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Abstract An extension of commutative rings R C S is called a Agp-extension if any R-
submodule of S containing R is an R-subalgebra of S. We characterize FCP Agy-extensions,
which are a special case of FCP A-extensions (the set of all subextensions is stable under the
formation of sums) and that we studied in an earlier paper. Using Huckaba-Papick’s result which
say that a ring extension is a Ap-extension if and only if it is a A-extension such that any element
of S is quadratic over R, a Agp-extension is integral. If R C §'is an FCP Ag-extension such that R
is a local ring, then any R-subalgebra of S is comparable to the seminormalization {; R and the
t-closure 4 R of the extension. The converse holds adding some conditions on { R and 4 R. The
paper ends by considering Ag-extensions satisfying another condition as Boolean extensions,
pointwise minimal extensions, idealizations, and extensions of the form R C R™.

1 Introduction and Notation

In this paper, we consider the category of commutative and unital rings. If R C S is a (ring)
extension, we denote by [R, S] the set of all R-subalgebras of S and set |R, S[:= [R, S|\ {R, S}
(with a similar definition for [R, S| or | R, S]). For a submodule N of an R-module A, we denote
by [[N, M]] the set of all R-submodules of M containing N and set [[M]] := [[0, M]].

When considering the structure of R-submodules of S containing R, we introduce the notion
of Ap-extensions and the aim of the paper is to study these extensions. This paper is the sequel
of a first paper [24] on FCP A-extensions and, in fact, a consequence of many papers, three of
them published in the PIM: [6], [19] and [21].

A ring extension R C S is called a A-extension by Gilmer and Huckaba [10, Definition page
4141if T + U € [R, S] for each T, U € [R, S], which is equivalent to T+ U = TU for each
T,U € [R, S] ([24, Proposition 3.4]).

A ring extension R C S is called a Ag-extension by Huckaba and Papick if T € [R, S] for each
R-submodule T of S containing R ([12, Definition, page 430]), that is if [[R, S]] = [R, S]. The
reader is warned that Ag-extensions are called quadratic extensions by Olberding [16, Definition
2.6]. Quadratic extensions in this paper denote a different concept.

A ring extension R C S is called quadratic if each t € S satisfies a monic quadratic polyno-
mial over R ([12, Definition, page 430]).

According to Huckaba-Papick’s result stated for extensions of integral domains, but still valid
for arbitrary extensions, we will greatly use our previous paper [24]. In [8, section 7.2], Fontana,
Huckaba and Papick considered Ayp-extensions of integral domains. Many of their results can be
extended to arbitrary extensions.

Proposition 1.1. /12, Proposition 5] A ring extension is a Ag-extension if and only if it is a
quadratic A-extension. In particular, a Ag-extension is integral.

For an extension R C S, the poset ([R, S],C) is a lattice, where the supremum of any non-
void subset is the compositum of its elements, which we call product from now on and denote
by IT when necessary, and the infimum of any non-void subset is the intersection of its elements.
As a general rule, an extension R C S is said to have some property of lattices if [R, S] has this
property. We use lattice definitions and properties described in [15].

The extension R C S is said to have FIP (for the “finitely many intermediate algebras prop-
erty") or is an FIP extension if [R, S] is finite. A chain of R-subalgebras of S is a set of elements
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of [R,S] that are pairwise comparable with respect to inclusion. We will say that R C S is
chained, also termed a \-extension by some authors (see [9]), if [R, S] is a chain. We also say
that the extension R C S has FCP (or is an FCP extension) if each chain in [R, S] is finite.
Clearly, each extension that satisfies FIP must also satisfy FCP. Dobbs and the authors charac-
terized FCP and FIP extensions [2].

Our main tool will be the minimal (ring) extensions, a concept introduced by Ferrand-Olivier
[7]. They are completely known (see Section 2). An extension R C S is called minimal if
[R,S] = {R,S}. The key connection between the above ideas is that if R C S has FCP,
then any maximal (necessarily finite) chain C of R-subalgebras of S, R = Ry C R} C --- C
R,_1 C R, = S, with length £(C) := n < oo, results from juxtaposing n minimal extensions
R, C Riy1, 0 <4 < n—1. An FCP extension is finitely generated (as an R-algebra), and
(module) finite if integral. For any extension R C S, the length ([ R, S| of [R, S] is the supremum
of the lengths of chains of R-subalgebras of S. Notice that if R C S has FCP, then there does
exist some maximal chain of R-subalgebras of S with length ¢[R, S] [3, Theorem 4.11].

Any undefined material is explained at the end of the section or in the next sections.

Section 2 is devoted to some recalls and results on ring extensions. According to Proposition
1.1, a Ag-extension R C S is integral, so we consider in this paper only integral extensions.

The general properties of Ap-extensions are given in Section 3 where the transfer of the Ay-
property is gotten for several algebraic operations.

In Section 4, we make a more precise study of Ag-extensions. A Ag-extension R C S
satisfies the following, when FCP (Theorem 4.8): for each M € MSupp(S/R), [Rar, Sm] =
[Rar, (ER) M) U[(ER)ar, (5R)a) U (5 R)ar, S, where & R is the t-closure of Rin S and { R is
the seminormalization of R in S (see Definition 2.4). In particular, it gives a characterization of
Ag-extensions using the canonical decomposition.

The paper ends in Section 5 with some special Ap-extensions and examples of Aj-extensions.
In particular, we consider Boolean extensions, pointwise minimal extensions and idealizations.
These special cases allow to characterize more generally some Ag-extensions.

We denote by (R : S) the conductor of R C S and the characteristic of a field & by c(k).

Finally, | X| is the cardinality of a set X, C denotes proper inclusion and, for a positive integer
n,weset N, :={1,...,n}.

2 Recalls and results on ring extensions

A local ring is here what is called elsewhere a quasi-local ring. As usual, Spec(R) and Max(R)
are the set of prime and maximal ideals of a ring R. The support of an R-module E is Supp(E) :
= {P € Spec(R) | Ep # 0}, and MSupp,(E) := Suppg(E) N Max(R) (or Supp(E) and
MSupp(E) if no confusion is possible). If F is an R-module, Lz (FE) (also denoted L(E)) is its
length.

A ring morphism f : R — S (resp. an extension R C S) is said an i-morphism (resp. an
i-extension) if the spectral map ®f : Spec(S) — Spec(R) (resp. the natural map Spec(S) —
Spec(R)) is injective. An integral extension R C S is an i-extension if and only if the natural
map Spec(S) — Spec(R) is bijective.

If R C Sis aring extension and P € Spec(R), then Sp is both the localization Sg\ p as aring
and the localization at P of the R-module S. We denote by x(P) the residual field Rp/PRp
at P.

The following notions and results are deeply involved in the sequel.

Definition 2.1. [24, Definition 2.1] An extension R C S is called M-crucial if Supp(S/R) =
{M?}. Such M is called the crucial (maximal) ideal C(R,S) of R C S.

Theorem 2.2. [7, Théoréme 2.2] A minimal extension is crucial and is either integral ((module)-
finite) or a flat epimorphism.

