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Abstract An extension of commutative rings R ⊆ S is called a ∆0-extension if any R-
submodule of S containing R is an R-subalgebra of S. We characterize FCP ∆0-extensions,
which are a special case of FCP ∆-extensions (the set of all subextensions is stable under the
formation of sums) and that we studied in an earlier paper. Using Huckaba-Papick’s result which
say that a ring extension is a ∆0-extension if and only if it is a ∆-extension such that any element
of S is quadratic over R, a ∆0-extension is integral. If R ⊆ S is an FCP ∆0-extension such that R
is a local ring, then any R-subalgebra of S is comparable to the seminormalization +

SR and the
t-closure t

SR of the extension. The converse holds adding some conditions on +
SR and t

SR. The
paper ends by considering ∆0-extensions satisfying another condition as Boolean extensions,
pointwise minimal extensions, idealizations, and extensions of the form R ⊆ Rn.

1 Introduction and Notation

In this paper, we consider the category of commutative and unital rings. If R ⊆ S is a (ring)
extension, we denote by [R,S] the set of all R-subalgebras of S and set ]R,S[:= [R,S] \ {R,S}
(with a similar definition for [R,S[ or ]R,S]). For a submodule N of an R-module M , we denote
by [[N,M ]] the set of all R-submodules of M containing N and set [[M ]] := [[0,M ]].

When considering the structure of R-submodules of S containing R, we introduce the notion
of ∆0-extensions and the aim of the paper is to study these extensions. This paper is the sequel
of a first paper [24] on FCP ∆-extensions and, in fact, a consequence of many papers, three of
them published in the PJM: [6], [19] and [21].

A ring extension R ⊂ S is called a ∆-extension by Gilmer and Huckaba [10, Definition page
414] if T + U ∈ [R,S] for each T,U ∈ [R,S], which is equivalent to T + U = TU for each
T,U ∈ [R,S] ([24, Proposition 3.4]).

A ring extension R ⊂ S is called a ∆0-extension by Huckaba and Papick if T ∈ [R,S] for each
R-submodule T of S containing R ([12, Definition, page 430]), that is if [[R,S]] = [R,S]. The
reader is warned that ∆0-extensions are called quadratic extensions by Olberding [16, Definition
2.6]. Quadratic extensions in this paper denote a different concept.

A ring extension R ⊂ S is called quadratic if each t ∈ S satisfies a monic quadratic polyno-
mial over R ([12, Definition, page 430]).

According to Huckaba-Papick’s result stated for extensions of integral domains, but still valid
for arbitrary extensions, we will greatly use our previous paper [24]. In [8, section 7.2], Fontana,
Huckaba and Papick considered ∆0-extensions of integral domains. Many of their results can be
extended to arbitrary extensions.

Proposition 1.1. [12, Proposition 5] A ring extension is a ∆0-extension if and only if it is a
quadratic ∆-extension. In particular, a ∆0-extension is integral.

For an extension R ⊆ S, the poset ([R,S],⊆) is a lattice, where the supremum of any non-
void subset is the compositum of its elements, which we call product from now on and denote
by Π when necessary, and the infimum of any non-void subset is the intersection of its elements.
As a general rule, an extension R ⊆ S is said to have some property of lattices if [R,S] has this
property. We use lattice definitions and properties described in [15].

The extension R ⊆ S is said to have FIP (for the “finitely many intermediate algebras prop-
erty") or is an FIP extension if [R,S] is finite. A chain of R-subalgebras of S is a set of elements
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of [R,S] that are pairwise comparable with respect to inclusion. We will say that R ⊆ S is
chained, also termed a λ-extension by some authors (see [9]), if [R,S] is a chain. We also say
that the extension R ⊆ S has FCP (or is an FCP extension) if each chain in [R,S] is finite.
Clearly, each extension that satisfies FIP must also satisfy FCP. Dobbs and the authors charac-
terized FCP and FIP extensions [2].

Our main tool will be the minimal (ring) extensions, a concept introduced by Ferrand-Olivier
[7]. They are completely known (see Section 2). An extension R ⊂ S is called minimal if
[R,S] = {R,S}. The key connection between the above ideas is that if R ⊆ S has FCP,
then any maximal (necessarily finite) chain C of R-subalgebras of S, R = R0 ⊂ R1 ⊂ · · · ⊂
Rn−1 ⊂ Rn = S, with length ℓ(C) := n < ∞, results from juxtaposing n minimal extensions
Ri ⊂ Ri+1, 0 ≤ i ≤ n − 1. An FCP extension is finitely generated (as an R-algebra), and
(module) finite if integral. For any extension R ⊆ S, the length ℓ[R,S] of [R,S] is the supremum
of the lengths of chains of R-subalgebras of S. Notice that if R ⊆ S has FCP, then there does
exist some maximal chain of R-subalgebras of S with length ℓ[R,S] [3, Theorem 4.11].

Any undefined material is explained at the end of the section or in the next sections.
Section 2 is devoted to some recalls and results on ring extensions. According to Proposition

1.1, a ∆0-extension R ⊆ S is integral, so we consider in this paper only integral extensions.
The general properties of ∆0-extensions are given in Section 3 where the transfer of the ∆0-

property is gotten for several algebraic operations.
In Section 4, we make a more precise study of ∆0-extensions. A ∆0-extension R ⊆ S

satisfies the following, when FCP (Theorem 4.8): for each M ∈ MSupp(S/R), [RM , SM ] =
[RM , (+SR)M ]∪ [(+SR)M , (tSR)M ]∪ [(tSR)M , SM ], where t

SR is the t-closure of R in S and +
SR is

the seminormalization of R in S (see Definition 2.4). In particular, it gives a characterization of
∆0-extensions using the canonical decomposition.

The paper ends in Section 5 with some special ∆0-extensions and examples of ∆0-extensions.
In particular, we consider Boolean extensions, pointwise minimal extensions and idealizations.
These special cases allow to characterize more generally some ∆0-extensions.

We denote by (R : S) the conductor of R ⊆ S and the characteristic of a field k by c(k).
Finally, |X| is the cardinality of a set X , ⊂ denotes proper inclusion and, for a positive integer

n, we set Nn := {1, . . . , n}.

2 Recalls and results on ring extensions

A local ring is here what is called elsewhere a quasi-local ring. As usual, Spec(R) and Max(R)
are the set of prime and maximal ideals of a ring R. The support of an R-module E is SuppR(E) :
= {P ∈ Spec(R) | EP ̸= 0}, and MSuppR(E) := SuppR(E) ∩ Max(R) (or Supp(E) and
MSupp(E) if no confusion is possible). If E is an R-module, LR(E) (also denoted L(E)) is its
length.

A ring morphism f : R → S (resp. an extension R ⊆ S) is said an i-morphism (resp. an
i-extension) if the spectral map af : Spec(S) → Spec(R) (resp. the natural map Spec(S) →
Spec(R)) is injective. An integral extension R ⊆ S is an i-extension if and only if the natural
map Spec(S) → Spec(R) is bijective.

If R ⊆ S is a ring extension and P ∈ Spec(R), then SP is both the localization SR\P as a ring
and the localization at P of the R-module S. We denote by κR(P ) the residual field RP /PRP

at P .
The following notions and results are deeply involved in the sequel.

Definition 2.1. [24, Definition 2.1] An extension R ⊂ S is called M -crucial if Supp(S/R) =
{M}. Such M is called the crucial (maximal) ideal C(R,S) of R ⊂ S.

Theorem 2.2. [7, Théorème 2.2] A minimal extension is crucial and is either integral ((module)-
finite) or a flat epimorphism.

Three types of minimal integral extensions exist, characterized in the next theorem, (a con-
sequence of the fundamental lemma of Ferrand-Olivier), so that there are four types of minimal
extensions, mutually exclusive.
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Theorem 2.3. [2, Theorems 2.2 and 2.3] Let R ⊂ T be an extension and M := (R : T ). Then
R ⊂ T is minimal and finite if and only if M ∈ Max(R) and one of the following three conditions
holds:
(a) inert case: M ∈ Max(T ) and R/M → T/M is a minimal field extension.
(b) decomposed case: There exist M1,M2 ∈ Max(T ) such that M = M1 ∩M2 and the natural
maps R/M → T/M1 and R/M → T/M2 are both isomorphisms, or equivalently, there exists
q ∈ T \R such that T = R[q], q2 − q ∈ M and Mq ⊆ M .
(c) ramified case: There exists M ′ ∈ Max(T ) such that M ′2 ⊆ M ⊂ M ′, [T/M : R/M ] = 2,
and the natural map R/M → T/M ′ is an isomorphism, or equivalently, there exists q ∈ T \ R
such that T = R[q], q2 ∈ M and Mq ⊆ M .

