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Abstract In this paper, we propose a new primal-dual interior-point algorithm for solving
symmetric cone optimization (SCO) problems based on a class of kernel functions (KFs). The
latter belongs to the newly introduced hyperbolic type [30, 31, 14]. To the best of our knowl-
edge, this is the first interior-point algorithm for SCO which is based on a hyperbolic barrier
term. Using the machinery of Euclidean Jordan algebra, the complexity analysis for large-update
primal-dual interior-point methods (IPMs) based on this class of KFs yields an O

(
pr

p+1
2p log r

ϵ

)
iteration bound which meets the currently best iteration complexity for SCO by choosing a spe-
cial value of the parameter p. We consolidate these theoretical results by performing numerical
experiments on some NETLIB problems to compare the proposed algorithm with other existing
algorithms. The practical performance of the proposed algorithm seems very promising as we
got the smallest iteration numbers in almost 60% of the realized experiments.

1 Introduction

SCO is a broad class of convex optimization that contains linear optimization (LO), second-
order cone optimization (SOCO) and semidefinite optimization (SDO) as special cases. SCO
is the optimization of a linear objective function over the intersection of an affine space and a
symmetric cone subject to linear equality constraints.

Many methods were proposed to solve SCO problems. IPMs rank among the most efficient
methods both theoretically and practically. IPMs were first introduced by Karmarkar [18] for
LO problems. However, Nesterov and Nemirovskii [22] were the first to attempt solving SCO
problems using IPMs. They developed a complete theory applicable to the whole class of convex
optimization problems. They proved the polynomial complexity for several types of IPMs and
related their efficiency to the existence of a certain type of barrier depending on the problem
structure, a so-called self-concordant barrier. Subsequently, Nesterov and Todd [23, 24] offered
a theoretical foundation of effective IPMs for convex optimization problems expressed in conic
form, when the cone and its associated barrier are self-scaled. Following that, Güler [12] applied
the Euclidean Jordan algebraic tools in IPMs which was due to the fact that the family of the self-
scaled cones is identical to the set of symmetric cones. After that, Faybusovich [9] generalized
IPMs for SDO problems to SCO problems using the Euclidean Jordan algebras. Other extensions
of primal-dual IPMs for SCO were done by Monteiro and Zhang [21], Schmieta and Alizadeh
[29] and Vieira [34]. The latter generalized the kernel-based IPM approach of Bai et al. [4] to
SCO.
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Inspired by the works of [19, 34], we propose a new primal-dual IPM for solving SCO prob-
lems based on the following KF

ψ (t) =
t2 − 1

2
− 1

coshp(2)

∫ t

1
coshp

(
2
x

)
dx, ∀t > 0, (1.1)

with p ≥ 1. The definition of the barrier term of this KF is based on the hyperbolic cosine
function. For other uses of this function, we refer the reader to [1], where the authors introduced
a new definition of the fractional derivative using the hyperbolic cosine function. It’s worth
noting that the function ψ belongs to the newly introduced hyperbolic type of KFs [30, 31, 14,
32, 15, 16]. In all the previous references, the presented primal-dual IPMs were proposed to
solve LO and SDO problems. This makes our method the first extension of IPMs based on
hyperbolic barrier terms to SCO problems.

We structure our paper as follows. In Section 2 we briefly recall some important definitions
and results on Euclidean Jordan algebras and symmetric cones that are needed in the paper. In
addition, we give the basic concepts of IPMs for SCO. In Section 3, we give some properties
of the new KF including exponential convexity. After that, we derive the iteration bound of our
algorithm for large-update methods in Section 4. Our computational experiments are presented
in Section 5. Finally, some concluding remarks follow in Section 6.

2 Preliminaries

2.1 Euclidean Jordan algebra

In order to ensure the integrity of this paper, we give some definitions and results on Euclidean
Jordan Algebras. For a comprehensive study, we refer the reader to [7, 33].

Definition 2.1. Let (J , ◦) be an n−dimensional space over R and ◦ : (x, y) 7→ x◦y be a bilinear
map from J ×J to J . Then (J , ◦, ⟨., .⟩) is an Euclidean Jordan Algebra (EJA) if it satisfies the
following conditions:

• x ◦ y = y ◦ x for all x, y ∈ J (commutative).