Three types of minimal integral extensions exist, characterized in the next theorem, (a con-
sequence of the fundamental lemma of Ferrand-Olivier), so that there are four types of minimal
extensions, mutually exclusive.
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Theorem 2.3. [2, Theorems 2.2 and 2.3] Let R C T be an extension and M := (R : T). Then
R C T is minimal and finite if and only if M € Max(R) and one of the following three conditions
holds:
(a) inert case: M € Max(T") and R/M — T /M is a minimal field extension.
(b) decomposed case: There exist My, M, € Max(T) such that M = My N M, and the natural
maps R/M — T /M, and R/M — T /M, are both isomorphisms, or equivalently, there exists
q €T\ RsuchthatT = R[q], ¢* —q € M and Mq C M.
(c) ramified case: There exists M’ € Max(T) such that M'> C M C M’, [T/M : R/M] = 2,
and the natural map R/M — T /M’ is an isomorphism, or equivalently, there exists ¢ € T \ R
such that T = Rlq], ¢*> € M and Mq C M.

In each of the above cases, M = C(R,T).

The following definitions are needed for our study.

Definition 2.4. (1) An integral extension R C S is called infra-integral [18] (resp.; subintegral
[26]) if all its residual extensions kg(P) — ks(Q), (with @ € Spec(S) and P := Q N R) are
isomorphisms (resp.; and is an i-extension). An extension R C S is called t-closed (cf. [18])
if the relations b € S, r € R, b> —rb € R, b> —rb> € Rimply b € R. A t-closed FCP
extension R C S is an i-extension [24, Proposition 2.10]. The ¢-closure 4R of R in S is the
smallest element B € [R, S] such that B C S is t-closed and the greatest element B’ € [R, S]
such that R C B’ is infra-integral. An extension R C S is called seminormal (cf. [26]) if
the relations b € S, b¥> € R, b®> € R imply b € R. The seminormalization fRof Rin S
is the smallest element B € [R,S] such that B C S is seminormal and the greatest element
B’ € [R,S] such that R C B’ is subintegral. We recall that t-closure and seminormalization
commute with localization at arbitrary multiplicative closed sets ([26, Proposition 2.9] and [17,
Proposition 3.6]). For a ring extension R C S and any P € Spec(R), we have ((R)p = § Rp
and (sR)p =5, Rp.

The canonical decomposition of an arbitrary ring extension R C Sis RC {RCLRC R C
S, where R is the integral closure of R in S.

(2) An extension R C S is called pinched at the finite chain C := {7} };en, CJR, S[, n > 1if
[R, S] = U [T3, Tit1], where Ty := R and T}, := S, which means that any element of [R, S]
is comparable to the T;’s.

(3) An extension R C S is called simple if there exists ¢ € S \ R such that S = R][x].

3 General properties of Aj-extensions
We recall this first characterization of Ayg-extensions.

Proposition 3.1. [ 12, Remark 6 (ii)] A ring extension R C S is a Ag-extension if and only if
R[s,t] = R+ Rs + Rt for each s,t € S.

Many of the results of this section are a copy of similar results of [24].

Proposition 3.2. Let R C S be a ring extension. The following statements are equivalent:
(1) R C S is a quadratic extension, (resp.; Ag-extension).
(2) Ry C Sy is a quadratic extension, (resp. ; Ag-extension) for each M € MSupp(S/R).
(3) Rp C Sp is a quadratic extension, (resp.; Ag-extension) for each P € Supp(S/R).
(4) R/I C S/Iis a quadratic extension (resp.; Ag-extension) for an ideal I shared by R and S.

A simple extension generated by a quadratic element is quadratic.

Proof. We consider first the equivalences for the quadratic properties. Then, (1) = (2) and (2)
< (3) are obvious.

Assume that (2) holds with Ry; C Sp; quadratic. Let¢ € S and M € MSupp(S/R).
There exist a,b € R, s € R\ M such that (¢/1)> + (a/s)(t/1) + (b/s) = 0, so that t*/1 €
(R/M)(t/1) + (R/M) = (Rt + R) . Since this holds for any M € MSupp(S/R), it follows
thatt2 € Rt + Rand R C S'is quadratic. So, (1) holds.
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Atlast, (1) & (4) is obvious.

Assume that R C S is simple and let y € S be a quadratic element generating .S over R, so
that S = R[y] = R + Ry. There exist a,b € R such that 4> = ay +b. Letz = ay + 3 €
S, a, 8 € R. Then 22 = (ac + 28)x + a?b — aa8 — 3* shows that R C S is quadratic.

Now, the equivalences for the Aj properties are obvious using Proposition 1.1 and the equiv-
alences for A-extensions given in [24, Proposition 3.6] and quadratic extensions gotten here. O

Proposition 3.3. Let R C S be a ring extension. Then R C S is a Ay-extension if and only if
T C U is a Ay-extension for each subextension [T, U] C [R, S].

Proof. Obvious, because [[T,U]] C [[R, S]] for any T-submodule of U containing 7. i

Proposition 3.4. Let R C S be a ring extension, f : R — R’ aring morphismand S’ :== R'®gS.

(1) If f : R — R/ is faithfully flat and if R’ C S’ is a Ag-extension, then so is R C S.

(2) If f : R — R’ is aflat ring epimorphism and R C S is a Ag-extension, then so is R’ C S’.
Proof. (1) The case of a A-extension follows from [24, Proposition 3.8]. By considering the ring
morphism ¢ : S — S’, and since the inverse image of a subring is a ring, we get the statement
for Ag-extensions.

(2) As in [24, Proposition 3.8], Rp — Sp identifies to R g — (R'®gr S)q for Q € Spec(R’),
lying over P in R. O

Given a ring R, its Nagata ring R(X) is the localization R(X) = T~'R[X] of the ring of
polynomials R[X] with respect to the multiplicatively closed subset T of all polynomials with
content R. In [4, Theorem 32], Dobbs and the authors proved that when R C S is an extension,
whose Nagata extension R(X) C S(X) has FIP, the map ¢ : [R, S] — [R(X), S(X)] defined by
©(T) = T(X) is an order-isomorphism. We look at the transfer property of being a Aj-extension.

Proposition 3.5. Let R C S be an FCP extension such that R(X) C S(X) is a Ag-extension.
Then, sois R C S.

Proof. By [3, Corollary 3.5], we have S(X) = R(X) ®g S. Since R C R(X) is faithfully flat,
an application of Proposition 3.4 gives the result. O

4 Characterization of FCP A-extensions
Here is a first example of a Ap-extension.

Proposition 4.1. Let R C S be a chained FCP extension. Then the following are equivalent:
(1) R C S isa Ay-extension,
(2) R C S is quadratic;

(3) there exists y € S quadratic over R such that S = R[y|.

Proof. R C S is a A-extension by [19, Proposition 5.16]. Then (1) < (2) by Proposition 1.1.
Since R C S'is simple by [24, Propositions 5.18 and 5.17] or [25, Proposition 2.12], let y € S be
such that S = R[y]. If R C S is quadratic, so is y. Conversely, assume that there is a quadratic
element y € S such that S = R[y|. Then R C S is quadratic according to Proposition 3.2. i

A minimal extension is a special case of a chained extension and gives the following.

Proposition 4.2. A minimal extension R C S is a Ay-extension if and only if R C S is integral,
with [S/(R:S): R/(R:S)] =2when R C S is inert.