In each of the above cases, M = C(R, T ).

The following definitions are needed for our study.

Definition 2.4. (1) An integral extension R ⊆ S is called infra-integral [18] (resp.; subintegral
[26]) if all its residual extensions κR(P ) → κS(Q), (with Q ∈ Spec(S) and P := Q ∩ R) are
isomorphisms (resp.; and is an i-extension). An extension R ⊆ S is called t-closed (cf. [18])
if the relations b ∈ S, r ∈ R, b2 − rb ∈ R, b3 − rb2 ∈ R imply b ∈ R. A t-closed FCP
extension R ⊆ S is an i-extension [24, Proposition 2.10]. The t-closure t

SR of R in S is the
smallest element B ∈ [R,S] such that B ⊆ S is t-closed and the greatest element B′ ∈ [R,S]
such that R ⊆ B′ is infra-integral. An extension R ⊆ S is called seminormal (cf. [26]) if
the relations b ∈ S, b2 ∈ R, b3 ∈ R imply b ∈ R. The seminormalization +

SR of R in S
is the smallest element B ∈ [R,S] such that B ⊆ S is seminormal and the greatest element
B′ ∈ [R,S] such that R ⊆ B′ is subintegral. We recall that t-closure and seminormalization
commute with localization at arbitrary multiplicative closed sets ([26, Proposition 2.9] and [17,
Proposition 3.6]). For a ring extension R ⊆ S and any P ∈ Spec(R), we have (+SR)P = +

SP
RP

and (tSR)P = t
SP

RP .
The canonical decomposition of an arbitrary ring extension R ⊂ S is R ⊆ +

SR ⊆ t
SR ⊆ R ⊆

S, where R is the integral closure of R in S.
(2) An extension R ⊂ S is called pinched at the finite chain C := {Ti}i∈Nn

⊆]R,S[, n ≥ 1 if
[R,S] = ∪n

i=0[Ti, Ti+1], where T0 := R and Tn+1 := S, which means that any element of [R,S]
is comparable to the Ti’s.

(3) An extension R ⊂ S is called simple if there exists t ∈ S \R such that S = R[x].

3 General properties of ∆0-extensions

We recall this first characterization of ∆0-extensions.

Proposition 3.1. [12, Remark 6 (ii)] A ring extension R ⊆ S is a ∆0-extension if and only if
R[s, t] = R+Rs+Rt for each s, t ∈ S.

Many of the results of this section are a copy of similar results of [24].

Proposition 3.2. Let R ⊆ S be a ring extension. The following statements are equivalent:

(1) R ⊆ S is a quadratic extension, (resp.; ∆0-extension).

(2) RM ⊆ SM is a quadratic extension, (resp. ; ∆0-extension) for each M ∈ MSupp(S/R).

(3) RP ⊆ SP is a quadratic extension, (resp.; ∆0-extension) for each P ∈ Supp(S/R).

(4) R/I ⊆ S/I is a quadratic extension (resp.; ∆0-extension) for an ideal I shared by R and S.

A simple extension generated by a quadratic element is quadratic.

Proof. We consider first the equivalences for the quadratic properties. Then, (1) ⇒ (2) and (2)
⇔ (3) are obvious.

Assume that (2) holds with RM ⊆ SM quadratic. Let t ∈ S and M ∈ MSupp(S/R).
There exist a, b ∈ R, s ∈ R \ M such that (t/1)2 + (a/s)(t/1) + (b/s) = 0, so that t2/1 ∈
(R/M)(t/1) + (R/M) = (Rt + R)M . Since this holds for any M ∈ MSupp(S/R), it follows
that t2 ∈ Rt+R and R ⊆ S is quadratic. So, (1) holds.
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At last, (1) ⇔ (4) is obvious.
Assume that R ⊂ S is simple and let y ∈ S be a quadratic element generating S over R, so

that S = R[y] = R + Ry. There exist a, b ∈ R such that y2 = ay + b. Let x = αy + β ∈
S, α, β ∈ R. Then x2 = (aα+ 2β)x+ α2b− aαβ − β2 shows that R ⊂ S is quadratic.

Now, the equivalences for the ∆0 properties are obvious using Proposition 1.1 and the equiv-
alences for ∆-extensions given in [24, Proposition 3.6] and quadratic extensions gotten here.

Proposition 3.3. Let R ⊂ S be a ring extension. Then R ⊂ S is a ∆0-extension if and only if
T ⊆ U is a ∆0-extension for each subextension [T,U ] ⊆ [R,S].

Proof. Obvious, because [[T,U ]] ⊆ [[R,S]] for any T -submodule of U containing T .

Proposition 3.4. Let R ⊂ S be a ring extension, f : R → R′ a ring morphism and S′ := R′⊗RS.

(1) If f : R → R′ is faithfully flat and if R′ ⊂ S′ is a ∆0-extension, then so is R ⊂ S.

(2) If f : R → R′ is a flat ring epimorphism and R ⊂ S is a ∆0-extension, then so is R′ ⊂ S′.

Proof. (1) The case of a ∆-extension follows from [24, Proposition 3.8]. By considering the ring
morphism φ : S → S′, and since the inverse image of a subring is a ring, we get the statement
for ∆0-extensions.

(2) As in [24, Proposition 3.8], RP → SP identifies to R′
Q → (R′⊗RS)Q for Q ∈ Spec(R′),

lying over P in R.

Given a ring R, its Nagata ring R(X) is the localization R(X) = T−1R[X] of the ring of
polynomials R[X] with respect to the multiplicatively closed subset T of all polynomials with
content R. In [4, Theorem 32], Dobbs and the authors proved that when R ⊂ S is an extension,
whose Nagata extension R(X) ⊂ S(X) has FIP, the map φ : [R,S] → [R(X), S(X)] defined by
φ(T ) = T (X) is an order-isomorphism. We look at the transfer property of being a ∆0-extension.

Proposition 3.5. Let R ⊂ S be an FCP extension such that R(X) ⊂ S(X) is a ∆0-extension.
Then, so is R ⊂ S.

Proof. By [3, Corollary 3.5], we have S(X) = R(X) ⊗R S. Since R ⊂ R(X) is faithfully flat,
an application of Proposition 3.4 gives the result.

4 Characterization of FCP ∆0-extensions

Here is a first example of a ∆0-extension.

Proposition 4.1. Let R ⊂ S be a chained FCP extension. Then the following are equivalent:

(1) R ⊂ S is a ∆0-extension;

(2) R ⊂ S is quadratic;

(3) there exists y ∈ S quadratic over R such that S = R[y].

Proof. R ⊂ S is a ∆-extension by [19, Proposition 5.16]. Then (1) ⇔ (2) by Proposition 1.1.
Since R ⊂ S is simple by [24, Propositions 5.18 and 5.17] or [25, Proposition 2.12], let y ∈ S be
such that S = R[y]. If R ⊂ S is quadratic, so is y. Conversely, assume that there is a quadratic
element y ∈ S such that S = R[y]. Then R ⊂ S is quadratic according to Proposition 3.2.

A minimal extension is a special case of a chained extension and gives the following.

Proposition 4.2. A minimal extension R ⊂ S is a ∆0-extension if and only if R ⊂ S is integral,
with [S/(R : S) : R/(R : S)] = 2 when R ⊂ S is inert.

Proof. Since a minimal extension is chained, according to Proposition 4.1, we get that R ⊂ S is
a ∆0-extension if and only if there exists y ∈ S quadratic over R such that S = R[y].

Assume that R ⊂ S is a ∆0-extension, so that there exists y ∈ S quadratic over R such that
S = R[y]. Then, R ⊂ S is minimal integral, so that M := (R : S) ∈ Max(R). Moreover,
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M ∈ Max(S) when R ⊂ S is inert by Theorem 2.3. Since y is quadratic, so is its class y in
S/M = (R/M)[y], leading to [S/(R : S) : R/(R : S)] = 2.