• x2 ◦ (x ◦ y) = x ◦ (x2 ◦ y) for all x, y ∈ J , where x2 = x ◦ x (Jordan’s Axiom).

• There exists an inner product such that ⟨x ◦ y, z⟩ = ⟨x, y ◦ z⟩ for all x, y, z ∈ J .

We call x ◦ y the Jordan product of x and y and define the trace inner product for all x, y ∈ J
as follows

⟨x, y⟩ := tr(x ◦ y).

The norm induced by the inner product ⟨., .⟩ is called the Frobenuis norm, which is defined for
every x ∈ J by

∥x∥ :=
√
⟨x, x⟩ =

√
tr(x2).

• If there exists an element e such that x ◦ e = e ◦ x = x for all x ∈ J , then e is called the
multiplicative identity element of the EJA J .

• For any x ∈ J , let k be the smallest integer such that the set
{
e, x, ..., xk

}
is linearly

dependent. Then, k is the degree of x denoted deg(x). The rank of J , simply denoted by
r, is the maximum of deg(x) for all x ∈ J .

• A nonzero element c ∈ J is said to be idempotent if c2 = c. A set of primitive idempotents
{c1, ..., cr} is called a Jordan frame if ci ◦ cj = 0, i ̸= j ∈ {1, ..., r} and c1 + ...+ cr = e.

• For an EJA J , the corresponding cone of squares K :=
{
x2 : x ∈ J

}
is indeed a symmetric

cone. A cone is symmetric if and only if it is the cone of squares of some EJA.

The following theorem provided a spectral decomposition of elements of an EJA.
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Theorem 2.2 (Theorem III.1.2 in [7]). Let J be an EJA with rank r, and x ∈ J . Then, there
exists a Jordan frame {c1, ..., cr} and real numbers λ1(x), ..., λr(x) such that

x =
r∑
i=1

λi(x)ci.

Each λi(x) is called an eigenvalue of x.

Using the previous theorem, we can rewrite the Frobenius norm as follows

∥x∥ =

√√√√ r∑
i=1

λ2
i (x), ∀x ∈ J .

Now, for any element x ∈ J , we define the Lyapunov transformation L(x) defined from J
to J as follows

L(x)y := x ◦ y, ∀y ∈ J .

Furthermore, we define the quadratic representation for each x in J as follows:

P (x) := 2L(x)2 − L(x2),

where L(x)2 = L(x)L(x).

2.2 Primal-dual IPM for SCO

In this subsection, we describe the basic of IPMs for SCO. Let J be an n−dimensional EJA with
rank r and K its associated symmetric cone. The primal -dual pair of SCO problems are given
by

(P ) min {⟨c, x⟩ : Ax = b, x ∈ K} ,

(D) max
{
bT y : AT y + s = c, s ∈ K, y ∈ Rm

}
,

where c ∈ J , b ∈ Rm, and A = [a1; . . . ; am] is the matrix corresponding to the linear transfor-
mation that maps x to the m-vector whose ith component is ⟨ai, x⟩. The vectors ai, i = 1, . . . ,m
lie in J and assumed to be linearly independent. The equations Ax = b and AT y + s = c mean
that for all i = 1, . . . ,m, ⟨ai, x⟩ = bi and

∑m
i=1 yiai + s = c respectively.

First, we assume that both (P ) and (D) satisfy the interior-point condition (IPC) ; that is,
there exists (x0, y0, s0) ∈ K̊×Rm×K̊ with K̊ denotes the interior of the symmetric cone K, such
that

Ax0 = b, AT y0 + s0 = c.

It was shown in [22, 9] that the IPC ensures the existence of optimal solutions x̄ and (ȳ, s̄) of
(P ) and (D) such that

⟨c, x̄⟩ − bT ȳ = ⟨x̄, s̄⟩ = 0.

This optimal solution can be obtained by solving the following system of equations
Ax = b, x ∈ K,
AT y + s = c, s ∈ K,
x ◦ s = 0.

(2.1)

Replacing the last equation in (2.1) by the parameterized equation x ◦ s = µe, where µ > 0, we
arrive at the following system 

Ax = b, x ∈ K,
AT y + s = c, s ∈ K,
x ◦ s = µe, µ > 0.

