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Abstract This paper introduces a novel inclusion problem, the Cayley-Yosida inclusion prob-
lem, which is constructed using generalized versions of the Cayley and Yosida operators. We also
investigate the corresponding resolvent equation for this problem. To solve the Cayley-Yosida
inclusion problem, we propose a fixed point formulation algorithm and prove the existence of a
solution along with its convergence. Our results are demonstrated with and without the use of
uniform and smoothness properties of Banach space. Additionally, we develop a gap function
for the Cayley-Yosida inclusion problem and estimate the error bound for its solution. Overall,
this paper presents a comprehensive analysis of the Cayley-Yosida inclusion problem and its
resolvent equation along with the gap function for a given inclusion problem.

1 Introduction

Variational inequality and inclusion problems are fundamental concepts in mathematical opti-
mization that deal with finding solutions to a set of interrelated equations. A variational inequal-
ity problem involves finding a solution to an equation or system of equations, where the solution
must satisfy certain constraints or inequalities. In contrast, an inclusion problem, introduced
by A. Hassouni and A. Moudafi [3], requires identifying a point in the intersection of two sets,
which may represent feasible solutions to several criteria simultaneously. These problems find
applications in many areas such as economics, engineering, biology, and operations research
among others. Effective solutions require sophisticated mathematical techniques including con-
vex analysis, operator theory, and fixed-point theory among others. Solving these mathematical
challenges is very important for effective decision-making processes in various fields. Varia-
tional inequality is generalized in many environments, see examples [12, 14]. Similarly, the
inclusion problem is generalized by many authors, see examples [1, 2, 4, 5, 7, 16].
In Hilbert space H and let S : H −→ 2H is a set-valued map then the inclusion problem is to
solve for u ∈ H such that 0 ∈ S(u); in general inclusion problems help to study the optimization
problems, equilibrium problems, variational inequality problems, etc., see example [8]. Fang
and Huang [9] introduced the resolvent operator in 2004. After this, resolvent operators and
related operators were used in many areas such as partial differential equations and many areas
mainly in convex analysis, see example [6].
Since the Cayley and Yosida operators are used to solve many problems in different areas such
as computer programming, economics, engineering, and financial modeling, etc., we have con-
structed an inclusion problem that includes the generalized version of the Cayley and Yosida
operator, which we call it Cayley-Yosida inclusion problem.
Presently, the gap function came to be very useful in the area of optimization theory, it converts
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variational inequalities or inclusion problems into identical problems in optimization for study-
ing the existence of solutions and many more, for example, [12].
Let us consider H to be the Hilbert space then for an identity operator I and a set-valued map E,
we define the resolvent operator, RE

I,θ : H −→ H as, for all u ∈ H,

RE
I,θ(u) = (I + θE)−1(u). (1.1)

Define the Cayley operator, CE
I,θ : H −→ H as, for all u ∈H,

CE
I,θ(u) = (2RE

I,θ − I)(u). (1.2)

Define the Yosida operator, YE
I,θ : H −→ H as, for all u ∈H,

YE
I,θ(u) =

1
θ
(I −RE

I,θ)(u). (1.3)

where θ > 0.
In this paper, we consider generalized forms of (1.1), (1.2) and (1.3).

2 Preliminaries

Throughout this paper, let us consider B to be a real Banach space with norm ||.|| and B∗ be a
topological dual space of B with duality pairing ⟨., .⟩ between B and B∗. For u ∈ B, define a
normalized duality map F : B −→ 2B∗

as:

F(u) = {h ∈ B∗ : ⟨u, h⟩ = ||u||.||h||, ||u|| = ||h||}.

Also the function ρB:[0,∞) −→ [0,∞), which is modulus of smoothness of B given as:

ρB(s) = sup{ ||u+ w||
2

+
||u− w||

2
− 1 : ||u|| ≤ 1, ||w|| ≤ s},

and if lims→0
ρB(s)

s = 0, then B is uniformly.

Definition 2.1. A map X : B −→ B is called:

• Lipschitz continuos, if ∀ u,w ∈ B, ∃ aX > 0 such that,

||X(u)−X(w)|| ≤ aX ||u− w||.

• accretive, if ∀ u,w ∈ B, ∃ f(u− w) ∈ F(u− w) such that,

⟨X(u)−X(w), f(u− w)⟩ ≥ 0.

• strongly accretive, if ∀ u,w ∈ B, ∃ f(u− w) ∈ F(u− w) and lX > 0 such that,

⟨X(u)−X(w), f(u− w)⟩ ≥ lX ||u− w||2.