Conversely, if R ⊂ S is (minimal) integral, with [S/(R : S) : R/(R : S)] = 2 when R ⊂ S is
inert, then S = R[y], for some y ∈ S, which is quadratic when R ⊂ S is either minimal ramified
with y2 ∈ R, or minimal decomposed with y2 −y ∈ R (see Theorem 2.3). When, R ⊂ S is inert,
the first part of the proof gives that the class y of y in S/M is such that S/M = (R/M)[y] with
y quadratic, and so is y. In any case, y is quadratic, so that R ⊂ S is a ∆0-extension.

As for ∆-extensions, we are going to characterize ∆0-extensions by means of the canonical
decomposition.

We recall a result of Handelman, cited by Olberding, adapted to our context.

Proposition 4.3. [16, Lemma 2.8], [11, Lemma 5] Let K ⊂ S be an FCP ∆0-extension where K
is a field. Then, the K-algebra S is isomorphic to one of the following.

(1) a field extension of K of degree 2;

(2) a local ring (S,M) such that M2 = 0 with K ⊂ S subintegral;

(3) K2;

(4) K3 with K ∼= Z/2Z.

We will derive from the above proposition a characterization of ∆0-extensions.

Proposition 4.4. Let R ⊂ S be an FCP ∆0-extension, where (R,M) is a local ring. Then R ⊂ S
is pinched at +

SR and, if +
SR ̸= S, one of the following conditions holds:

(1) +
SR = t

SR and t
SR ⊂ S is inert minimal with residual extensions of degree ≤ 2.

(2) t
SR = S and +

SR ⊂ S is a decomposed minimal extension.

(3) t
SR = S, ℓ[+SR,S] = 2 and R/M ∼= Z/2Z.

Proof. Since R ⊂ S is a ∆0-extension, [+SR, tSR] and [tSR,S] are ∆0-extensions in view of Propo-
sition 3.3. Since (R,M) is a local ring, so is +

SR. Let N be its maximal ideal.
We begin to show that R ⊂ S is pinched at +

SR. Assume that there exists some T ∈ [R,S] \
([R,+SR] ∪ [+SR,S]). Set U := +

TR ⊂ +
SR. Then, U is a local ring. Let P be its maximal ideal.

We have the following diagram:

T

↗ ↘
R → U = +

TR → +
SU → S

↓ ↗
+
SR

with U ⊂ +
SU subintegral while U ⊂ T is seminormal. Indeed, U = +

SU implies U ⊆ S semi-
normal, so that T ∈ [+SR,S], a contradiction. And U = T implies T ∈ [R,+SR], a contradiction.

Now, let T1 ∈ [U, T ] be such that U ⊂ T1 is minimal seminormal (either decomposed or inert)
and let U1 ∈ [U,+SU ] be such that U ⊂ U1 is minimal ramified. Then P = (U : T1) = (U : U1),
which yields P = (U : T1U1), with U/P being a field and U/P ⊂ (T1U1)/P a ∆0-extension in
view of Proposition 3.2. Using Proposition 4.3, we get a contradiction because U/P ⊂ (T1U1)/P
is neither subintegral, nor seminormal, according to [5, Propositions 7.4 or 7.6]. Then, there does
not exist any T ∈ [R,S] \ ([R,+SR] ∪ [+SR,S]).

To conclude, [R,S] = [R,+SR] ∪ [+SR,S] and R ⊂ S is pinched at +
SR.

We next show that either t
SR = S or t

SR = +
SR.

If +
SR = S, then +

SR = t
SR. Assume now that +SR ̸= S. Since +

SR ⊂ S is FCP seminormal, we
get that (+SR : S) = N by [2, Theorem 4.2 and Lemma 4.8]. Moreover, K := (+SR)/N ⊂ S/N
is a seminormal ∆0-extension, where K is a field by Proposition 3.2. We consider the different
cases of Proposition 4.3.

In case (1), K ⊂ S/N is a field extension of degree 2, and then is minimal. Moreover, N is
also a maximal ideal of S, so that +

SR ⊂ S is minimal inert and +
SR = t

SR.
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In case (2), set T ′ := t
SR/N and S′ := S/N , so that T ′ = K, with K ⊂ S′ both t-closed and

subintegral, a contradiction since K ̸= S′. This case does not occur.
In case (3), +SR ⊂ S is minimal decomposed, so that ℓ[+SR,S] = 1 and then t

SR = S.
In case (4), ℓ[+SR,S] = 2 and +

SR ⊂ S is seminormal infra-integral with t
SR = S. Moreover,

R/M ∼= K = (+SR)/N
∼= Z/2Z because R ⊆ +

SR is subintegral.

The previous proposition says that for an FCP ∆0-extension R ⊂ S which is not subintegral
and where (R,M) is a local ring, either +

SR ⊂ S is minimal t-closed, or +
SR ⊂ S is seminormal

infra-integral of length ≤ 2. To get a characterization of an FCP ∆0-extension R ⊂ S, where
(R,M) is a local ring, we will consider the two cases for +

SR ⊂ S. Before, we adapt the following
lemma from [9, Proposition 4.12].

Lemma 4.5. Let R ⊂ S be a simple extension generated by a quadratic element over R. Then,
R ⊂ S is a ∆0-extension.

Proof. Set S = R[y], where y is a quadratic element over R. Then, S = R+ Ry and it follows
from [9, Proposition 4.12] that R ⊂ S is a ∆0-extension.

Let R ⊂ S be a ring extension. We recall [24, at the beginning of Subsection 2.2] that R
is called unbranched in S (or R ⊂ S is unbranched) if R is local. An extension R ⊂ S is said
locally unbranched if RM ⊂ SM is unbranched for all M ∈ MSupp(S/R) and is said branched
if it is not unbranched.

Proposition 4.6. Let R ⊂ S be an integral FCP extension, where R is unbranched in S and
such that t

SR ̸= R,S. Then R ⊂ S is a ∆0-extension if and only if R ⊂ S is a simple extension
generated by a quadratic element over R.

Proof. Assume that R ⊂ S is a ∆0-extension. Since S is a local ring, so is R and it follows that
+
SR = t

SR. In view of Proposition 4.4, we get that [R,S] = [R,+SR] ∪ [+SR,S] (∗), t
SR ⊂ S is

an inert minimal extension and there exists y ∈ S such that S = (tSR)[y]. Because R ⊂ S is a
∆0-extension, it is quadratic, so that y is a quadratic element over R. We show that S = R[y].
The condition (∗) implies that R[y] ∈ [R,+SR] ∪ [+SR,S]. If R[y] ∈ [R,+SR], then y ∈ +

SR = t
SR

implies that S = (tSR)[y] =
t
SR, a contradiction with the assumptions. Then R[y] ∈]+SR,S],

whence S = (tSR)[y] = (+SR)[y] ⊆ R[y] ⊆ S and therefore S = R[y].
Conversely, assume that R ⊂ S is a simple extension generated by a quadratic element over

R. From Lemma 4.5 we infer that R ⊂ S is a ∆0-extension.

Proposition 4.7. Let R ⊂ S be an integral FCP extension, where (R,M) is a local ring branched
in S. Then R ⊂ S is a ∆0-extension if and only if the following conditions hold:

(1) R ⊂ S is infra-integral and pinched at +
SR.

(2) ℓ[+SR,S] ≤ 2 with one of the following conditions:

(a) ℓ[+SR,S] = 1 and R ⊂ S is a simple extension generated by a quadratic element over
R.

(b) ℓ[+SR,S] = 2, R/M ∼= Z/2Z and S is generated by a minimal system of two quadratic
elements {y, z} over R such that y + z is quadratic over R.

Proof. Let R ⊂ S be an integral FCP extension, with (R,M) a local ring branched in S, so
that S is not a local ring. Set T := +

SR ̸= S. Since T is a local ring, it follows that T ̸= t
SR

because t
SR ⊆ S is an i-extension (Definition 2.4). Let N be the maximal ideal of T that verifies

N = (T : S) by [2, Theorem 4.2 and Lemma 4.8].
Assume first that R ⊂ S is a ∆0-extension. In view of Proposition 4.4, R ⊂ S is pinched at

+
SR, giving (1) with t

SR = S because +
SR ̸= t

SR, so that R ⊂ S is infra-integral, and T ⊂ S is a
seminormal infra-integral extension because S is not local.