(2.2)

Since the (IPC) is satisfied, the perturbed system (2.2) has a unique solution for each µ > 0
denoted by (xµ, yµ, sµ). The set of unique solutions {(xµ, yµ, sµ) : µ > 0} forms a well-behaved
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curve, called the central path. If µ → 0, then the limit of the central path exists and yields opti-
mal solutions for (P ) and (D).

Applying the damped Newton method to the perturbed system (2.2), produces the following
system for the search direction (∆x,∆y,∆s) ∈ J ×Rm × J

A∆x = 0,
AT∆y + ∆s = 0,
s ◦ ∆x+ x ◦ ∆s = µe− x ◦ s.

In general, x and s do not operator commute, i.e., L(x)L(s) ̸= L(s)L(x). This implies that the
above system does not always have a unique solution (see [9]). A well-known way to overcome
this difficulty was proposed by Schmieta and Alizadeh in 2003 [29], where they replaced the last
equation in system (2.2) by

P (u)x ◦ P (u)−1s = µe,

with u ∈ K̊, and P (.) the quadratic representation of K.
Applying Newton’s method to the obtained system, we arrive at the following system

A∆x = 0,
AT∆y + ∆s = 0,
P (u)∆x ◦ P (u)−1s+ P (u)x ◦ P (u)−1∆s = µe− P (u)x ◦ P (u)−1s.

(2.3)

In this paper, we will be using the Nesterov-Todd (NT) scaling scheme that was introduced by
Nesterov and Todd for self-scaled cones in [23, 24] and generalized to SCOs by Faybusovich in
[10], where we focus on the scaling point u = w− 1

2 , with w called the NT scaling point of x and
s defined as follows

w := P (x)
1
2 (P (x)

1
2 s)−

1
2 = P (s)−

1
2 (P (s)

1
2x)

1
2 .

Let’s set

v =
P (w)−

1
2x

√
µ

=
P (w)

1
2 s

√
µ

, dx =
P (w)−

1
2 ∆x

√
µ

, ds =
P (w)

1
2 ∆s

√
µ

.

Putting A = [a1; . . . ; am] with ai =
√
µP (w)

1
2 ai for all i = 1, . . . ,m, system (2.3) is then

rewritten in the following form 
Adx = 0,
A
T ∆y√

µ + ds = 0,

dx + ds = v−1 − v,

(2.4)

Let v =
∑r
i=1 λi(v)ci be the spectral decomposition of v with respect to the Jordan frame

{c1, .., cr}. It has been observed that the right-hand side in the last equation of (2.4) is equal
to minus gradient of the classical logarithmic scaled barrier (proximity) function

Ψ(v) =
r∑
i=1

ψc(λi(v)),

where ψc (t) = t2−1
2 − log(t), is the so-called KF of the barrier function Ψ.

Coming back to system (2.4), we can convert it to
Adx = 0,
A
T ∆y√

µ + ds = 0,

dx + ds = −∇Ψ(v),

with
∇Ψ(v) = ψ′

c(v) := ψ′
c(λ1(v))c1 + · · ·+ ψ′

c(λr(v))cr.
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The main idea of kernel based primal-dual IPMs is to replace ψc by any strictly convex function
ψ : ]0,+∞[→ [0,+∞[ which is minimal at t = 1 with ψ(1) = 0. For a different ψ, one gets
a different search direction. In this work, we replace ψc by ψ which was defined previously in
(1.1). We also define the associated norm-based proximity measure as follows:

σ(v) =
1
2
∥dx + ds∥ =

1
2
∥∇Ψ(v)∥ . (2.5)

The generic primal-dual IPM for SCO is summarized in Algorithm 1.