Definition 2.2. [9] Let X be a map then E : B −→ 2B is called X-accretive if E is accretive and
for θ > 0, (X + θE)(B) = B.

Definition 2.3. [9] Let X : B −→ B be a single-valued map and E : B −→ 2B be a set-valued
map which is X-accretive then the generalized resolvent operator is defined for all u ∈ B as,

RE
X,θ(u) = (X + θE)−1(u). (2.1)

Theorem 2.4. [9] Let X : B −→ B be a strongly accretive map with kX > 0 and M : B −→ 2B

be a set-valued X-accretive map then for all u,w ∈ B,

||RE
X,θ(u)−RE

X,θ(w)|| ≤
1
kX

||u− w||.

that is, the generalized resolvent operator, RE
X,θ is Lipschitz continuous.
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Lemma 2.5. [15] Consider B be a Banach space with uniform and smoothness properties and
F : B −→ 2B∗

then

(i) ||u+ w||2 ≤ ||u||2 + 2⟨w, f(u+ w)⟩,∀f(u+ w) ∈ F(u+ w),∀u,w ∈ B

(ii) ⟨u− w, f(u)− f(w)⟩ ≤ 2d2ρB(
4||u−w||

d ),∀f ∈ F ,∀u,w ∈ B

where d =

√
(
||u||2 + ||w||2

2
).

Definition 2.6. The generalized Cayley operator, CE
X,θ : H −→ H as, for all u ∈B,

CE
X,θ(u) = (2RE

X,θ −X)(u). (2.2)

The generalized Yosida operator, YE
X,θ : H −→ H as, for all u ∈B,

YE
X,θ(u) =

1
θ
(X −RE

X,θ)(u). (2.3)

Now defining an operator LE
X,θ by using generalized Cayley and generalized Yosida operators

as:
LE
X,θ(u) = αCE

X,θ(u) + βYE
X,θ(u), (2.4)

for all u ∈ B and where α and β are real constants.

Proposition 2.7. Let X : B −→ B be a Lipschitz continuous with kX > 0 then the operator LE
X,θ

defined by (2.4) is a Lipschitz continuous if ∃ γ > 0 such that, for all u,w ∈ B,

||LE
X,θ(u)− LE

X,θ(w)|| ≤ γ||u− w||.

Proof.

||LE
X,θ(u)− LE

X,θ(w)|| = ||αCE
X,θ(u) + βYE

X,θ(u)− (αCE
X,θ(w) + βYE

X,θ(w))||

= ||α(CE
X,θ(u)− CE

X,θ(w))− β(YE
X,θ(u)− YE

X,θ(w))||

≤ |α|||CE
X,θ(u)− CE

X,θ(w)||+ |β|||YE
X,θ(u)− YE

X,θ(w)||,

now using (2.2) and (2.3),

≤ |α|||2RE
X,θ(u)−X(u)− 2RE

X,θ(w) +X(w)||

+ |β|||1
θ
(X(u)−RE

X,θ(u))−
1
θ
(X(w)−RE

X,θ(w))||

=⇒ ||LE
X,θ(u)−LE

X,θ(w)|| ≤ (2|α|+ |β|
θ
)||RE

X,θ(u)−RE
X,θ(w)||+(

|β|
θ

+1)||X(u)−X(w)||,

by theorem 2.4 and Lipschitz continuity of X ,

||LE
X,θ(u)− LE

X,θ(w)|| ≤ (
3|α|θ + (1 + |β|)|α|

θkX
)||u− w||,

let γ = ( 3|α|θ+(1+|β|)|α|
θkX

) > 0, we have the result,

||LE
X,θ(u)− LE

X,θ(w)|| ≤ γ||u− w||.

Let us consider X : B −→ B and E : B −→ 2B to be single-valued and set-valued maps
respectively and consider the operator defined by (2.4). The following problem is considered:
To find u ∈ B such that,

0 ∈ LE
X,θ(u) +E(u) = αCE

X,θ(u) + βYE
X,θ(u) +E(u). (2.5)

We call the above problem (2.5) as Cayley-Yosida inclusion problem.

Now we will discuss some cases regarding problem (2.5) as follows:
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• If α = 0 and β = 0 then the problem (2.5) changes to the problem of finding u ∈ B such
that,

0 ∈ E(u). (2.6)

The above problem (2.6) is very common classical inclusion problem.

• If α = 1 and β = 0 then the problem (2.5) changes to the problem of finding u ∈ B such
that,

0 ∈ CE
X,θ(u) +E(u). (2.7)

The above problem (2.7) is a Cayley inclusion problem which is studied in uniformly
smooth Banach space by Ahmad et al [11].