Proof. Since a minimal extension is chained, according to Proposition 4.1, we get that R C S'is
a Ao-extension if and only if there exists y € S quadratic over R such that S = R[y].

Assume that R C S is a Ag-extension, so that there exists y € S quadratic over R such that
S = R[y]. Then, R C S is minimal integral, so that M := (R : S) € Max(R). Moreover,
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M € Max(S) when R C S is inert by Theorem 2.3. Since y is quadratic, so is its class 7 in
S/M = (R/M)[y], leading to [S/(R: S): R/(R: S)] = 2.

Conversely, if R C S is (minimal) integral, with [S/(R: S) : R/(R:S)] =2 when R C S'is
inert, then S = R[y], for some y € S, which is quadratic when R C S is either minimal ramified
with > € R, or minimal decomposed with 4> —y € R (see Theorem 2.3). When, R C S is inert,
the first part of the proof gives that the class § of y in S/M is such that S/M = (R/M)[y] with
y quadratic, and so is y. In any case, y is quadratic, so that R C S is a Agp-extension. O

As for A-extensions, we are going to characterize Ag-extensions by means of the canonical
decomposition.
We recall a result of Handelman, cited by Olberding, adapted to our context.

Proposition 4.3. [16, Lemma 2.8], [11, Lemma 5] Let K C S be an FCP Ay-extension where K
is a field. Then, the K-algebra S is isomorphic to one of the following.

(1) a field extension of K of degree 2;
(2) alocal ring (S, M) such that M* = 0 with K C S subintegral;
(3) K2
(4) K3 with K = 7,/27.
We will derive from the above proposition a characterization of Ay-extensions.

Proposition 4.4. Let R C S be an FCP Ay-extension, where (R, M) is a local ring. Then R C S
is pinched at SR and, if R # S, one of the following conditions holds:

(1) §R=%Rand 4R C S is inert minimal with residual extensions of degree < 2.
(2) Y\R=Sand gR C S is a decomposed minimal extension.
(3) kSR=2S, ([5R,S] =2 and R/M = Z/2Z.
Proof. Since R C S is a Ag-extension, [{ R, % R] and [4 R, S| are Ag-extensions in view of Propo-
sition 3.3. Since (R, M) is a local ring, so is £ R. Let N be its maximal ideal.
We begin to show that R C S is pinched at § R. Assume that there exists some T’ € [R, 5]\

([R, SR U LR, S]). Set U := *R C LR. Then, U is a local ring. Let P be its maximal ideal.
We have the following diagram:

T
/ h
R - U=%iR - U —= S
L/
IR

with U C {U subintegral while U C T is seminormal. Indeed, U = LU implies U C S semi-
normal, so that " € [{ R, S], a contradiction. And U = T implies T' € [R, { R], a contradiction.

Now, let T} € [U, T] be such that U C T is minimal seminormal (either decomposed or inert)
and let Uy € [U, U] be such that U C U, is minimal ramified. Then P = (U : T1) = (U : Uy),
which yields P = (U : T1U;), with U/ P being a field and U/P C (T1U;)/P a Ap-extension in
view of Proposition 3.2. Using Proposition 4.3, we get a contradiction because U/P C (T U;)/P
is neither subintegral, nor seminormal, according to [5, Propositions 7.4 or 7.6]. Then, there does
notexistany 7' € [R, S]\ ([R, {R] U [{ R, S]).

To conclude, [R, S] = [R, {R] U [{R,S] and R C S is pinched at { R.

We next show that either LR = S or LR = {R.

If {R = S, then { R = L R. Assume now that { R # S. Since { R C S is FCP seminormal, we
get that ({R : S) = N by [2, Theorem 4.2 and Lemma 4.8]. Moreover, K := (§R)/N C S/N
is a seminormal Ag-extension, where K is a field by Proposition 3.2. We consider the different
cases of Proposition 4.3.

In case (1), K C S/N is a field extension of degree 2, and then is minimal. Moreover, N is
also a maximal ideal of S, so that {R C S is minimal inert and {R = LR.
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In case (2), set 7" := L R/N and S’ := S/N, so that 7" = K, with K C S’ both t-closed and
subintegral, a contradiction since K # S’. This case does not occur.

In case (3), R C S is minimal decomposed, so that ¢[{R, S] = 1 and then 4R = S.

In case (4), ([{R,S] = 2 and {R C S is seminormal infra-integral with 4, R = S. Moreover,
R/M = K = ({R)/N = Z/2Z because R C R is subintegral. O

The previous proposition says that for an FCP Ag-extension R C S which is not subintegral
and where (R, M) is a local ring, either R C S is minimal t-closed, or §R C S is seminormal
infra-integral of length < 2. To get a characterization of an FCP Ag-extension R C S, where
(R, M) is alocal ring, we will consider the two cases for { R C S. Before, we adapt the following
lemma from [9, Proposition 4.12].

Lemma 4.5. Let R C S be a simple extension generated by a quadratic element over R. Then,
R C S is a Ag-extension.

Proof. Set S = R|[y], where y is a quadratic element over R. Then, S = R + Ry and it follows
from [9, Proposition 4.12] that R C S is a Ap-extension. O

Let R C S be a ring extension. We recall [24, at the beginning of Subsection 2.2] that R
is called unbranched in S (or R C S is unbranched) if R is local. An extension R C S is said
locally unbranched if Ry; C S)y is unbranched for all M € MSupp(S/R) and is said branched
if it is not unbranched.

Proposition 4.6. Ler R C S be an integral FCP extension, where R is unbranched in S and
such that 'R # R, S. Then R C S is a A-extension if and only if R C S is a simple extension
generated by a quadratic element over R.

Proof. Assume that R C S is a Ap-extension. Since S is a local ring, so is R and it follows that
LR = L R. In view of Proposition 4.4, we get that [R, S] = [R,ER| U [{R,S] (), LR C S'is
an inert minimal extension and there exists y € S such that S = (4 R)[y]. Because R C Sis a
Ap-extension, it is quadratic, so that y is a quadratic element over R. We show that S = R[y].
The condition (x) implies that R[y] € [R, ER|U[LR, S]. If R[y] € [R, R, theny € SR =%4R
implies that S = (4R)[y] = 4R, a contradiction with the assumptions. Then R[y] €]{R, 5],
whence S = (4R)[y] = (§R)[y] C R[y] C S and therefore S = R[y].

Conversely, assume that R C S is a simple extension generated by a quadratic element over
R. From Lemma 4.5 we infer that R C S is a Ap-extension. O

Proposition 4.7. Let R C S be an integral FCP extension, where (R, M) is a local ring branched
in S. Then R C S is a Ag-extension if and only if the following conditions hold:

(1) R C S is infra-integral and pinched at ;R.
(2) L[LR,S] <2 with one of the following conditions:

(a) {[5R,S] = 1and R C S is a simple extension generated by a quadratic element over
R.

(b) ([5R,S] =2, R/M = 7Z/2Z and S is generated by a minimal system of two quadratic
elements {y, z} over R such that y + z is quadratic over R.

Proof. Let R C S be an integral FCP extension, with (R, M) a local ring branched in S, so
that S is not a local ring. Set T := ER # S. Since T is a local ring, it follows that T # LR
because 5 R C S is an i-extension (Definition 2.4). Let N be the maximal ideal of 7' that verifies
N = (T : S) by [2, Theorem 4.2 and Lemma 4.8].