Using Proposition 4.4 (2) or (3), we get ℓ[T, S] ≤ 2. If ℓ[T, S] = 1, then T ⊂ S is a minimal
decomposed extension. In particular, there exists y ∈ S such that S = T [y] with y quadratic
over R. Reasoning as in some part of the proof of Proposition 4.6 we get that S = R[y], because
we cannot have R[y] ⊆ T ; so that R[y] ∈]T, S], leading to R[y] = S. Then R ⊂ S is a simple
extension generated by a quadratic element over R. Hence (2) (a) holds.
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If ℓ[T, S] = 2, then T/N ∼= R/M ∼= Z/2Z by Proposition 4.4 (3) and T ⊂ S is a seminormal
infra-integral extension. Since N = (T : S), we get that T/N ⊂ S/N is a seminormal infra-
integral extension of length 2, with S/N ∼= (Z/2Z)3 by Proposition 4.3. Then, T ⊂ S is not
simple by [22, Corollary 4.22]. In particular, [22, Propositions 2.2 and 2.4] show that there
exists a minimal system of generators y, z ∈ S over T , quadratic over R, such that S = T [y, z].
Moreover, y + z is quadratic over R. Mimicking the proof of Proposition 4.6, we get that
R[y], R[z] ∈]T, S]. We claim that y ̸∈ R[z] and z ̸∈ R[y]. Otherwise, this would imply that
R[y] and R[z] are comparable, and so are T [y] and T [z], giving that S is the largest of them,
contradicting the minimality of the system of two generators. In particular, R[y], R[z] ⊂ R[y, z].
Then, we have the extensions T ⊂ R[y], R[z] ⊂ R[y, z] ⊆ S. It follows that R[y, z] = S.

Conversely, assume that (1) and (2) hold. If (2) (a) holds, Lemma 4.5 shows that R ⊂ S is a
∆0-extension.

Now, assume that (2) (b) holds. Let y, z ∈ S be a minimal system of two quadratic elements
over R such that S = R[y, z] with y+ z quadratic over R. We claim that y, z ∈ S \ T . If not, we
may assume that y ∈ T , so that S = T [z], with z quadratic over R, and then over T . Since T ⊂ S
is seminormal infra-integral, so is Z/2Z ∼= T/N ⊂ S/N =: S′. Let z be the class of z in S′.
Then z is also quadratic over k := Z/2Z. It follows that S′ = k+kz, with z2 = az+ b, a, b ∈ k.
We have a ̸= 0, because k ⊂ S′ is not minimal ramified. Then, a = 1, so that z2 − z ∈ k,
and k ⊂ S′ is minimal decomposed, a contradiction since ℓ[T, S] = ℓ[k, S′] = 2. A similar
proof shows that z ̸∈ T . We deduce from (1) that R[y], R[z] ∈]T, S[ with R[y] ̸= R[z]. Since
|[T, S]| = 5 by [22, Theorem 6.1], we get that [T, S] = {T,R[y], R[z], R[y + z], S} because
R[y + z] ̸= T,R[y], R[z], S. Moreover, R ⊂ R[y] is a ∆0-extension by Lemma 4.5. Since
R ⊂ T ⊂ R[y], it follows that R ⊂ T is a ∆0-extension.

Let U, V ∈ [R,S] = [R, T ] ∪ [T, S]. If U, V ∈ [R, T ], then U + V = UV because R ⊂ T
is a ∆0-extension. If U, V ∈ [T, S], then U + V = UV since T ⊂ S is a ∆-extension by [24,
Theorem 4.16]. At last, assume, for example, that U ∈ [R, T ] and V ∈ [T, S]. Because of the
tower U ⊆ T ⊆ V , we get that U + V = UV = V . To conclude, R ⊂ S is a ∆-extension.

Let x ∈ S so that R[x] ∈ [R, T ] ∪ [T, S]. If x ∈ T , then, R[x] ∈ [R, T ] and x is quadratic
because so is R ⊂ T . If x ∈ S \ T , then R[x] ∈]T, S[, because R[x] ̸⊆ T . But [T, S] =
{T,R[y], R[z], R[y+z], S} yields that R[x] ∈ {R[y], R[z], R[y+z]}. It follows that x is quadratic
over R, since y, z and y + z are quadratic over R . Hence, R ⊂ S is a quadratic extension and
then a ∆0-extension by Proposition 1.1.

Theorem 4.8. Let R ⊂ S be an integral FCP extension. Then R ⊂ S is a ∆0-extension if and
only if, for each M ∈ MSupp(S/R), the following conditions hold:

(1) RM ⊂ SM is pinched at {(+SR)M , (tSR)M}.

(2) RM ⊆ (+SR)M is a ∆0-extension.

(3) If RM is unbranched in SM and SM ̸= (tSR)M , then RM ⊂ SM is a simple extension
generated by a quadratic element over RM .

(4) If RM is branched in SM , then RM ⊂ SM is infra-integral, ℓ[(+SR)M , SM ] ≤ 2 and one the
following conditions holds:

(a) ℓ[(+SR)M , SM ] = 1 and RM ⊂ SM is a simple extension generated by a quadratic
element over RM .

(b) ℓ[(+SR)M , SM ] = 2, R/M ∼= Z/2Z and SM is generated by a minimal system of two
quadratic elements {y, z} over RM such that y + z is quadratic over RM .

Proof. Proposition 3.2 says that R ⊂ S is a ∆0-extension if and only if so is RM ⊂ SM for any
M ∈ MSupp(S/R). Moreover, by Definition 2.4, for any M ∈ Max(R), we have (+SR)M =
+
SM

RM and (tSR)M = t
SM

RM .
Therefore, we can reduce to the case where (R,M) is a local ring.
If R is unbranched in S, then S is a local ring such that +

SR = t
SR. Propositions 4.6, 4.4 and

3.3 give that R ⊂ S is a ∆0-extension if and only if (1), (2) and (3) hold when t
SR ̸= R,S.

If t
SR = R, then R ⊂ S is t-closed and [R,S] = [tSR,S]. If R ⊂ S is a ∆0-extension,

then R ⊂ S is a simple extension generated by a quadratic element over R by Proposition 4.4.
Conversely, if R ⊂ S is a simple extension generated by a quadratic element over R, then R ⊂ S
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is a ∆0-extension by Lemma 4.5. Then, R ⊂ S is a ∆0-extension if and only if (1), (2) and (3)
hold.

If t
SR = S, then R ⊂ S is subintegral, since S is local, so that [R,S] = [R,+SR]. Then R ⊂ S

is a ∆0-extension if and only if R ⊂ +
SR is a ∆0-extension if and only if (2) holds ((1) and (3) are

trivially satisfied).
Assume that R is branched in S, so that +

SR ̸= t
SR. If R ⊂ S is a ∆0-extension, then

Proposition 4.7 (1) gives that R ⊂ S is infra-integral, leading to t
SR = S and R ⊂ S is pinched

at +
SR, which is (1). Moreover (2) holds by Proposition 3.3. At last, Proposition 4.7 (2) gives (4).
Conversely, assume that (1), (2) and (4) hold with (R,M) local. By (4), R ⊂ S is infra-

integral, so that t
SR = S and (1) shows that R ⊂ S is pinched at +

SR. Then, Proposition 4.7 (1)
holds. Moreover, (4) implies Proposition 4.7 (2), and R ⊂ S is a ∆0-extension.

Proposition 4.9. Let R ⊂ S be a subintegral FCP extension, where (R,M) is a local ring; so
that, S is a local ring. Let N be its maximal ideal. Then R ⊂ S is a ∆0-extension if and only if
one of the following conditions holds:

(1) (R : S) ̸= M and R ⊂ S is quadratic.

(2) (R : S) = M and N2 ⊆ M .

Proof. Since R ⊂ S is a subintegral FCP extension, where (R,M) is a local ring, S is a local
ring. Let N be its maximal ideal. By Proposition 1.1, R ⊂ S is a ∆0-extension if and only if
R ⊂ S is a quadratic ∆-extension. We make a discussion according to (R : S) is M or not.