• If α = 0 and β = 1 then the problem (2.5) changes to the problem of finding u ∈ B such
that,

0 ∈ YE
X,θ(u) +E(u). (2.8)

The above problem (2.8) is Yosida inclusion problem including generalized Yosida operator
defined by (2.3) which is studied by Ahmad et al [10].

It is noted that maps X , E and all the operators defined by (1.1), (1.2), (1.3), (2.1), (2.2) and
(2.3) are continuous.

3 Cayley-Yosida Inclusion Problem

In this section, we will prove the lemma about fixed point formulation and construct the algo-
rithm for the solution of the Cayley-Yosida inclusion problem (2.5), which includes generalized
Cayley and generalized Yosida operators. We will also establish the existence and convergence
result for the Cayley-Yosida inclusion problem (2.5).

Lemma 3.1. The Cayley-Yosida inclusion problem (2.5) has solution u ∈ B if and only if,

u = RE
X,θ(θ(1 − β)YE

X,θ(u) +RE
X,θ(u)− θαCE

X,θ(u)) (3.1)

Proof. Let u ∈ B be a solution of the Cayley-Yosida inclusion problem (2.5) then,

0 ∈ αCE
X,θ(u) + βYE

X,θ(u) +E(u)

for θ > 0,

0 ∈ θαCE
X,θ(u) + θβYE

X,θ(u) + θE(u)

⇐⇒ X(u) + θE(u) = X(u)− θαCE
X,θ(u)− θβYE

X,θ(u)

⇐⇒ (X + θE)(u) = (X(u)−RE
X,θ(u)) +RE

X,θ(u)− θαCE
X,θ(u)− θβYE

X,θ(u)

⇐⇒ u = (X + θE)−1(θ × 1
θ
(X(u)−RE

X,θ(u)) +RE
X,θ(u)− θαCE

X,θ(u)− θβYE
X,θ(u))

⇐⇒ u = RE
X,θ(θ(1 − β)YE

X,θ(u) +RE
X,θ(u)− θαCE

X,θ(u)).

Now using lemma 3.1, we establish the following iterative algorithm for solution of the
Cayley-Yosida inclusion problem (2.5).

Iterative Algorithm 3.1.

Consider u0 ∈ B and for θ > 0,

u1 = RE
X,θ(θ(1 − β)YE

X,θ(u0) +RE
X,θ(u0)− θαCE

X,θ(u0)) ∈ B.

Similarly assume,

u2 = RE
X,θ(θ(1 − β)YE

X,θ(u1) +RE
X,θ(u1)− θαCE

X,θ(u1)) ∈ B.
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By continuing the above process, we will obtain the sequence as follows:

un = RE
X,θ(θ(1 − β)YE

X,θ(un−1) +RE
X,θ(un−1)− θαCE

X,θ(un−1)) ∈ B;n = 1, 2, 3..., .

By using above iterative algorithm, next we prove existence and convergence result for the
Cayley-Yosida inclusion problem (2.5).

Theorem 3.2. Let B be a Banach space with uniform and smoothness property such that, for
some K > 0, the modulus of smoothness, ρB(s) ≤ Ks2. Also let X : B −→ B be a Lipschitz
continuous map and a set-valued map E : B −→ 2B be a X-accretive. Assume RE

X,θ follows
theorem 2.4. Consider YE

X,θ is a strongly accretive and a Lipschitz continuous with constants
r1 > 0 and r2 > 0 respectively, and CE

X,θ is a Lipschitz continuous with constant r3 > 0. For
some θ > 0, if the condition:

|θ − k2
X − 1

(1 + |α|r3)
| <

√
1 − 2(1 − β)r2 + 64K(

(1 − β)

kX
)2

(1 + |α|r3)
(3.2)

is satisfied then the Cayley-Yosida inclusion problem (2.5) (for β < 0) has at least a solution
u ∈ B and the sequence obtained from iterative algorithm (3.1) strongly converges to u.