Assume first that R C S is a Ag-extension. In view of Proposition 4.4, R C S is pinched at
LR, giving (1) with R = S because R # 4R, so that R C S is infra-integral, and T C Sis a
seminormal infra-integral extension because S is not local.

Using Proposition 4.4 (2) or (3), we get ([T, S] < 2. If ([T, S] = 1, then T' C S is a minimal
decomposed extension. In particular, there exists y € S such that S = T'[y] with y quadratic
over R. Reasoning as in some part of the proof of Proposition 4.6 we get that S = R|[y], because
we cannot have R[y] C T so that R[y] €]T, 5], leading to R[y] = S. Then R C S is a simple
extension generated by a quadratic element over R. Hence (2) (a) holds.
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If [T, S] = 2,then T/N = R/M = 7Z/27 by Proposition 4.4 (3) and T' C S is a seminormal
infra-integral extension. Since N = (T : S), we get that T/N C S/N is a seminormal infra-
integral extension of length 2, with S/N = (Z/27Z)3 by Proposition 4.3. Then, T C S is not
simple by [22, Corollary 4.22]. In particular, [22, Propositions 2.2 and 2.4] show that there
exists a minimal system of generators y, z € S over T', quadratic over R, such that S = T'[y, z].
Moreover, y + z is quadratic over R. Mimicking the proof of Proposition 4.6, we get that
R[y|,R[z] €]T,S]. We claim that y ¢ R[z] and z ¢ R[y]. Otherwise, this would imply that
Rly] and R[z] are comparable, and so are T'[y| and T'[z], giving that S is the largest of them,
contradicting the minimality of the system of two generators. In particular, R[y], R[z] C Rl[y, z].
Then, we have the extensions 7' C R[y|, R[z] C Rly, z] C S. It follows that Ry, z] = S.

Conversely, assume that (1) and (2) hold. If (2) (a) holds, Lemma 4.5 shows that R C S is a
Ap-extension.

Now, assume that (2) (b) holds. Let y, z € S be a minimal system of two quadratic elements
over R such that S = Rly, z] with y + z quadratic over R. We claim that y, z € S\ T'. If not, we
may assume that y € T, so that S = T'[z], with z quadratic over R, and then over T'. Since T' C S
is seminormal infra-integral, so is Z/2Z = T/N C S/N =: S'. Let Z be the class of z in S’.
Then Z is also quadratic over k := Z/27Z. 1t follows that 5" = k + kz, with 22 =az+b, a,bek.
We have a # 0, because & C S’ is not minimal ramified. Then, a = 1, so that 2> — Z € k,
and k£ C S’ is minimal decomposed, a contradiction since /[T, S| = ([k,S’] = 2. A similar
proof shows that z ¢ T. We deduce from (1) that R[y], R[z] €]T, S| with R[y] # R[z]. Since
[[T,S]] = 5 by [22, Theorem 6.1], we get that [T, S] = {T, Rly|, R[z], Rly + z|, S} because
R[y + z] # T, Rly|,R[z],S. Moreover, R C R[y] is a Ag-extension by Lemma 4.5. Since
R C T C RJy], it follows that R C T is a Aj-extension.

Let U,V € [R,S] = [R,T|U[T,S]. U,V € [R,T], then U +V = UV because R C T
is a Ag-extension. If U,V € [T, 5], then U + V = UV since T C S is a A-extension by [24,
Theorem 4.16]. At last, assume, for example, that U € [R,T] and V € [T, S]. Because of the
tower U CT CV,wegetthat U +V = UV = V. To conclude, R C S is a A-extension.

Let x € S so that R[z] € [R,T|U [T, S]. If z € T, then, R[z] € [R,T] and z is quadratic
because sois R C T. If z € S\ T, then R[z] €|T, S|, because R[z] € T. But [T,S] =
{T, Rly], R[z], Rly+2z], S} yields that R[z] € {R[y], R[z], R[y+z]}. It follows that z is quadratic
over R, since y, z and y + z are quadratic over R . Hence, R C S is a quadratic extension and
then a Ap-extension by Proposition 1.1. O

Theorem 4.8. Let R C S be an integral FCP extension. Then R C S is a Ag-extension if and
only if, for each M € MSupp(S/R), the following conditions hold:

(1) Ry C Sw is pinched at {({R)n, (5R) -
(2) Ry C (§R)w is a Ag-extension.

(3) If Ras is unbranched in Sy and Sy # (5R) i, then Ry C Sy is a simple extension
generated by a quadratic element over Ryy.

(4) If Ry is branched in Sy, then Ry C Sy is infra-integral, £[(5R) ar, Su] < 2 and one the
following conditions holds:

(a) {[(5R)m,Sm] = 1 and Ry C Sy is a simple extension generated by a quadratic
element over R);.

(b) [(5R)a, Sm) =2, R/M = Z/27 and Sy is generated by a minimal system of two
quadratic elements {y, z} over Ry such that y + z is quadratic over R)y.

Proof. Proposition 3.2 says that R C S is a Ap-extension if and only if so is Ry, C Sy, for any
M € MSupp(S/R). Moreover, by Definition 2.4, for any M € Max(R), we have ({R)y =
EMRM and (gR)]\,[ = EMRM.

Therefore, we can reduce to the case where (R, M) is a local ring.

If R is unbranched in S, then S is a local ring such that { R = 4 R. Propositions 4.6, 4.4 and
3.3 give that R C S is a Ap-extension if and only if (1), (2) and (3) hold when 4R # R, S.

If Y{R = R, then R C S is tclosed and [R,S] = [4R,S]. If R C S is a Ag-extension,
then R C S is a simple extension generated by a quadratic element over R by Proposition 4.4.
Conversely, if R C S is a simple extension generated by a quadratic element over R, then R C S
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is a Ap-extension by Lemma 4.5. Then, R C S is a Ag-extension if and only if (1), (2) and (3)
hold.

If 4R =S, then R C S is subintegral, since S is local, so that [R, S] = [R, {R]. Then R C S
is a Ag-extension if and only if R C gR is a Ag-extension if and only if (2) holds ((1) and (3) are
trivially satisfied).

Assume that R is branched in S, so that (R # 4R. If R C S is a Aj-extension, then
Proposition 4.7 (1) gives that R C S is infra-integral, leading to YR = S and R C S is pinched
at gR, which is (1). Moreover (2) holds by Proposition 3.3. At last, Proposition 4.7 (2) gives (4).

Conversely, assume that (1), (2) and (4) hold with (R, M) local. By (4), R C S is infra-
integral, so that L R = S and (1) shows that R C S is pinched at gR. Then, Proposition 4.7 (1)
holds. Moreover, (4) implies Proposition 4.7 (2), and R C S is a Ap-extension. O

Proposition 4.9. Let R C S be a subintegral FCP extension, where (R, M) is a local ring; so
that, S is a local ring. Let N be its maximal ideal. Then R C S is a Ag-extension if and only if
one of the following conditions holds:

(1) (R:S)# M and R C S is quadratic.
(2) (R:S)= M and N* C M.