If (R : S) ̸= M , then R ⊂ S is a ∆-extension by [24, Proposition 5.1]. Then, R ⊂ S is a
∆0-extension if and only if R ⊂ S is quadratic.

Assume now that (R : S) = M , so that we get the extension R/M ⊂ S/M , where R/M is
a field. If R ⊂ S is a ∆0-extension, so is R/M ⊂ S/M by Proposition 3.2, and Proposition 4.3
gives (N/M)2 = 0, which leads to N2 ⊆ M .

Conversely, assume that N2 ⊆ M with (R : S) = M . Since R ⊂ S is subintegral and
(R,M) and (S,N) are local rings, we have R/M ∼= S/N , so that S = R + N . It follows that
R ⊂ S is quadratic because any x ∈ S is of the form x = a+ n with a ∈ R and n ∈ N , giving
x2 = 2ax+ n2 − a2, where n2 ∈ N2 ⊆ M . Then R ⊂ S is a ∆0-extension.

Remark 4.10. When looking at conditions (3) and (4) of Theorem 4.8, we see that, when R ⊂ S
is a ∆0-extension, then, for each M ∈ MSupp(S/R), either (tSR)M = (+SR)M (∗) or (tSR)M =
SM (∗∗). In case (∗), we have RM ⊂ SM pinched at (tSR)M and in case (∗∗), we have RM ⊂ SM

pinched at (+SR)M .
We may find an example of case (∗) where (tSR)M ̸= RM , SM in [22, Example 4.10 (1)]

coming from an example due to Dobbs-Shapiro [6, Remark 3.4 (h)]. Take K ⊂ L a field exten-
sion of degree 2, so that there exists y ∈ L such that L = K[y]. Set S := L[X]/(X2) = L[x],
where x is the class of X in S, R := K[x] and T := R[xy]. Then, R ⊂ S is a ∆0-extension with
R ⊂ T minimal ramified and T ⊂ S minimal inert, because [R,S] = {R, T, S} is a chain such
that S = R[y] (see Proposition 4.1) because y is quadratic over R.

We may find an example of case (∗∗) where (+SR)M ̸= RM , SM in the next section. We will
see in Lemma 5.9 that R ⊂ S := R2 satisfies case (4) (a) of Theorem 4.8, when R is a local ring.
Then, R ⊂ S is a ∆0-extension with +

SR ⊂ S minimal decomposed. Indeed R2 is generated over
R by (1, 0) which is a quadratic element (see Lemma 4.5).

5 Some special ∆0-extensions and examples

In this section, we give examples of subintegral ∆0-extensions with various properties. We also
characterize some special types of FCP extensions in order to be ∆0-extensions.

Let R ⊆ S be an FCP extension, then [R,S] is a complete Noetherian Artinian lattice, R
being the least element and S the largest. In the context of the lattice [R,S], some definitions
and properties of lattices have the following formulations. (see [15])

(1) R ⊆ S is called distributive if intersection and product are each distributive with respect
to the other. Actually, each distributivity implies the other [15, Exercise 5, page 33].

(2) Let T ∈ [R,S]. Then, T ′ ∈ [R,S] is called a complement of T if T ∩ T ′ = R and
TT ′ = S.
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(3) R ⊆ S is called Boolean if ([R,S],∩, ·) is a distributive lattice such that each T ∈ [R,S]
has a (necessarily unique) complement.

(4) R ⊆ S is called arithmetic if [RP , SP ] is a chain for each P ∈ Spec(R).
(5) R ⊆ S is called catenarian, or graded by some authors, if R ⊂ S has FCP and all maximal

chains between two comparable elements have the same length.

Proposition 5.1. An FCP ∆0-extension is catenarian.

Proof. According to Proposition 1.1, an FCP ∆0-extension is an FCP ∆-extension, and then is
catenarian by [24, Proposition 3.14].

We begin to characterize Boolean ∆0-extensions. According to [23, Proposition 3.5], we first
consider extensions R ⊂ S such that R is a local ring.

Proposition 5.2. Let R ⊂ S be a Boolean FCP extension, where (R,M) is a local ring. Then
R ⊂ S is a ∆0-extension if and only if R ⊂ S is minimal integral, and with [S/M : R/M ] = 2
when R ⊂ S is inert.

Proof. Since R ⊂ S is Boolean, [23, Theorem 3.30] asserts that one of the following conditions
holds because an FCP Boolean extension has FIP:

(1) R ⊂ S is a minimal extension.

(2) There exist U, T ∈ [R,S] such that R ⊂ T is minimal ramified, R ⊂ U is minimal decom-
posed and [R,S] = {R, T, U, S}.

(3) R ⊂ S is a Boolean t-closed extension.

Assume first that R ⊂ S is a ∆0-extension. According to Proposition 4.4, R ⊂ S is pinched at
{+SR, tSR}, so that {+SR, tSR} ⊆ {R,S} because R ⊂ S being Boolean, R ⊂ S cannot be pinched
at an element different from R and S. Otherwise, this element would not have a complement, a
contradiction. If +

SR ̸= S, then +
SR = R and R ⊂ S is minimal with [S/M : R/M ] = 2 when

R ⊂ S is inert by Proposition 4.4. If +
SR = S, then R ⊂ S is subintegral, which implies minimal

by (1) because (2) and (3) cannot occur.
Conversely, if R ⊂ S is minimal integral, with [S/M : R/M ] = 2 when R ⊂ S is inert, then

R ⊂ S is a ∆0-extension by Proposition 4.2.

Proposition 5.3. Let R ⊂ S be an FCP ∆0-extension. Then R ⊂ S is distributive if and only if
R ⊂ S is arithmetic.

Proof. According to Proposition 3.2 and [23, Proposition 2.4], we may assume that (R,M) is
a local ring. Assume first that R ⊂ S is distributive. Let φ : S → S/R be the canonical
(surjective) R-module morphism. For E′

1, E
′
2, E

′
3 ∈ [[S/R]], set Ei := φ−1(E′

i) ∈ [[R,S]], for
i ∈ {1, 2, 3}. Then Ei ∈ [R,S] since R ⊂ S is a ∆0-extension, with E′

i = φ(Ei). In particular,
Ei + Ej = EiEj for i, j ∈ {1, 2, 3}. But R ⊂ S is distributive implies that Ei ∩ (Ej + Ek) =
Ei ∩EjEk = (Ei ∩Ej)(Ei ∩Ek) = (Ei ∩Ej) + (Ei ∩Ek) (∗) for i, j, k ∈ {1, 2, 3}. Applying
φ to (∗), we get E′

i ∩ (E′
j +E′

k) = (E′
i ∩E′

j)+ (E′
i ∩E′

k) for i, j, k ∈ {1, 2, 3} showing that any
element of [[S/R]] is a distributive R-module. Then, any two elements of [[S/R]] are comparable
by [13, Proposition 5.2, p. 119]. Coming back in [R,S], we get that any two elements of [[R,S]]
are comparable, and then [R,S] is a chain.

The converse is [19, Proposition 5.18].

In Proposition 4.2, we characterized minimal ∆0-extensions. We now consider ∆0-properties
for pointwise minimal extensions. A ring extension R ⊂ S is pointwise minimal if R ⊂ R[t] is
minimal for each t ∈ S \R. We studied these extensions in a joint work with Cahen in [1]. The
properties of pointwise minimal extensions R ⊂ S allow us to assume that (R,M) is a local ring.
In this case, M = (R : S) when R ⊂ S is integral [1, Theorem 3.2]. In [24, Proposition 5.7], we
gave the different conditions for a pointwise minimal FCP extension to be a ∆-extension. Since
a ∆0-extension is a ∆-extension, to get the condition for a pointwise minimal FCP extension to
be a ∆0-extension, it is enough to add the quadratic condition in [24, Proposition 5.7].

Proposition 5.4. A pointwise minimal FCP extension R ⊂ S over the local ring (R,M) is a
∆0-extension if and only if one of the following conditions holds:
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(1) R ⊂ S is integral minimal with [S/M : R/M ] = 2 when R ⊂ S is inert.