Proof. Using algorithm (3.1),

||un+1 − un|| = ||RE
X,θ(θ(1 − β)YE

X,θ(un) +RE
X,θ(un)− θαCE

X,θ(un))

−RE
X,θ(θ(1 − β)YE

X,θ(un−1) +RE
X,θ(un−1)− θαCE

X,θ(un−1))||,

using theorem 2.4,

≤ 1
kX

||θ(1 − β)YE
X,θ(un) +RE

X,θ(un)− θαCE
X,θ(un)− (θ(1 − β)YE

X,θ(un−1)

+RE
X,θ(un−1)− θαCE

X,θ(un−1))||,

≤ 1
kX

||θ(1 − β)(YE
X,θ(un)− YE

X,θ(un−1))− θα(CE
X,θ(un)− CE

X,θ(un−1))||

+
1
kX

||RE
X,θ(un)−RE

X,θ(un−1)||

≤ θ

kX
||(un − un−1)− (1 − β)(YE

X,θ(un)− YE
X,θ(un−1))||

+
θ

kX
||(un − un−1)− α(CE

X,θ(un)− CE
X,θ(un−1))||+

1
k2
X

||un − un−1||. (3.3)

Now we have,

||(un − un−1)− α(CE
X,θ(un)− CE

X,θ(un−1))||

≤ ||(un − un−1)||+ |α|||CE
X,θ(un)− CE

X,θ(un−1)||

≤ (1 + |α|r3)||(un − un−1)||. (3.4)

Also we have,

||(un − un−1)− (1 − β)(YE
X,θ(un)− YE

X,θ(un−1))||2

≤ ||un − un−1||2 − 2(1 − β)⟨YE
X,θ(un)− YE

X,θ(un−1),

f((un − un−1)− (1 − β)(YE
X,θ(un)− YE

X,θ(un−1)))⟩,
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≤ ||un − un−1||2 − 2(1 − β)⟨YE
X,θ(un)− YE

X,θ(un−1), f(un − un−1)⟩

+ ⟨(un − un−1)− 2(1 − β)(YE
X,θ(un)− YE

X,θ(un−1))− (un − un−1), f((un − un−1)

− (1 − β)(YE
X,θ(un)− YE

X,θ(un−1)))− f(un − un−1)− f((un − un−1))⟩,

using lemma 2.5 and given condition ρB(s) ≤ Ks2, we have

||(un − un−1)− (1 − β)(YE
X,θ(un)− YE

X,θ(un−1))||

≤

√
(1 − 2(1 − β)r1 + 64K(

1 − β

kX
)2)||un − un−1||. (3.5)

Using (3.4) and (3.5) to evaluate (3.3), we get

||un+1 − un|| ≤ µ||un − un−1||,

where µ =
kXθ(

√
(1 − 2(1 − β)r1 + 64K(

1 − β

kX
)2) + (1 + |α|r3)) + 1

k2
X

.

Using condition (3.2), we find that µ < 1 and this implies, the sequence {un} is Cauchy and
converges to some u ∈ B.
Hence the result follows by lemma 3.1 as map X , E and all the operators defined by (2.2), (2.3)
and (2.4) are continuous.

Now removing uniform and smoothness properties of B.

Theorem 3.3. Let B be a Banach space, X : B −→ B be a Lipschitz continuous and strongly
accretive maps and also a set valued map E : B −→ 2B be a X-accretive. Assume RE

X,θ follows
theorem 2.4. For some θ > 0, if the condition:

|θ − k2
X − 2

(|α|+ kXaX)
| < |β|(1 + kXaX)

(|α|+ kXaX)
(3.6)

is satisfied then the Cayley-Yosida inclusion problem (2.5) has at least a solution u ∈ B and the
sequence obtained from iterative algorithm (3.1) strongly converges to u.

Proof. Using algorithm (3.1),

||un+1 − un|| = ||RE
X,θ(θ(1 − β)YE

X,θ(un) +RE
X,θ(un)− θαCE

X,θ(un))

−RE
X,θ(θ(1 − β)YE

X,θ(un−1) +RE
X,θ(un−1)− θαCE

X,θ(un−1))||,

using theorem 2.4,

≤ 1
kX

||θ(1 − β)YE
X,θ(un) +RE

X,θ(un)− θαCE
X,θ(un)− (θ(1 − β)YE

X,θ(un−1)

+RE
X,θ(un−1)− θαCE

X,θ(un−1))||

≤ θ(1 + |β|)
kX

||YE
X,θ(un)− YE

X,θ(un−1)||+
1
kX

||RE
X,θ(un)−RE

X,θ(un−1)||

+
θ|α|
kX

||CE
X,θ(un)− CE

X,θ(un−1)||

≤ θ(1 + |β|)
kX

(||X(un)−X(un−1)||+
1
θ
||RE

X,θ(un)−RE
X,θ(un−1)||) +

1
kX

||RE
X,θ(un)

−RE
X,θ(un−1)||+

θ|α|
kX

(2||RE
X,θ(un)−RE

X,θ(un−1)||+ ||X(un)−X(un−1)||)
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= (
2 + |β|+ θ|α|

kX
)||RE

X,θ(un)−RE
X,θ(un−1)||+ (

θ + |α|+ |β|
kX

)||X(un)−X(un−1)||,

using theorem 2.4 and Lipschitz continuity of X , we get

||un+1 − un|| ≤ δ||un − un−1||, where δ =
2 + |β|+ θ|α|

k2
X

+ aX
θ + |α|+ |β|

kX
.