Proof. Since R C S is a subintegral FCP extension, where (R, M) is a local ring, S is a local
ring. Let NV be its maximal ideal. By Proposition 1.1, R C S is a Ap-extension if and only if
R C S is a quadratic A-extension. We make a discussion according to (R : S) is M or not.

If (R:S) # M, then R C S is a A-extension by [24, Proposition 5.1]. Then, R C Sis a
Ap-extension if and only if R C S is quadratic.

Assume now that (R : S) = M, so that we get the extension R/M C S/M, where R/M is
afield. If R C S is a Ag-extension, so is R/M C S/M by Proposition 3.2, and Proposition 4.3
gives (N/M)? = 0, which leads to N> C M .

Conversely, assume that N> C M with (R : S) = M. Since R C S is subintegral and
(R, M) and (S, N) are local rings, we have R/M = S/N, so that S = R + N. It follows that
R C S is quadratic because any x € S is of the form x = a +n witha € Rand n € N, giving
2% = 2ax + n? — a%, where n2 € N2 C M. Then R C S is a Ap-extension. ]

Remark 4.10. When looking at conditions (3) and (4) of Theorem 4.8, we see that, when R C S
is a Ag-extension, then, for each M € MSupp(S/R), either (5R)n = (§R)m () or (5R)p =
Sar (). Incase (x), we have Ry C Sy pinched at (4 R) ps and in case (xx), we have Ry C Sy
pinched at ({R) .

We may find an example of case () where (5R)a # Rar, Sar in [22, Example 4.10 (1)]
coming from an example due to Dobbs-Shapiro [6, Remark 3.4 (h)]. Take K C L a field exten-
sion of degree 2, so that there exists y € L such that L = K[y]. Set S := L[X]/(X?) = L[z],
where z is the class of X in S, R := K[z] and T := R[zy|. Then, R C S is a Agp-extension with
R C T minimal ramified and 7' C S minimal inert, because [R, S] = {R, T, S} is a chain such
that S = R[y| (see Proposition 4.1) because y is quadratic over R.

We may find an example of case (xx) where (§R)ar # R, Sar in the next section. We will
see in Lemma 5.9 that R C S := R? satisfies case (4) (a) of Theorem 4.8, when R is a local ring.
Then, R C S is a Ap-extension with {R C S minimal decomposed. Indeed R? is generated over
R by (1,0) which is a quadratic element (see Lemma 4.5).

5 Some special Aj-extensions and examples

In this section, we give examples of subintegral Ag-extensions with various properties. We also
characterize some special types of FCP extensions in order to be Ap-extensions.

Let R C S be an FCP extension, then [R, S] is a complete Noetherian Artinian lattice, R
being the least element and S the largest. In the context of the lattice [R, S|, some definitions
and properties of lattices have the following formulations. (see [15])

(1) R C S is called distributive if intersection and product are each distributive with respect
to the other. Actually, each distributivity implies the other [15, Exercise 5, page 33].

(2) Let T € [R,S]. Then, T" € [R,S] is called a complement of T if T N'T' = R and
T = 8S.
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(3) R C S'is called Boolean if ([R, S],N,-) is a distributive lattice such that each T' € [R, S|
has a (necessarily unique) complement.

(4) R C S is called arithmetic if [Rp, Sp] is a chain for each P € Spec(R).

(5) R C S'is called catenarian, or graded by some authors, if R C S has FCP and all maximal
chains between two comparable elements have the same length.

Proposition 5.1. An FCP Ay-extension is catenarian.

Proof. According to Proposition 1.1, an FCP Ag-extension is an FCP A-extension, and then is
catenarian by [24, Proposition 3.14]. O

We begin to characterize Boolean Aj-extensions. According to [23, Proposition 3.5], we first
consider extensions R C S such that R is a local ring.

Proposition 5.2. Let R C S be a Boolean FCP extension, where (R, M) is a local ring. Then
R C S is a Ap-extension if and only if R C S is minimal integral, and with [S/M : R/M] = 2
when R C S is inert.

Proof. Since R C S is Boolean, [23, Theorem 3.30] asserts that one of the following conditions
holds because an FCP Boolean extension has FIP:

(1) R C S is a minimal extension.

(2) There exist U, T € [R,S] such that R C T is minimal ramified, R C U is minimal decom-
posed and [R, S| = {R,T,U, S}.

(3) R C Sis aBoolean t-closed extension.

Assume first that R C S is a Ap-extension. According to Proposition 4.4, R C S is pinched at
{fR, LR}, sothat {{R, LR} C {R, S} because R C S being Boolean, R C S cannot be pinched
at an element different from R and S. Otherwise, this element would not have a complement, a
contradiction. If R # S, then {R = R and R C S is minimal with [S/M : R/M] = 2 when
R C S is inert by Proposition 4.4. If YR = S, then R C S is subintegral, which implies minimal
by (1) because (2) and (3) cannot occur.

Conversely, if R C S is minimal integral, with [S/M : R/M| = 2 when R C S is inert, then
R C S'is a Ag-extension by Proposition 4.2. O

Proposition 5.3. Let R C S be an FCP Ay-extension. Then R C S is distributive if and only if
R C S is arithmetic.

Proof. According to Proposition 3.2 and [23, Proposition 2.4], we may assume that (R, M) is
a local ring. Assume first that R C S is distributive. Let ¢ : S — S/R be the canonical
(surjective) R-module morphism. For Ef, B}, E} € [[S/R]], set E; := ¢~ '(E!) € [[R, S]], for
i € {1,2,3}. Then E; € [R, S] since R C S is a Ag-extension, with E] = ¢(F;). In particular,
E;+ E; = E,E; fori,j € {1,2,3}. But R C S is distributive implies that E; N (E; + E}) =
E;,NE;E, = (E;NE;)(E;NEy) = (E;NE;j)+ (E;NEy) (x) fori, j, k € {1,2,3}. Applying
pto (), we get E;N (E) + E},) = (E{NE}) + (E; N Ey,) for i, j, k € {1,2,3} showing that any
element of [[S/R]] is a distributive R-module. Then, any two elements of [[S/R]] are comparable
by [13, Proposition 5.2, p. 119]. Coming back in [R, S], we get that any two elements of [[R, S]]
are comparable, and then [R, S] is a chain.

The converse is [19, Proposition 5.18]. O

In Proposition 4.2, we characterized minimal Ag-extensions. We now consider Ay-properties
for pointwise minimal extensions. A ring extension R C S is pointwise minimal if R C R]t] is
minimal for each ¢t € S\ R. We studied these extensions in a joint work with Cahen in [1]. The
properties of pointwise minimal extensions R C S allow us to assume that (R, M) is a local ring.
In this case, M = (R : S) when R C S is integral [1, Theorem 3.2]. In [24, Proposition 5.7], we
gave the different conditions for a pointwise minimal FCP extension to be a A-extension. Since
a Ap-extension is a A-extension, to get the condition for a pointwise minimal FCP extension to
be a Ap-extension, it is enough to add the quadratic condition in [24, Proposition 5.7].

Proposition 5.4. A pointwise minimal FCP extension R C S over the local ring (R, M) is a
Ag-extension if and only if one of the following conditions holds:
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(1) R C S is integral minimal with [S/M : R/M| =2 when R C S is inert.
(2) R C S is seminormal infra-integral with R/M = 7,/27 and |Max(S)| = 3.
(3) R C S is subintegral with N* C M, where Max(S) = {N}.