Algorithm 1 : Generic primal-dual interior-point algorithm for SCO

Input
a threshold parameter τ ≥ 1;
an accuracy parameter ϵ > 0;
a fixed barrier update parameter
begin
x := e; s := e;µ := µ0;
while rµ ≥ ϵ do

begin (outer iteration)
µ : = (1 − θ)µ;
while Ψ(v) > τ do

begin (inner iteration)
x := x+ α∆x;
y := y + α∆y;
s := s+ α∆s;

v := P (w)−
1
2 x√

µ ; w := P (x)
1
2 (P (x)

1
2 s)−

1
2

end while(inner iteration)
end while(outer iteration)

3 The new kernel function and its properties

In this section, we provide some easily obtained properties of our new KF defined in (1.1) which
are used in the complexity analysis of Algorithm 1. For conveniency, we give the first three
derivatives of ψ for all t > 0

ψ′(t) = t−
coshp

( 2
t

)
coshp(2)

, (3.1)

ψ′′(t) =1 +
2p sinh

( 2
t

)
coshp−1 ( 2

t

)
coshp(2)t2

, (3.2)

and

ψ′′′(t) = − 4p
coshp(2)t3

coshp
(

2
t

)
t

+ sinh
(

2
t

)
coshp−1

(
2
t

)
+

(p− 1) sinh2 ( 2
t

)
coshp−2 ( 2

t

)
t

 .

(3.3)

From (3.2), we see that ψ′′(t) ≥ 1, ∀t > 0, thus we have the following lemma.

Lemma 3.1 (Lemma 2.1 in [3]). Let ψ be defined as in (1.1). Then

1
2
(t− 1)2 ≤ ψ (t) ≤

1
2
(ψ′(t))2, ∀t > 0.

The next lemma provides useful inequalities for the hyperbolic functions.



A primal-dual IPA for SCO based on a class of KFs 325

Lemma 3.2. One has

i) x sinh(x) − cosh(x) ≥ 0, ∀x ≥ c0, where 1 < c0 < 2 is the solution of the equation
coth(x) = x.

ii) 1
2x

2 sinh(x)− cosh2(x) < 0, ∀x ≥ 0.

Proof. For the first item, let h be the function defined on R as follows

h(x) = x sinh(x)− cosh(x),

then,

h′(x) = x cosh(x) > 0, ∀x > 0.

Thus, the result follows since h (c0) = 0. For the second item, using the Taylor expansion of the
hyperbolic sine function, we have

sinh(x) >
x2

2
, ∀x > 0.

This implies that

x2

2
sinh(x)− cosh2(x) < sinh2(x)− cosh2(x) = −1 < 0.

The next lemma reveals some key properties of the new KF.

Lemma 3.3. Let ψ be as defined in (1.1). Then,

(i) tψ′′(t)− ψ′(t) > 0, ∀t > 0.

(ii) tψ′′(t) + ψ′(t) > 0, ∀t > 0.

(iii) ψ′′ is monotonically decreasing on ]0,+∞[.

Proof. For the first and second item, from (3.1) and (3.2), we have

tψ′′(t)− ψ′(t) =
coshp−1 ( 2

t

)
coshp(2)

(
2p
t

sinh
(

2
t

)
+ cosh

(
2
t

))
> 0,

and

tψ′′(t) + ψ′(t) = 2t+
coshp−1 ( 2

t

)
coshp(2)

(
2p
t

sinh
(

2
t

)
− cosh

(
2
t

))
,

≥ 2t+
coshp−1 ( 2

t

)
coshp(2)

(
2
t

sinh
(

2
t

)
− cosh

(
2
t

))
> 0,

using the first item of Lemma 3.2 with x = 2
t ≥ 2, ∀t ≤ 1.

The inequality for the case t > 1, is directly obtained using the fact that ψ′(t) > 0, ∀t > 1.
The third item follows from (3.3) since ψ′′′(t) < 0, ∀t > 0.

Lemma 3.4 (Lemma 2.1.2 in [25]). A twice differentiable function ψ : R++ → R verifies prop-
erty (ii) of Lemma 3.3 if and only if it verifies one of the following equivalent properties

• ψ(
√
t1t2) ≤ 1

2 (ψ(t1) + ψ(t2)) , ∀t1, t2 > 0.

• the function ξ 7→ ψ(eξ) is convex.

We say that ψ is exponentially convex or shortly e-convex.

Let ϱ : [0,+∞[ −→ [1,+∞[ be the inverse function of ψ (t) for t ≥ 1, and ρ : [0,+∞[ −→

]0, 1] be the inverse function of −1
2
ψ′ (t) for 0 < t ≤ 1. Then we have the following lemma.
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Lemma 3.5. One has

(i) 1 +
√

2s
ψ′′(1) ≤ ϱ (s) ≤ 1 +

√
2s, ∀s ∈ [0,+∞[.

