivations, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 51 (2), (2005), 21-26.
- [15] Ö. Gölbaşi and K. Kaya, On lie ideals with generalized derivations, Sib. Math. J. 47(5), (2006), 862-866.
- [16] S. Y. Kang and I. S, Approximation of Generalized Left Derivations, Abstr. Appl. Anal. Article ID 915292, 8 pages.
- [17] S. M. A. Zaidi, M. Ashraf and A. Shakir, On Jordan Ideal and left derivation in prime rings, Int. J. Math. Math. Sci., 37 (2004), 1957-1964.

Author information

Adel En-guady, Polydisciplinary Faculty of Taza Sidi Mohammed Ben Abdellah University, Morroco. E-mail: abdelkarimboua@yahoo.fr Abdelkarim Boua, Polydisciplinary Faculty of Taza Sidi Mohammed Ben Abdellah University, Morroco. E-mail: adel.enguady@usmba.ac.ma

Received: 2023-03-25 Accepted: 2023-10-28