Proof. Assume first that R C S is a Ag-extension, and then a A-extension. According to [24,
Proposition 5.7], we get that one of the following conditions holds:

(1) R C S is minimal.
(2) R C S is seminormal infra-integral with [Max(S)| = 3.
(3) R C S is subintegral with N> C M, where Max(S) = {N}.

For each of these 3 conditions, we check what is the additional condition satisfied by R C S to
become a Ag-extension.

(1) If R C S is minimal, Proposition 4.2 asserts that R C S is integral, with [S/M : R/M] =
2 when R C S is inert.

(2) If R C S is seminormal infra-integral with |[Max(S)| = 3, then ¢[R,S] = 2 by [22,
Proposition 4.20]. This implies by Proposition 4.7 that R/M = Z /2.

(3) is (3) of the statement.

Conversely, assume that one of conditions (1), (2) or (3) of the statement holds:

If (1) holds, R C S is integral minimal with [S/M : R/M] = 2 when R C S is inert. Hence,
R C S is a Ap-extension by Proposition 4.2.

If (2) holds, R C S is seminormal infra-integral with R/M = Z /27 and |[Max(S)| = 3.
Then, M = (R : S) with M = M; N M, N M3, where Max(S) = {M;, My, M3} by [2,
Proposition 4.9]. It follows that S/M = Hf:] S/M; = (R/M)3 and ([R/M, S/M] = 2 by [22,
Proposition 4.20], so that S/M is generated over R/M by a minimal system of two quadratic
elements {y, z} over R/M such that y + z is quadratic over R/M (for example y := (1,0,0) and
z := (0,1,0) with y + 2 = (1, 1,0) also quadratic). This implies that R C S is a Ag-extension
by Proposition 4.7.

If (3) holds, R C S is subintegral with N> C M, where Max(S) = {N}. Since (R : S) = M,
Proposition 4.9 gives the result. O

An FCP extension R C S is said isotopic FCP (IFCP) if all minimal subextensions of R C S
are of the same type. For such extensions which are also Ap-extensions and satisfy conditions
(2) or (3) of Proposition 5.4, we get the following:

Proposition 5.5. Let R C S be an IFCP infra-integral non minimal Ag-extension where (R, M)
is a local ring. Assume that M = (R : S). Then R C S is pointwise minimal.

Proof. Proposition 3.2 implies that R/M C S/M is an FCP non minimal Aj-extension where
R/M is a field. Moreover, R C S is pointwise minimal if and only if R/M C S/M is pointwise
minimal by [1, Proposition 3.1]. Then, we may assume that R is a field (and M = 0).

Assume first that R C S is seminormal infra-integral. It follows that S = R* with R = Z /27
by Proposition 4.3. Then, [1, Proposition 4.14] shows that R C S is pointwise minimal because
R? is a Boolean ring.

Assume now that R C S is subintegral. According to Proposition 4.3, we get that S is a
local ring (.S, V) such that N2 = 0. Then, [1, Proposition 4.16] shows that R C S is pointwise
minimal because R C S is subintegral. O

Propositions 5.4 and 5.5 lead to the following corollary.

Corollary 5.6. Let R C S be a seminormal infra-integral FCP and non minimal extension where
(R, M) is a local ring. Consider the following conditions :

(1) R/M =7/27 and S/M = (R/M)3.
(2) R C S is a Ag-extension.
(3) R C S is a pointwise minimal extension.

Then (1) < (2) = (3).
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Proof. Since R C S is a seminormal infra-integral FCP and non minimal extension where
(R, M) is a local ring, we get that M = (R : S) by [2, Proposition 4.9]. It follows that R/M
is a field such that S/M = (R/M)"™ for some positive integer n. So (2) = (1) comes from
Propositions 3.2 and 4.3, by considering the extension R/M C S/M.

Conversely, if (1) holds, Proposition 4.7 (2)(b) shows that R C S is a Ag-extension (see the
proof of Proposition 5.4).

Now, (2) = (3) by Proposition 5.5. O

Example 5.7. Here is an example of a pointwise minimal extension which is a Ap-extension
satisfying Proposition 5.4.

Let R be a field and set S := R[X,Y]/(X% Y2 XY) = R[z,y] = R+ Rz + Ry, where
x and y are the classes of X and Y in S. According to [1, Theorem 5.4], R C S is pointwise
minimal. The maximal ideal of S is N = Rx + Ry with N2 = 0. Then Proposition 5.4 asserts
that R C S is a Ap-extension.

We saw in Corollary 5.6 that in the seminormal infra-integral case, we deal with an extension
of the form R/M C (R/M)3. We are going to study a more general case of the form R C R™,
which is an infra-integral extension, using results from [21]. Since we are dealing with FCP
extensions, we may consider a local Artinian ring R in view of [21, Proposition 1.4]. We now
recall a result which will be useful in the following.

Proposition 5.8. [21, Proposition 3.2] Let R be a ring with two ideals I and J suchthat I, J # R
and INJ =0. Then R C R/I x R/J is a Ag-extension.

Lemma 5.9. Let R be a non-zero ring and n an integer with n > 1.
(1) If R C R"™ is a A-extension, then n < 3.

(2) R C R?*is a Ay-extension.

Proof. (1) Since (R"™)pr = (Ras)™ for any maximal ideal M of R, we may assume that R is a
local ring. Set S := R™ and T := L R. Then, R C S is infra-integral by [21, Proposition 1.4],
with |Max(S)| = n and [T, S] = n — 1 by [2, Lemma 5.4]. Using [24, Corollary 4.20], we get
that n < 3.

(2) It is enough to take I = J = 0 in Proposition 5.8. O

When R is not reduced and n = 3, [21, Proposition 1.4] says that there is a subintegral
part R C ;R of R C R?, so that we cannot use [24, Corollary 4.20]. Here is an example of
a A-extension R C R, where R is an Artinian local and not reduced ring and which is not a
Ap-extension.

Example 5.10. Set R := (Z/27Z)[T]/(T?) = (Z/27Z)]t], where t is the class of T in R. Then
R is an Artinian local ring which is not reduced and with maximal ideal M := Rt # 0 such
that M2 = 0. In [24, Example 5.10], we show that R C R3 is a A-extension. We sum up the
necessary results in this example. Set N := M x M x M. Then, S := ;R = R+ N. Let
e; := (1,0,0) and R, := Rle;] = R + Re,. It is also shown that S and R, are not comparable.
It follows that Ry & [R, S]U([S, R’] so that R C R? is not pinched at S = |, R. Then, R C R’ is
not a Ap-extension by Proposition 4.7.

For a Ap-extension, we can improve Lemma 5.9.

Proposition 5.11. Let R be a local Artinian ring, and n > 1 an integer. Then R C R" is a
Ay-extension if and only if either n = 2 or R =2 7./27 with n = 3.

Proof. Lemma 5.9 gives one part of the answer when n = 2.

If R = Z/27, then R C R is an infra-integral Ag-extension by Proposition 5.6 and [21,
Proposition 1.4] since R is a field and R C R? is seminormal.