Using condition (3.6), we find that δ < 1 and this implies, the sequence {un} is cauchy and
converges to some u ∈ B.
Hence the result follows by lemma 3.1 as map X , E and all the operators defined by (2.2), (2.3)
and (2.4) are continuous.

4 Generalized Resolvent Equation for Cayley-Yosida Inclusion Problem

Consider the problem, to find u, t ∈ B, such that,

αCE
X,θ(u) + βYE

X,θ(u) + θ−1FE
X,θ(t) = 0, (4.1)

where FE
X,θ(t) = (I −X(RE

X,θ))(t) and X(RE
X,θ(t)) = (X(FE

X,θ))(t).

The above problem (4.1) is a generalized resolvent equation which we call it generalized
resolvent equation for the Cayley-Yosida inclusion problem (2.5).

Proposition 4.1. Let X : B −→ B be a one to one map and for θ > 0,

u = RE
X,θ(t), (4.2)

t = θ(1 − β)YE
X,θ(u) +RE

X,θ(u)− θαCE
X,θ(u), (4.3)

then the generalized resolvent equation (4.1) has a solution u, t ∈ B if and only if the Cayley-
Yosida inclusion problem (2.5) has a solution u ∈ B.

Proof. Let u, t ∈ B be the solution of (4.1), then,

θαCE
X,θ(u) + θβYE

X,θ(u) = −FE
X,θ(t)

⇒ θαCE
X,θ(u) + θβYE

X,θ(u) = X(RE
X,θ(t))− t

⇒ θαCE
X,θ(u) + θβYE

X,θ(u) = X(RE
X,θ(θ(1 − β)YE

X,θ(u) +RE
X,θ(u)− θαCE

X,θ(u)))

−(θ(1 − β)YE
X,θ(u) +RE

X,θ(u)− θαCE
X,θ(u))

⇒ θYE
X,θ(u) = X(RE

X,θ(θ(1 − β)YE
X,θ(u) +RE

X,θ(u)− θαCE
X,θ(u)))−RE

X,θ(u)

⇒ X(u)−RE
X,θ(u) = X(RE

X,θ(θ(1 − β)YE
X,θ(u) +RE

X,θ(u)− θαCE
X,θ(u)))−RE

X,θ(u)

⇒ X(u) = X(RE
X,θ(θ(1 − β)YE

X,θ(u) +RE
X,θ(u)− θαCE

X,θ(u))),

since X : B −→ B is one to one map then,

u = RE
X,θ(θ(1 − β)YE

X,θ(u) +RE
X,θ(u)− θαCE

X,θ(u)).

this implies, u ∈ B is solution of the Cayley-Yosida inclusion problem (2.5), follows from lemma
3.1.

Conversely,
let u ∈ B be a solution of the Cayley-Yosida inclusion problem (2.5), then,

u = RE
X,θ(θ(1 − β)YE

X,θ(u) +RE
X,θ(u)− θαCE

X,θ(u)).



280 Abdul Faiz Ansari and Zubair Khan

since t = θ(1 − β)YE
X,θ(u) + RE

X,θ(u) − θαCE
X,θ(u) and hence putting u = RE

X,θ(t) in t , we
have,

⇒ t = θ(1 − β)YE
X,θ(RE

X,θ(t)) +RE
X,θ(RE

X,θ(t))− θαCE
X,θ(RE

X,θ(t))

⇒ t− θYE
X,θ(RE

X,θ(t))−RE
X,θ(RE

X,θ(t)) = −θβYE
X,θ(RE

X,θ(t))− θαCE
X,θ(RE

X,θ(t))

⇒ (I − θYE
X,θ(RE

X,θ))(t)−RE
X,θ(RE

X,θ(t)) = −θβYE
X,θ(RE

X,θ(t))− θαCE
X,θ(RE

X,θ(t))

⇒ (I − (X −RE
X,θ))(RE

X,θ)(t)−RE
X,θ(RE

X,θ(t)) = −θβYE
X,θ(RE

X,θ(t))− θαCE
X,θ(RE

X,θ(t))

⇒ (I −X(RE
X,θ))(t) = −θ(βYE

X,θ(RE
X,θ(t)) + αCE

X,θ(RE
X,θ(t)))

⇒ αCE
X,θ(u) + βYE

X,θ(u) + θ−1FE
X,θ(t) = 0,

hence the result follows.