(2) R ⊂ S is seminormal infra-integral with R/M ∼= Z/2Z and |Max(S)| = 3.

(3) R ⊂ S is subintegral with N2 ⊆ M , where Max(S) = {N}.

Proof. Assume first that R ⊂ S is a ∆0-extension, and then a ∆-extension. According to [24,
Proposition 5.7], we get that one of the following conditions holds:

(1) R ⊂ S is minimal.

(2) R ⊂ S is seminormal infra-integral with |Max(S)| = 3.

(3) R ⊂ S is subintegral with N2 ⊆ M , where Max(S) = {N}.

For each of these 3 conditions, we check what is the additional condition satisfied by R ⊂ S to
become a ∆0-extension.

(1) If R ⊂ S is minimal, Proposition 4.2 asserts that R ⊂ S is integral, with [S/M : R/M ] =
2 when R ⊂ S is inert.

(2) If R ⊂ S is seminormal infra-integral with |Max(S)| = 3, then ℓ[R,S] = 2 by [22,
Proposition 4.20]. This implies by Proposition 4.7 that R/M ∼= Z/2Z.

(3) is (3) of the statement.
Conversely, assume that one of conditions (1), (2) or (3) of the statement holds:
If (1) holds, R ⊂ S is integral minimal with [S/M : R/M ] = 2 when R ⊂ S is inert. Hence,

R ⊂ S is a ∆0-extension by Proposition 4.2.
If (2) holds, R ⊂ S is seminormal infra-integral with R/M ∼= Z/2Z and |Max(S)| = 3.

Then, M = (R : S) with M = M1 ∩ M2 ∩ M3, where Max(S) = {M1,M2,M3} by [2,
Proposition 4.9]. It follows that S/M ∼=

∏3
i=1 S/Mi

∼= (R/M)3 and ℓ[R/M,S/M ] = 2 by [22,
Proposition 4.20], so that S/M is generated over R/M by a minimal system of two quadratic
elements {y, z} over R/M such that y+z is quadratic over R/M (for example y := (1, 0, 0) and
z := (0, 1, 0) with y + z = (1, 1, 0) also quadratic). This implies that R ⊂ S is a ∆0-extension
by Proposition 4.7.

If (3) holds, R ⊂ S is subintegral with N2 ⊆ M , where Max(S) = {N}. Since (R : S) = M ,
Proposition 4.9 gives the result.

An FCP extension R ⊂ S is said isotopic FCP (IFCP) if all minimal subextensions of R ⊂ S
are of the same type. For such extensions which are also ∆0-extensions and satisfy conditions
(2) or (3) of Proposition 5.4, we get the following:

Proposition 5.5. Let R ⊂ S be an IFCP infra-integral non minimal ∆0-extension where (R,M)
is a local ring. Assume that M = (R : S). Then R ⊂ S is pointwise minimal.

Proof. Proposition 3.2 implies that R/M ⊂ S/M is an FCP non minimal ∆0-extension where
R/M is a field. Moreover, R ⊂ S is pointwise minimal if and only if R/M ⊂ S/M is pointwise
minimal by [1, Proposition 3.1]. Then, we may assume that R is a field (and M = 0).

Assume first that R ⊂ S is seminormal infra-integral. It follows that S ∼= R3 with R ∼= Z/2Z
by Proposition 4.3. Then, [1, Proposition 4.14] shows that R ⊂ S is pointwise minimal because
R3 is a Boolean ring.

Assume now that R ⊂ S is subintegral. According to Proposition 4.3, we get that S is a
local ring (S,N) such that N2 = 0. Then, [1, Proposition 4.16] shows that R ⊂ S is pointwise
minimal because R ⊂ S is subintegral.

Propositions 5.4 and 5.5 lead to the following corollary.

Corollary 5.6. Let R ⊂ S be a seminormal infra-integral FCP and non minimal extension where
(R,M) is a local ring. Consider the following conditions :

(1) R/M = Z/2Z and S/M ∼= (R/M)3.

(2) R ⊂ S is a ∆0-extension.

(3) R ⊂ S is a pointwise minimal extension.

Then (1) ⇔ (2) ⇒ (3).
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Proof. Since R ⊂ S is a seminormal infra-integral FCP and non minimal extension where
(R,M) is a local ring, we get that M = (R : S) by [2, Proposition 4.9]. It follows that R/M
is a field such that S/M ∼= (R/M)n for some positive integer n. So (2) ⇒ (1) comes from
Propositions 3.2 and 4.3, by considering the extension R/M ⊂ S/M .

Conversely, if (1) holds, Proposition 4.7 (2)(b) shows that R ⊂ S is a ∆0-extension (see the
proof of Proposition 5.4).

Now, (2) ⇒ (3) by Proposition 5.5.

Example 5.7. Here is an example of a pointwise minimal extension which is a ∆0-extension
satisfying Proposition 5.4.

Let R be a field and set S := R[X,Y ]/(X2, Y 2, XY ) = R[x, y] = R + Rx + Ry, where
x and y are the classes of X and Y in S. According to [1, Theorem 5.4], R ⊂ S is pointwise
minimal. The maximal ideal of S is N = Rx+ Ry with N2 = 0. Then Proposition 5.4 asserts
that R ⊂ S is a ∆0-extension.

We saw in Corollary 5.6 that in the seminormal infra-integral case, we deal with an extension
of the form R/M ⊂ (R/M)3. We are going to study a more general case of the form R ⊂ Rn,
which is an infra-integral extension, using results from [21]. Since we are dealing with FCP
extensions, we may consider a local Artinian ring R in view of [21, Proposition 1.4]. We now
recall a result which will be useful in the following.

Proposition 5.8. [21, Proposition 3.2] Let R be a ring with two ideals I and J such that I, J ̸= R
and I ∩ J = 0. Then R ⊂ R/I ×R/J is a ∆0-extension.

Lemma 5.9. Let R be a non-zero ring and n an integer with n > 1.

(1) If R ⊂ Rn is a ∆-extension, then n ≤ 3.

(2) R ⊂ R2 is a ∆0-extension.

Proof. (1) Since (Rn)M = (RM )n for any maximal ideal M of R, we may assume that R is a
local ring. Set S := Rn and T := +

SR. Then, R ⊂ S is infra-integral by [21, Proposition 1.4],
with |Max(S)| = n and ℓ[T, S] = n− 1 by [2, Lemma 5.4]. Using [24, Corollary 4.20], we get
that n ≤ 3.

(2) It is enough to take I = J = 0 in Proposition 5.8.

When R is not reduced and n = 3, [21, Proposition 1.4] says that there is a subintegral
part R ⊂ +

R3R of R ⊂ R3, so that we cannot use [24, Corollary 4.20]. Here is an example of
a ∆-extension R ⊂ R3, where R is an Artinian local and not reduced ring and which is not a
∆0-extension.

Example 5.10. Set R := (Z/2Z)[T ]/(T 2) = (Z/2Z)[t], where t is the class of T in R. Then
R is an Artinian local ring which is not reduced and with maximal ideal M := Rt ̸= 0 such
that M2 = 0. In [24, Example 5.10], we show that R ⊂ R3 is a ∆-extension. We sum up the
necessary results in this example. Set N := M × M × M . Then, S := +

R3R = R + N . Let
e1 := (1, 0, 0) and R1 := R[e1] = R+ Re1. It is also shown that S and R1 are not comparable.
It follows that R1 ̸∈ [R,S]∪ [S,R3] so that R ⊂ R3 is not pinched at S = +

R3R. Then, R ⊂ R3 is
not a ∆0-extension by Proposition 4.7.

For a ∆0-extension, we can improve Lemma 5.9.

Proposition 5.11. Let R be a local Artinian ring, and n > 1 an integer. Then R ⊂ Rn is a
∆0-extension if and only if either n = 2 or R ∼= Z/2Z with n = 3.

Proof. Lemma 5.9 gives one part of the answer when n = 2.
If R ∼= Z/2Z, then R ⊂ R3 is an infra-integral ∆0-extension by Proposition 5.6 and [21,

Proposition 1.4] since R is a field and R ⊂ R3 is seminormal.
Conversely, assume that R ⊂ Rn is a ∆0-extension, and, in particular, a ∆-extension. Then,

n ≤ 3 by Lemma 5.9. The case n = 2 is satisfied by the first part of the proof. Assume that
n = 3. If R is reduced, then R is a field, so that R ∼= Z/2Z by Proposition 4.3. We claim
that R is reduced when R ⊂ R3 is a ∆0-extension. Otherwise, R ⊂ R3 is not seminormal by
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[21, Proposition 1.4]. Set S := +
R3R. According to Proposition 4.4, R ⊂ R3 is pinched at S.