Conversely, assume that R C R" is a Ap-extension, and, in particular, a A-extension. Then,
n < 3 by Lemma 5.9. The case n = 2 is satisfied by the first part of the proof. Assume that
n = 3. If R is reduced, then R is a field, so that R = Z/27 by Proposition 4.3. We claim
that R is reduced when R C R? is a Ag-extension. Otherwise, R C R? is not seminormal by
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[21, Proposition 1.4]. Set S := E3R. According to Proposition 4.4, R C R? is pinched at S.
Since R? is not local, R* ¢ [R, S]. Let B := {ej, e2,e3} be the canonical basis of R>. We can
write R*> = Re; + R(es + e3) (for instance). Let M be the maximal ideal of R. Since R is
not reduced, then M # 0. Letz € M \ {0} and set y := xe, € (M x M x M)\ R?. Recall
that S = R+ (M x M x M) by [21, Proposition 2.8]. This shows that R? ¢ [S, R*] because
M x M x M ¢ R?. Then, R C R? is not a Ap-extension, a contradiction. ]

Corollary 5.12. Let R be an Artinian ring and n > 1 an integer. Then R C R" is a Ay-extension
if and only if either n = 2 or n = 3 with Ry; = 72 /27 for each M € Max(R).

Proof. Use Proposition 3.2 and Proposition 5.11. O

In order to look at properties of Ag-extensions related to products of rings, we consider now
ring extensions linked to idealization. We have already get the following result:

Proposition 5.13. [20, Proposition 2.8] Let N be a submodule of an R-module M. Then
R(+)N C R(+)M is a Ap-extension.

We can also generalize a result of Long in [14, Corollary 3.5.6].

Proposition 5.14. Let R C S be a ring extension and M an S-module. Then R(+)M C S(+)M
is a Ag-extension if and only if R C S is a Ag-extension.

Proof. M 1is obviously an R-module. Since [14, Corollary 3.5.6] gives the equivalence for the
A-extension property, it is enough to check the equivalence for the quadratic property.

Assume that R C S is a quadratic extension and let (s,m) € S(+)M, where s € S and
m € M. There exista,b € Rsuch that s> = as+b. Then, (s,m)? = (s?,2sm) = (as+b,2sm) =
(a,0)(s,m) + (b, (2s — a)m) shows that R(+)M C S(+)M is a quadratic extension.

Conversely, assume that R(+)M C S(+)M is a quadratic extension and let s € S. There
exist (a,m), (b,n) € R(+)M such that (s,0)? = (a,m)(s,0) + (b,n). It is enough to consider
the first components to see that s> = as + b. Then, R C S is a quadratic extension. O

In [14], Long considers also extensions coming from bowtie ring (or amalgamated duplica-
tion of a ring along an ideal), whose definition we recall. Let R be a ring and I an ideal of R.
The bowtie ring R < I is the set {(r,r+1) | € R, i € I}, where the ring operations are defined
componentwise. We also generalized his results to Ay-extensions.

Proposition 5.15. Let R be a ring and I an ideal of R. Then R C R 1< I is a Ag-extension.

Proof. Since [14, Corollary 3.2.6] gives the result for the A-extension property, it is enough to
check the result for the quadratic property.

Ler (r,r +1i) € R I, withr € R, i € I. Then, (r,r +i)? = (r2,7% + 2ri + %) =
(2r +1d,2r +1i)(r,r +4) — (r* + 7i,7> + ri) shows that R C R [ is a quadratic extension. O

Proposition 5.16. Let R C S be a ring extension and I an ideal shared by S and R. Then
R I C Sl isa Ag-extension if and only if R C S is a Ag-extension.

Proof. Since [14, Corollary 3.2.18] gives the equivalence for the A-extension property, it is
enough to check the equivalence for the quadratic property.

Assume that R C S is a quadratic extension and let (s,s + i) € S < I, where s € S and
i € I. There exist a,b € R such that s> = as + b. Then, (s,s +i)? = (5%, 5> + 2is + i%) =
(as+b,as+b+2is+i%) = (a,a+14)(s,s+1i)+ (b,b+i(s—a)) shows that R(+)M C S(+)M
is a quadratic extension.

The converse is obvious as in Proposition 5.14. O

We have a more precise result than Proposition 4.9 for length two subintegral Aj-extensions.

Proposition 5.17. Let R C S be a subintegral FCP extension of length two, where (R, M) is a
local ring. Then R C S is a Ag-extension if and only if either R C S is pointwise minimal or
(R:S)# M.
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Proof. Since R C S is a subintegral extension, .S is a local ring. Let N be its maximal ideal so
that S = R+ N. Moreover, R C S satisfies one of the following conditions: either (x) |[R, S]| =
3 and R C S is simple, or (x*) R C S is pointwise minimal ([22, Propositions 2.2 and 4.16]. We
are going to characterize, for each case, when R C S is a Ap-extension.

In case (%), (R :S) = M by [1, Theorem 3.2] and N> C M according to [1, Propositions
3.9 and 4.16]. Then, Proposition 5.4 shows that R C S is a Ap-extension.

In case (), R C Sissimple and |[R, S]| = 3. Then, there is some y € N such that S = R[y].
According to [22, Corollary 4.17], M?> C (R : S) C M, [R,S] = {R,R + N?,S} and one of
the following condition holds:

(1) (R:S)=M, N>*¢ M and N3 C M.
2 (R:9)#M,y*¢R, MS=M + N?>=M + Ry> C N and MN? C M.
(3) (R:85)# M, y* € Rand dimp (M + My)/M) = 1.

The case (3) implies that R C S is a Ag-extension by Lemma 4.5 because y is quadratic. In this
case, (R:S) # M.

In case (1), since (R : S) = M, we have R C S is a Aj-extension < R/M C S/M is a
Ap-extension. But R/M is a field and S/M is a local ring with maximal ideal N/M. Then, we
can use Proposition 4.3. If R/M C S/M is a Ap-extension, then (N/M)? = 0, giving N> C M,
a contradiction with (1). Then, case (1) does not lead to a Ayg-extension.

In case (2), (R : S) # M implies that My Z R because S = R[y]. Moreover, y € N and
y> € N? shows that T := R+ N> = R+ Ry*> C S. But MS C T leads to My C T. Set
T' := R+ My. We claim that 7 = T. We have R C T’ C T. Since M?y> C MN?* C M, we
get that T = T” because [R, S| = {R, T, S}. It follows that y> € T’ = R + My, so that y is a
quadratic element over R and R C S is a Ap-extension by Proposition 4.1.

To conclude, when R C S is simple, R C S is a Ag-extension if and only if (R: S) # M. O

We have just see in the proof of Proposition 5.17 the case of a subintegral extension of length
two, which is a chain and a Ag-extension (case (x)). The next example shows that there exists a
subintegral extension of length n, for any integer » > 1, which is a chain and a Ap-extension.