By proposition (4.1), the generalized resolvent equation (4.1) can be written as follows:

t = X(u)− αCE
X,θ(u)− βYE

X,θ(u) + (1 − θ−1)FE
X,θ(t), (4.4)

Also, the equation (4.1) can be written as:

u = u− ∆(t− θ(αCE
X,θ(u) + βYE

X,θ(u))), (4.5)

where ∆ is a positive step size.
Next we will construct the iterative algorithm using (4.2) and (4.3).

Iterative Algorithm 4.1.

Let u0, t0 ∈ B then,
u0 = RE

X,θ(t0),

and
t1 = θ(1 − β)YE

X,θ(u0) +RE
X,θ(u0)− θαCE

X,θ(u0),

similarly, we can obtain the following iterative algorithm for the sequences {un} and {tn},

un−1 = RE
X,θ(tn−1), (4.6)

and
tn = θ(1 − β)YE

X,θ(un−1) +RE
X,θ(un−1)− θαCE

X,θ(un−1);n =, 1, 2, 3, ...., . (4.7)

Next, the iterative algorithm is constructed by (4.4) as follows:

Iterative Algorithm 4.2.

Let u0, t0 ∈ B, we can find the following sequences {un} and {tn}:

un−1 = RE
X,θ(tn−1), (4.8)

and

tn = X(u)− αCE
X,θ(un−1)− βYE

X,θ(un−1) + (1 − θ−1)FE
X,θ(tn−1);n =, 1, 2, 3, ...., . (4.9)

Next we have constructed the iterative algorithm for (4.5) as follows:

Iterative Algorithm 4.3.

Let u0, t0 ∈ B, we can obtain following sequences {un} and {tn}:

un = un−1 − ∆(tn−1)− θ(αCE
X,θ(un−1) + βYE

X,θ(un−1));n = 1, 2, 3, ....., . (4.10)
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Theorem 4.2. Let B be a Banach space, X : B −→ B be a Lipschitz continuous map and
E : B −→ 2B be a X-accretive set-valued map. Assume RE

X,θ, resolvent operator follows
theorem 2.4. For some θ > 0, if condition (3.6) given in theorem 3.3, that is,

|θ + |β|(1 + kXaX)

(|α|+ kXaX)
| < k2

X + kXaX |α|+ 2
(|α|+ kXaX)

is satisfied then (4.1) has at least a solution u ∈ B and the sequences {un} and {tn} obtained
from iterative algorithm (4.1) strongly converges to u and t respectively.

Proof. Using iterative algorithm (4.1),

||tn+1 − tn|| ≤ ||θ(1 − β)YE
X,θ(un) +RE

X,θ(un)− θαCE
X,θ(un−1)− (θ(1 − β)YE

X,θ(un−1)

+RE
X,θ(un−1)− θαCE

X,θ(un−1)||

using same process as used in theorem 3.3,

||tn+1 − tn|| ≤ δ||un − un−1||,

where
δ =

2 + |β|+ θ|α|
k2
X

+ aX
θ + |α|+ |β|

kX
.

hence from (4.2), it is clear that,

||un − un−1|| ≤
1
kX

||tn − tn−1||

Using condition (3.6), we find that δ < 1 and this implies, the sequences {un} and {tn} are
Cauchy and converge to some u, t ∈ B respectively.
Hence the result follows by the proposition (4.1) as map X , E, all the operators defined by (2.2),
(2.3) and (2.4) are continuous.

4.1 Example

Example

Let a single-valued map, X : B −→ B be given by, X(u) = 3
2u and a set-valued map,

E : B −→ 2B be given by, E(u) = { 1
5u}.