Since R2 is not local, R2 ̸∈ [R,S]. Let B := {e1, e2, e3} be the canonical basis of R3. We can
write R2 = Re1 + R(e2 + e3) (for instance). Let M be the maximal ideal of R. Since R is
not reduced, then M ̸= 0. Let x ∈ M \ {0} and set y := xe2 ∈ (M × M × M) \ R2. Recall
that S = R + (M × M × M) by [21, Proposition 2.8]. This shows that R2 ̸∈ [S,R3] because
M ×M ×M ̸⊆ R2. Then, R ⊂ R3 is not a ∆0-extension, a contradiction.

Corollary 5.12. Let R be an Artinian ring and n > 1 an integer. Then R ⊂ Rn is a ∆0-extension
if and only if either n = 2 or n = 3 with RM

∼= Z/2Z for each M ∈ Max(R).

Proof. Use Proposition 3.2 and Proposition 5.11.

In order to look at properties of ∆0-extensions related to products of rings, we consider now
ring extensions linked to idealization. We have already get the following result:

Proposition 5.13. [20, Proposition 2.8] Let N be a submodule of an R-module M . Then
R(+)N ⊆ R(+)M is a ∆0-extension.

We can also generalize a result of Long in [14, Corollary 3.5.6].

Proposition 5.14. Let R ⊂ S be a ring extension and M an S-module. Then R(+)M ⊂ S(+)M
is a ∆0-extension if and only if R ⊂ S is a ∆0-extension.

Proof. M is obviously an R-module. Since [14, Corollary 3.5.6] gives the equivalence for the
∆-extension property, it is enough to check the equivalence for the quadratic property.

Assume that R ⊂ S is a quadratic extension and let (s,m) ∈ S(+)M , where s ∈ S and
m ∈ M . There exist a, b ∈ R such that s2 = as+b. Then, (s,m)2 = (s2, 2sm) = (as+b, 2sm) =
(a, 0)(s,m) + (b, (2s− a)m) shows that R(+)M ⊂ S(+)M is a quadratic extension.

Conversely, assume that R(+)M ⊂ S(+)M is a quadratic extension and let s ∈ S. There
exist (a,m), (b, n) ∈ R(+)M such that (s, 0)2 = (a,m)(s, 0) + (b, n). It is enough to consider
the first components to see that s2 = as+ b. Then, R ⊂ S is a quadratic extension.

In [14], Long considers also extensions coming from bowtie ring (or amalgamated duplica-
tion of a ring along an ideal), whose definition we recall. Let R be a ring and I an ideal of R.
The bowtie ring R ▷◁ I is the set {(r, r+ i) | r ∈ R, i ∈ I}, where the ring operations are defined
componentwise. We also generalized his results to ∆0-extensions.

Proposition 5.15. Let R be a ring and I an ideal of R. Then R ⊂ R ▷◁ I is a ∆0-extension.

Proof. Since [14, Corollary 3.2.6] gives the result for the ∆-extension property, it is enough to
check the result for the quadratic property.

Ler (r, r + i) ∈ R ▷◁ I , with r ∈ R, i ∈ I . Then, (r, r + i)2 = (r2, r2 + 2ri + i2) =
(2r+ i, 2r+ i)(r, r+ i)− (r2 + ri, r2 + ri) shows that R ⊂ R ▷◁ I is a quadratic extension.

Proposition 5.16. Let R ⊂ S be a ring extension and I an ideal shared by S and R. Then
R ▷◁ I ⊂ S ▷◁ I is a ∆0-extension if and only if R ⊂ S is a ∆0-extension.

Proof. Since [14, Corollary 3.2.18] gives the equivalence for the ∆-extension property, it is
enough to check the equivalence for the quadratic property.

Assume that R ⊂ S is a quadratic extension and let (s, s + i) ∈ S ▷◁ I , where s ∈ S and
i ∈ I . There exist a, b ∈ R such that s2 = as + b. Then, (s, s + i)2 = (s2, s2 + 2is + i2) =
(as+ b, as+ b+2is+ i2) = (a, a+ i)(s, s+ i)+(b, b+ i(s−a)) shows that R(+)M ⊂ S(+)M
is a quadratic extension.

The converse is obvious as in Proposition 5.14.

We have a more precise result than Proposition 4.9 for length two subintegral ∆0-extensions.

Proposition 5.17. Let R ⊂ S be a subintegral FCP extension of length two, where (R,M) is a
local ring. Then R ⊂ S is a ∆0-extension if and only if either R ⊂ S is pointwise minimal or
(R : S) ̸= M .
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Proof. Since R ⊂ S is a subintegral extension, S is a local ring. Let N be its maximal ideal so
that S = R+N . Moreover, R ⊂ S satisfies one of the following conditions: either (∗) |[R,S]| =
3 and R ⊂ S is simple, or (∗∗) R ⊂ S is pointwise minimal ([22, Propositions 2.2 and 4.16]. We
are going to characterize, for each case, when R ⊂ S is a ∆0-extension.

In case (∗∗), (R : S) = M by [1, Theorem 3.2] and N2 ⊆ M according to [1, Propositions
3.9 and 4.16]. Then, Proposition 5.4 shows that R ⊂ S is a ∆0-extension.

In case (∗), R ⊂ S is simple and |[R,S]| = 3. Then, there is some y ∈ N such that S = R[y].
According to [22, Corollary 4.17], M2 ⊆ (R : S) ⊆ M, [R,S] = {R,R + N2, S} and one of
the following condition holds:

(1) (R : S) = M, N2 ̸⊆ M and N3 ⊆ M .

(2) (R : S) ̸= M, y2 ̸∈ R, MS = M +N2 = M +Ry2 ⊂ N and MN2 ⊆ M .

(3) (R : S) ̸= M, y2 ∈ R and dimR/M ((M +My)/M) = 1.

The case (3) implies that R ⊂ S is a ∆0-extension by Lemma 4.5 because y is quadratic. In this
case, (R : S) ̸= M .

In case (1), since (R : S) = M , we have R ⊂ S is a ∆0-extension ⇔ R/M ⊂ S/M is a
∆0-extension. But R/M is a field and S/M is a local ring with maximal ideal N/M . Then, we
can use Proposition 4.3. If R/M ⊂ S/M is a ∆0-extension, then (N/M)2 = 0, giving N2 ⊆ M ,
a contradiction with (1). Then, case (1) does not lead to a ∆0-extension.

In case (2), (R : S) ̸= M implies that My ̸⊆ R because S = R[y]. Moreover, y ∈ N and
y2 ∈ N2 shows that T := R + N2 = R + Ry2 ⊂ S. But MS ⊆ T leads to My ⊆ T . Set
T ′ := R +My. We claim that T ′ = T . We have R ⊂ T ′ ⊆ T . Since M2y2 ⊆ MN2 ⊆ M , we
get that T = T ′ because [R,S] = {R, T, S}. It follows that y2 ∈ T ′ = R +My, so that y is a
quadratic element over R and R ⊂ S is a ∆0-extension by Proposition 4.1.

To conclude, when R ⊂ S is simple, R ⊂ S is a ∆0-extension if and only if (R : S) ̸= M .

We have just see in the proof of Proposition 5.17 the case of a subintegral extension of length
two, which is a chain and a ∆0-extension (case (∗)). The next example shows that there exists a
subintegral extension of length n, for any integer n > 1, which is a chain and a ∆0-extension.