Example 5.18. Set R := (Z/2Z)[T]/(T™) and S := R[Y]/(Y? — tY) = R|[y|, where ¢ is the
classof T'in R, yis the class of Y in S and n € N, n > 2. Then R is a SPIR with maximal ideal
M := Rt. We claim that R C S is a subintegral extension. Since y> = ty, an obvious induction
yields that y* = t*~1y for any integer ¥ < n. Foreachi = 0,...,n — 1, set z; := t" %y and
R; := R|x;], so that R = Ry. Set also R,, := S. We show by induction on i € N,,_; the
following: R; = R+ Rx; is a local ring with maximal ideal M; := Rt+ Rx; and R;_; C R;isa
minimal ramified extension. First, R;_; C R; for i > 1 because x;_1 = tx;. Since x| = t”‘ly,
we have 27 = 2"~ 2y2 = ¢"*("=2)y2 = 0 and tx; = t"y = 0, so that R C Ry is a minimal
ramified extension and R, is a local ring with maximal ideal M, := Rt 4+ Rxz;. The induction
hypothesis is fulfilled for i = 1. Assume that the induction hypothesis holds for some i < n
and any £ < i. Then, R; = R + Rx; is a local ring with maximal ideal M; := Rt + Ruz;
and R;_; C R; is a minimal ramified extension. After some calculations, we get that xf =
t2n72i72y2 — tnfifltnfiy — tnfiflxi c Ri7 tri = tnfifl-‘rly — tnfiy =g € Mz and
Tz = P Timy2 = gnoign—islyy — ¢n—ig, € M;. In particular, R;, € [R, S]. Moreover,
x;+1 ¢ R; because we cannot have """~y = a + bt" "%y for any a,b € R. Then R; C R;
is a minimal ramified extension, so that R, = R; + R;x;11 = R + Rz, is a local ring with
maximal ideal M;; = M; + R;z;+1 = Rt + Rx;1;. The induction hypothesis holds for ¢ + 1,
and then for any ¢ < n — 1. Moreover, R,_; C S is also a minimal ramified extension since
7,1 = ty = y*. This implies that S is a local ring and R C S is a simple subintegral extension
generated by the quadratic element y over R, so that R C S is a Agp-extension of length n by
Lemma 4.5.

It remains to show that [R, S| is the chain {R;}" . According to [2, Theorem 4.2], R C S
has FCP. Then, it is strongly affine by [2, Proposition 3.12] (that is to say that each R-subalgebra
of S is a finite-type R-algebra). Then, any T' € [R, 5] is of the form T' = R[z1,...,2,]. Let
z € S. We claim that R[z] is some of the R;’s. Since z € S, we can write z = a + by, where
a,be R.Ifb ¢ M, theny € R[z], so that R[z] = S. We have R[z] = R when b = 0. Assume
that b € M \ {O}. Then, b = ct* for some k € {1,...,n — 1} and c € R\ M. It follows
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that z,,_ = ¢~ !(2 — a), so that R[z] = R,,_;. Coming back to 7" and letting z;; be such that
R[z;] = Rlxz;;], we have T' = R[z;,...,x;,] = R[z;] = Ry, where i; = sup{iy,... im}.
Then, [R, S] is a chain.

Remark 5.19. According to Proposition 4.9, there exists a subintegral extension R C S which is
chained and is not Ag. Take for instance S := k[Y]/(Y?) = k[y|, where k is a field and y is the
class of Y in S. Then, & C S is a subintegral extension of length two by [2, Lemma 5.4] since
the maximal ideal of S is N := ky + ky>. Moreover, [k, S| = {k, k[y?], S} by [22, Theorem
6.1] because S = k[y] is simple and then is not pointwise minimal. It follows that & C S is not a
Ag-extension since N2 # 0. In fact, y is not quadratic.

We end this paper by an example of a subintegral Ajg-extension which does not satisfy any of
the precedent cases: simple, pointwise minimal, chained, length two extension. We do not write
the calculations which are sometimes tedious, but straightforwad.

Example 5.20. Let R := (Z/27Z)[T]/(T?) = R + Rt, where t is the class of T in R. Then R is
a local ring with maximal ideal M = Rt such that t*> = 0. Set S := R[X,Y]/(X? —tX,Y? —
tY, XY, t(X —Y)) = R[z,y]| = R+ Rx + Ry, where z and y are the classes of X and Y in S.
We have the relations 2> = tx = ty = y? and zy = 0 (%). Set Ry := R[tz] = R[ty], Ry :=
Rlz +4y], R; := R[tr + x +y|, S; := R[z], S» := R[y] and S; := R[tx,x + y]. We have the
following diagram:

Si
/
R — &5 — S
e N\
R—>R2—>S3
N\ /
R3

In the following, using [2, Theorem 4.2], we get that S is a local ring, with maximal ideal
N := Rt+ Rz + Ry and R C S is a subintegral FCP extension because we prove that R C
R;, R; C S5 and S5 C S are minimal ramified for any ¢ € {1,2,3}. To give a sketch of the
calculations, we will often have to prove that two elements of .S are equal, that is some element
z € Sisequal to 0. Writing z = a+ bz +cy, with a, b, ¢c € R, we get the equation a+bX +cY =
(X2 —tX)P(X,Y) 4+ (Y2 = tY)Py(X,Y) + XY Py(X,Y) 4+ t(X — Y)P4(X,Y) (%%). Setting
P] (X, Y) = Zi,j ai,inYj, F)z()(7 Y) = Zz}j bi7inYj, P3 (X, Y) = Ziﬁ' Ci,inYj and
Py(X,Y) := 3, ;di ;X'Y7, relations () and (xx) leads to a = 0, b = —tago + tdoo, ¢ =
—tbo,0—tdo,0, 0 = ago—tas o+tdio, 0 = —tag,1 —1tbi0+coo+tdo,1—tdi 0, 0 = boo—tby 1 —tdo,1.
According to the values of b and ¢, we obtain the following results: R C R;, R; C Sz and
R, C S; are minimal ramified for each i = 1,2,3, with R; # R;, S; # 5, and S3 = R; R; for
each i,j € {1,2,3}, i # j. By [5, Proposition 7.6], S; C S is also minimal ramified for each
i =1,2,3, sothat {[R, S] = 3. Moreover, we get [R, S] = {R, R;, S, S}i=1,2,3 because we now
show that there does not exist some 7' € [R, S] \ {R, R;, S;, S}i=1,23 in two steps. First, such a
T cannot verify R C T is minimal (ramified), setting 7' := R|[z], for some z € S. By the way, we
show that any element of S is quadratic, so that R C S is a quadratic extension. Indeed, we may
set z = ax+ By, a, 3 € R. Itfollows that 22 = (a+ 3)tz. The second step shows that there does
not exist I’ # S; for j € {1,2,3} such that R; C T is minimal for some ¢ € {1,2,3}. Indeed, if
such a T, exists, we should have ¢[R,T] = 2, and T' would contain necessarily some R;. Since
{[Ry, S] = 2, [22, Theorem 6.1] shows that |[R;, S]| = 5, but { Ry, S;, S}iz123 C [Ry, S] yields
that such a 7" does not exist in [R;,S]. The same theorem shows that R, C S is a chain for
i = 2,3 because S = R,[z] = R3[z] and such a T does not exist in [R;, S] for i = 2, 3.

We have already shown that R C S is quadratic. Here, (R : S) # M since tz ¢ R. Then,
R C S is a Ag-extension by Proposition 4.9. We may remark that N?> = Rtz M.

We also get that R C S is not a pointwise minimal extension because R C R[z] is not
minimal. At last, R C S is not a simple extension because there does not exist some z € S such
that S = R[z]. Of course, R C S is neither a chain, nor a length two extension.
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