(ii) cosh
(

2
t

)
≤ cosh(2) (2z + 1)

1
p , for all (z, t) ∈ [0,+∞[×]0, 1] such that z = − 1

2ψ
′ (t) .

Proof. The first item can be easily obtained using Lemma 3.1, the fact that

ψ(t) =

∫ t

1

∫ x

1
ψ′′(y)dydx,

and
ψ′′(t) ≥ 1, ∀t > 0.

As for the second item, let z ≥ 0 and t ∈ ]0, 1] such that z = − 1
2ψ

′ (t) , then ρ (z) = t.
Using (3.1), we have

2z = −t+
coshp

( 2
t

)
coshp(2)

.

Thus,

coshp
(

2
t

)
= coshp(2)(2z + t)

≤ coshp(2)(2z + 1).

This completes the proof.

Theorem 3.6 ( Theorem 5.9.12 in [33]). If v ∈ K̊, then

σ(v) ≥ 1
2
ψ′ (ϱ(Ψ(v))) .

Corollary 3.7. Let σ(v) be defined by (2.5). Then, for any v ∈ K̊, we have

σ(v) ≥
√

Ψ (v)

2
.

Proof. The inequality is obtained using Lemma 3.1, Theorem 3.6 and (2.5).

Remark 3.8. Through the paper we assume that τ ≥ 1. Using Corollary 3.7 and the assumption
that Ψ(v) ≥ τ , we have

σ(v) ≥
√

1
2
.

4 Analysis of the algorithm

4.1 Growth behavior of the barrier function

We proceed by studying the effect of updating the barrier parameter µ on the value of the function
Ψ(v).

Theorem 4.1 (Theorem 5.9.1 in [33]). For any v ∈ K̊ and β > 1, we have

Ψ (βv) ≤ rψ

(
βϱ

(
Ψ (v)

r

))
.

Assuming that Ψ (v) ≤ τ just before the µ−update, we get the following upper bound

Ψ (v+) ≤ rψ

 ϱ
(τ
r

)
√

1 − θ

 , (4.1)

where v+ =
v√

1 − θ
and 0 ≤ θ < 1.
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Corollary 4.2 ([6]). Let 0 ≤ θ < 1, v+ = v√
1−θ . If Ψ(v) ≤ τ, then we have

Ψ(v+) ≤
θr + 2τ + 2

√
2τr

2(1 − θ)
:= Ψ0.

Ψ0 is an upper bound for Ψ(v+) during the process of the algorithm.

Proof. Recall that

ψ(t) =
t2 − 1

2
+ ψb(t),

where ψb(t) = − 1
coshp(2)

∫ t
1 coshp

( 2
x

)
dx. We can easily verify that ψb(1) = 0, ψ

′

b(1) = −1, and
ψb is monotonically decreasing on R++. Hence, we have

ψ(t) ≤ t2 − 1
2

, ∀t ≥ 1.

Putting t =
ϱ( τr )√
1 − θ

≥ 1 and using (4.1), we get

Ψ (v+) ≤
r

2

(
ϱ
(
τ
r

)2

1 − θ
− 1

)
.

Moreover, using the first item of Lemma 3.5, we obtain

Ψ (v+) ≤
r

2


(

1 +
√

2τ
r

)2

1 − θ
− 1


=
θr + 2τ + 2

√
2τr

2(1 − θ)
.

4.2 Decrease of the proximity during a (damped) Newton step

In this subsection, we want to compute a default step size α such that (x+, y+, s+) defined in
Algorithm 1 are feasible and the proximity function decreases sufficiently.

After a damped step, we have

x+ =x+ α∆x =
√
µP (w)

1
2 (v + αdx),

s+ =s+ α∆s =
√
µP (w)−

1
2 (v + αds).

Hence, we can rewrite the new scaled vector v+ as follows

v+ = P (w+)
− 1

2P (w)
1
2 (v + αdx) = P (w+)

1
2P (w)−

1
2 (v + αds),

with
w+ = P (x+)

1
2 (P (x+)

1
2 s+)

− 1
2 = P (s+)

− 1
2 (P (s+)

1
2x+)

1
2 .