Example 5.18. Set R := (Z/2Z)[T ]/(Tn) and S := R[Y ]/(Y 2 − tY ) = R[y], where t is the
class of T in R, y is the class of Y in S and n ∈ N, n ≥ 2. Then R is a SPIR with maximal ideal
M := Rt. We claim that R ⊂ S is a subintegral extension. Since y2 = ty, an obvious induction
yields that yk = tk−1y for any integer k ≤ n. For each i = 0, . . . , n − 1, set xi := tn−iy and
Ri := R[xi], so that R = R0. Set also Rn := S. We show by induction on i ∈ Nn−1 the
following: Ri = R+Rxi is a local ring with maximal ideal Mi := Rt+Rxi and Ri−1 ⊂ Ri is a
minimal ramified extension. First, Ri−1 ⊆ Ri for i ≥ 1 because xi−1 = txi. Since x1 = tn−1y,
we have x2

1 = t2n−2y2 = tn+(n−2)y2 = 0 and tx1 = tny = 0, so that R ⊂ R1 is a minimal
ramified extension and R1 is a local ring with maximal ideal M1 := Rt + Rx1. The induction
hypothesis is fulfilled for i = 1. Assume that the induction hypothesis holds for some i < n
and any k ≤ i. Then, Ri = R + Rxi is a local ring with maximal ideal Mi := Rt + Rxi

and Ri−1 ⊂ Ri is a minimal ramified extension. After some calculations, we get that x2
i+1 =

t2n−2i−2y2 = tn−i−1tn−iy = tn−i−1xi ∈ Ri, txi+1 = tn−i−1+1y = tn−iy = xi ∈ Mi and
xixi+1 = tn−itn−i−1y2 = tn−itn−i−1ty = tn−ixi ∈ Mi. In particular, Ri+1 ∈ [R,S]. Moreover,
xi+1 ̸∈ Ri because we cannot have tn−i−1y = a + btn−iy for any a, b ∈ R. Then Ri ⊂ Ri+1
is a minimal ramified extension, so that Ri+1 = Ri + Rixi+1 = R + Rxi+1 is a local ring with
maximal ideal Mi+1 = Mi + Rixi+1 = Rt+ Rxi+1. The induction hypothesis holds for i+ 1,
and then for any i ≤ n − 1. Moreover, Rn−1 ⊂ S is also a minimal ramified extension since
xn−1 = ty = y2. This implies that S is a local ring and R ⊂ S is a simple subintegral extension
generated by the quadratic element y over R, so that R ⊂ S is a ∆0-extension of length n by
Lemma 4.5.

It remains to show that [R,S] is the chain {Ri}ni=0. According to [2, Theorem 4.2], R ⊂ S
has FCP. Then, it is strongly affine by [2, Proposition 3.12] (that is to say that each R-subalgebra
of S is a finite-type R-algebra). Then, any T ∈ [R,S] is of the form T = R[z1, . . . , zm]. Let
z ∈ S. We claim that R[z] is some of the Ri’s. Since z ∈ S, we can write z = a + by, where
a, b ∈ R. If b ̸∈ M , then y ∈ R[z], so that R[z] = S. We have R[z] = R when b = 0. Assume
that b ∈ M \ {0}. Then, b = ctk for some k ∈ {1, . . . , n − 1} and c ∈ R \ M . It follows
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that xn−k = c−1(z − a), so that R[z] = Rn−k. Coming back to T and letting xij be such that
R[zj ] = R[xij ], we have T = R[xi1 , . . . , xim ] = R[xil ] = Ril , where il = sup{i1, . . . , im}.
Then, [R,S] is a chain.

Remark 5.19. According to Proposition 4.9, there exists a subintegral extension R ⊂ S which is
chained and is not ∆0. Take for instance S := k[Y ]/(Y 3) = k[y], where k is a field and y is the
class of Y in S. Then, k ⊂ S is a subintegral extension of length two by [2, Lemma 5.4] since
the maximal ideal of S is N := ky + ky2. Moreover, [k, S] = {k, k[y2], S} by [22, Theorem
6.1] because S = k[y] is simple and then is not pointwise minimal. It follows that k ⊂ S is not a
∆0-extension since N2 ̸= 0. In fact, y is not quadratic.

We end this paper by an example of a subintegral ∆0-extension which does not satisfy any of
the precedent cases: simple, pointwise minimal, chained, length two extension. We do not write
the calculations which are sometimes tedious, but straightforwad.

Example 5.20. Let R := (Z/2Z)[T ]/(T 2) = R+ Rt, where t is the class of T in R. Then R is
a local ring with maximal ideal M = Rt such that t2 = 0. Set S := R[X,Y ]/(X2 − tX, Y 2 −
tY,XY, t(X − Y )) = R[x, y] = R+ Rx+ Ry, where x and y are the classes of X and Y in S.
We have the relations x2 = tx = ty = y2 and xy = 0 (∗). Set R1 := R[tx] = R[ty], R2 :=
R[x+ y], R3 := R[tx+ x+ y], S1 := R[x], S2 := R[y] and S3 := R[tx, x+ y]. We have the
following diagram:

S1

↗ ↘
R1 → S2 → S

↗ ↘ ↗
R → R2 → S3

↘ ↗
R3

In the following, using [2, Theorem 4.2], we get that S is a local ring, with maximal ideal
N := Rt + Rx + Ry and R ⊂ S is a subintegral FCP extension because we prove that R ⊂
Ri, Ri ⊂ S3 and S3 ⊂ S are minimal ramified for any i ∈ {1, 2, 3}. To give a sketch of the
calculations, we will often have to prove that two elements of S are equal, that is some element
z ∈ S is equal to 0. Writing z = a+bx+cy, with a, b, c ∈ R, we get the equation a+bX+cY =
(X2 − tX)P1(X,Y ) + (Y 2 − tY )P2(X,Y ) +XY P3(X,Y ) + t(X − Y )P4(X,Y ) (∗∗). Setting
P1(X,Y ) :=

∑
i,j ai,jX

iY j , P2(X,Y ) :=
∑

i,j bi,jX
iY j , P3(X,Y ) :=

∑
i,j ci,jX

iY j and
P4(X,Y ) :=

∑
i,j di,jX

iY j , relations (∗) and (∗∗) leads to a = 0, b = −ta0,0 + td0,0, c =
−tb0,0−td0,0, 0 = a0,0−ta1,0+td1,0, 0 = −ta0,1−tb1,0+c0,0+td0,1−td1,0, 0 = b0,0−tb0,1−td0,1.
According to the values of b and c, we obtain the following results: R ⊂ Ri, Ri ⊂ S3 and
R1 ⊂ Si are minimal ramified for each i = 1, 2, 3, with Ri ̸= Rj , Si ̸= Sj , and S3 = RiRj for
each i, j ∈ {1, 2, 3}, i ̸= j. By [5, Proposition 7.6], Si ⊂ S is also minimal ramified for each
i = 1, 2, 3, so that ℓ[R,S] = 3. Moreover, we get [R,S] = {R,Ri, Si, S}i=1,2,3 because we now
show that there does not exist some T ∈ [R,S] \ {R,Ri, Si, S}i=1,2,3 in two steps. First, such a
T cannot verify R ⊂ T is minimal (ramified), setting T := R[z], for some z ∈ S. By the way, we
show that any element of S is quadratic, so that R ⊂ S is a quadratic extension. Indeed, we may
set z = αx+βy, α, β ∈ R. It follows that z2 = (α+β)tz. The second step shows that there does
not exist T ̸= Sj for j ∈ {1, 2, 3} such that Ri ⊂ T is minimal for some i ∈ {1, 2, 3}. Indeed, if
such a T , exists, we should have ℓ[R, T ] = 2, and T would contain necessarily some Ri. Since
ℓ[R1, S] = 2, [22, Theorem 6.1] shows that |[R1, S]| = 5, but {R1, Si, S}i=1,2,3 ⊆ [R1, S] yields
that such a T does not exist in [R1, S]. The same theorem shows that Ri ⊂ S is a chain for
i = 2, 3 because S = R2[x] = R3[x] and such a T does not exist in [Ri, S] for i = 2, 3.

We have already shown that R ⊂ S is quadratic. Here, (R : S) ̸= M since tx ̸∈ R. Then,
R ⊂ S is a ∆0-extension by Proposition 4.9. We may remark that N2 = Rtx ̸⊆ M .

We also get that R ⊂ S is not a pointwise minimal extension because R ⊂ R[x] is not
minimal. At last, R ⊂ S is not a simple extension because there does not exist some z ∈ S such
that S = R[z]. Of course, R ⊂ S is neither a chain, nor a length two extension.
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