Now first we will show that X is a Lipschitz continuous.

||X(u)−X(w)|| = ||3
2
u− 3

2
w|| = 3

2
||u− w|| ≤ 2||u− w||,

that is, X satisfied the Lipschitz continuity with aX = 2.
Now the generalized resolvent operator RE

X,θ, for θ = 1,

RE
X,θ(u) = (X + θE)−1(u) =

10
17

u,

hence,

||RE
X,θ(u)−RE

X,θ(w)|| = ||10
17

u− 10
17

w|| = 10
17

||u− w|| ≤ 2
3
||u− w||,

implies that RE
X,θ is a Lipschitz continuous with kX = 3

2 .
Now the generalized Cayley operator CE

X,θ and the generalized Yosida operator YE
X,θ,

CE
X,θ(u) = (2RE

X,θ −X)(u) = −11
34

u,

and
YE
X,θ(u) =

1
θ
(X −RE

X,θ)(u) =
31
34

u,
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so that for α = 1 and β = 1, the operator defined by (2.4), LE
X,θ(u) =

10
17u and hence,

||LE
X,θ(u)− LE

X,θ(w)|| = ||10
17

x− 10
17

y|| = 10
17

||u− w|| ≤ 12
17

||u− w||,

that is LE
X,θ is a Lipschitz continuous with γ = 12

17 .
By using above considered argument, the condition (3.6) given in theorem 3.3 is satisfied.

Hence the sequence {un} is computed by the above argument as:

un = RE
X,θ(θ(1 − β)YE

X,θ(un−1) +RE
X,θ(un−1)− θαCE

X,θ(un−1)),

=⇒ un = RE
X,θ(

9
34

un−1),

=⇒ un =
45
289

un−1.

The above sequence converges to 0 as n → ∞.
Moreover from above argument and the iterative algorithm (4.1), we have,

un−1 =
10
17

tn−1

and
tn =

45
289

tn−1.

5 Gap Function and Error Bound

The theory of gap function for the Cayley inclusion problem (2.6) and the Yosida inclusion
problem (2.8), and related error bound is not studied yet. So due to this fact, in this section,
we discussed the theory of gap function for the Cayley-Yosida inclusion problem (2.7) and then
obtained error bound for the solution with the help of gap function for Cayley-Yosida inclusion
problem (2.5).
First, we define the gap function for the Cayley-Yosida inclusion problem (2.5).

Definition 5.1. A function η : B −→ R, is known to be gap (merit) function for (2.5) if,

(i) η(u) ≥ 0,∀u ∈ B,

(ii) η(u∗) = 0 if and only if u∗ solves (2.5).

For u ∈ B, let us define residual function, G : B −→ R by,

G(u) = u−RE
X,θ(θ(1 − β)YE

X,θ(u) +RE
X,θ(u)− θαCE

X,θ(u)) (5.1)

Theorem 5.2. Let G : B −→ R be a function given by (5.1), then ||G(u)|| is a gap function for
(2.5) if and only if u solves (2.5).

Proof. Clearly for all u ∈ B, ||G(u)|| ≥ 0 and rest is obvious by lemma 3.1.

Theorem 5.3. Let G : B −→ R be a function given by (5.1) and u∗ be the solution of (2.5). Also
consider the condition given by (3.6) is satisfied then, for all u ∈ B and for Λ, λ > 0,

Λ||G(u)|| ≤ ||u− u∗|| ≤ λ||G(u)||, (5.2)

Proof. Since u∗ solves (2.5), then,

u∗ = RE
X,θ(θ(1 − β)YE

X,θ(u
∗) +RE

X,θ(u
∗)− θαCE

X,θ(u
∗))

for u ∈ B,

||u− u∗|| = ||u− (RE
X,θ(θ(1 − β)YE

X,θ(u
∗) +RE

X,θ(u
∗)− θαCE

X,θ(u
∗)))||
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=⇒ ||u− u∗|| ≤ ||u− (RE
X,θ(θ(1 − β)YE

X,θ(u) +RE
X,θ(u)− θαCE

X,θ(u)))||

+ ||(RE
X,θ(θ(1 − β)YE

X,θ(u) +RE
X,θ(u)− θαCE

X,θ(u)))

− (RE
X,θ(θ(1 − β)YE

X,θ(u
∗) +RE

X,θ(u
∗)− θαCE

X,θ(u
∗)))||

using theorem 2.4,

=⇒ ||u− u∗|| ≤ ||G(u)||+ 1
kX

||θ(1 − β)YE
X,θ(u) +RE

X,θ(u)− θαCE
X,θ(u)

− (θ(1 − β)YE
X,θ(u

∗) +RE
X,θ(u

∗)− θαCE
X,θ(u

∗))||

=⇒ ||u−u∗|| ≤ ||G(u)||+ θ(1 + |β|)
kX

||YE
X,θ(u)−YE

X,θ(u
∗)||+ 1

kX
||RE

X,θ(u)−RE
X,θ(u

∗)||

+
θ|α|
kX

||CE
X,θ(un)− CE

X,θ(un−1)||

=⇒ ||u− u∗|| ≤ ||G(u)||+ θ(1 + |β|)
kX

(||X(u)−X(u∗)||+ 1
θ
||RE

X,θ(u)−RE
X,θ(u

∗)||)

+
1
kX

||RE
X,θ(u)−RE

X,θ(u
∗)||+ θ|α|

kX
(2||RE

X,θ(u)−RE
X,θ(u

∗)||+ ||X(u)−X(u∗)||)

=⇒ ||u− u∗|| ≤ ||G(u)||+ (
2 + |β|+ θ|α|

kX
)||RE

X,θ(u)−RE
X,θ(u

∗)||

+ (
θ + |α|+ |β|

kX
)||X(u)−X(u∗)||,

using theorem 2.4 and Lipschitz continuity of X ,

||u− u∗|| ≤ ||G(u)||+ (
2 + |β|+ θ|α|

k2
X

+ aX
θ + |α|+ |β|

kX
)||u− u∗||,

put,

λ =
1

1 − ( 2+|β|+θ|α|
k2
X

+ aX
θ+|α|+|β|

kX
)

we have,
||u− u∗|| ≤ λ||G(u)||,

hence by condition (3.6), we have λ > 0.
Since for u ∈ B,

||G(u)|| = ||u−RE
X,θ(θ(1 − β)YE

X,θ(u) +RE
X,θ(u)− θαCE

X,θ(u))||

=⇒ ||G(u)|| = ||u− (RE
X,θ(θ(1 − β)YE

X,θ(u) +RE
X,θ(u)− θαCE

X,θ(u)))

− (u∗ − (RE
X,θ(θ(1 − β)YE

X,θ(u
∗) +RE

X,θ(u
∗)− θαCE

X,θ(u
∗))))||

=⇒ ||G(u)|| ≤ ||u− u∗||++||(RE
X,θ(θ(1 − β)YE

X,θ(u) +RE
X,θ(u)− θαCE

X,θ(u)))

− (RE
X,θ(θ(1 − β)YE

X,θ(u
∗) +RE

X,θ(u
∗)− θαCE

X,θ(u
∗)))||

using theorem 2.4,
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=⇒ ||G(u)|| ≤ ||u− u∗||++
1
kX

||θ(1 − β)YE
X,θ(u) +RE

X,θ(u)− θαCE
X,θ(u)

− (θ(1 − β)YE
X,θ(u

∗) +RE
X,θ(u

∗)− θαCE
X,θ(u

∗))||

similarly from above process, we have,

||G(u)|| ≤ ||u− u∗||+ (
2 + |β|+ θ|α|

k2
X

+ aX
θ + |α|+ |β|

kX
)||u− u∗||,

put,

Λ =
1

1 + ( 2+|β|+θ|α|
k2
X

+ aX
θ+|α|+|β|

kX
)
> 0

hence,
||u− u∗|| ≥ Λ||G(u)||.

Corollary 5.4. If β = 0 and α = 1 with all assumptions considered in the theorems 5.2 and 5.3
then the residual function ||G1(u)|| = ||u − RE

X,θ(θYE
X,θ(u) + RE

X,θ(u) − θCE
X,θ(u))|| is a gap

function for the Cayley inclusion problem (2.6) and error bound,

Λ1||G1(u)|| ≤ ||u− u∗|| ≤ λ1||G1(u)||,

where Λ1, λ1 > 0.

Corollary 5.5. If β = 1 and α = 0 with all assumptions considered in the theorems 5.2 and 5.3
then the residual function ||G2(u)|| = ||u − RE

X,θ(RE
X,θ(u))|| is a gap function for the Yosida

inclusion problem (2.7) and error bound,

Λ2||G2(u)|| ≤ ||u− u∗|| ≤ λ2||G2(u)||,

where Λ2, λ2 > 0.

The above corollaries 5.4 and 5.5 can be proved by similar process as we proved theorems
5.2 and 5.3, which are not discussed yet.

6 Conclusion and Remarks

The purpose of this study is to delve into the theory of the Cayley-Yosida inclusion problem and
its related gap function. We have developed an algorithm to solve the Cayley-Yosida inclusion
problem and its corresponding resolvent equation. Additionally, we have explored the existence
of theorems for the Cayley-Yosida inclusion problem and its related resolvent equation. As the
gap function is a crucial component of optimization theory, we have dedicated the final section of
our work to constructing gap function for the Cayley-Yosida inclusion problem, utilizing various
values of α and β. Our findings provide valuable insights into this complex problem and offer
practical solutions for optimization challenges.
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