Now we recall the following famous lemma which provides an important similarity property.

Lemma 4.3 (Proposition 5.6 in [33]). One has

v+ ∼
(
P (v + αdx)

1
2 )(v + αds)

) 1
2
.

where the symbol ∼ denotes the similarity relation between two matrices.
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A direct consequence of this lemma is that

Ψ(v+) = Ψ

(
(P (v + αdx)

1
2 )(v + αds))

1
2

)
.

Now, we consider the decrease in Ψ as a function of α noted f defined by

f(α) = Ψ (v+)− Ψ (v) = Ψ

(
(P (v + αdx)

1
2 )(v + αds))

1
2

)
− Ψ (v) .

The following proposition is a direct consequence of the exponentially convexity property of ψ.

Proposition 4.4 (Theorem 4.3.2 in [33]). If x, s ∈ K̊, one has

Ψ

(
(P (x)

1
2 s)

1
2

)
≤ 1

2
(Ψ(x) + Ψ(s)) .

Using the previous proposition, it follows that

Ψ (v+) ≤
1
2
(Ψ(v + αdx) + Ψ(v + αds)) .

Thus
f(α) ≤ 1

2
(Ψ(v + αdx) + Ψ(v + αds))− Ψ(v).

For simplicity, we put σ := σ(v).

Theorem 4.5 (Theorem 5.9.10 in [33]). Let us set ᾱ =
1

ψ′′ (ρ (2σ))
, as the default step size.

Then

f(ᾱ) ≤ − σ2

ψ′′ (ρ (2σ))
. (4.2)

We can obtain the upper bound for the decreasing value of the proximity during an inner
iteration by the next theorem.

Theorem 4.6. If ᾱ is the default step size and σ ≥ 1, then we have

f (ᾱ) ≤ −
√

2(Ψ(v))
p−1

2p

72(1 + p cosh(2))
.

Proof. From (3.2) , we have

ψ′′(t) =1 +
2p sinh

( 2
t

)
coshp−1 ( 2

t

)
coshp(2)t2

.

Using the second item of Lemma 3.2 with x = 2
t ≥ 1, ∀t ≤ 1, we get

ψ′′(t) ≤ 1 +
p

coshp(2)
coshp+1

(
2
t

)
, ∀t ≤ 1.

Let t = ρ (2σ) . Lemma 3.5 implies that

ψ′′ (ρ (2σ)) ≤ (1 + p cosh(2))(4σ + 1)
p+1
p .

Using Remark 3.8 and (4.2), it follows that

f (ᾱ) ≤ − σ
p−1
p

36(1 + p cosh(2))

≤ −
√

2(Ψ(v))
p−1

2p

72(1 + p cosh(2))
,

where the last inequality is obtained using Corollary 3.7. This completes the proof.
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4.3 Iteration complexity

Now, we calculate the number of inner iterations required by the algorithm to return to the
situation where Ψ(v) ≤ τ after µ−update. Let us define the value of Ψ(v) after µ−update as
Ψ0, and the subsequent values in the same outer iteration as Ψi, i = 1, ...,K, where K stands for
the total number of inner iterations in the outer iteration. The decrease on each inner iteration is
given by

Ψi+1 ≤ Ψi −
√

2
72(1 + p cosh(2))

Ψi

p−1
2p .

Lemma 4.7 (Proposition 2.2 in [26]). Let t0, t1, ..., tk be a sequence of positive numbers such
that

tk+1 ≤ tk − βt1−γk , k = 0, 1, ...,K − 1,

where β > 0 and 0 < γ ≤ 1. Then, K ≤
[
tγ0
βγ

]
.

Now, we derive an upper bound for the total number of inner iterations in an outer iteration.

Lemma 4.8. One has

K ≤ 72
√

2 (1 + p cosh(2)) p
p+ 1

(Ψ0)
p+1
2p .

Proof. The inequality is obtained applying the previous lemma for tk = Ψk, γ =
p+ 1

2p
and

β =
√

2
72(1+p cosh(2)) .

We arrive at the final result of this section which summarizes the complexity bound.

Theorem 4.9. Let Ψ0 be the value defined in Corollary 4.2 and let τ ≥ 1. Then, the total number
of iterations to obtain an approximation solution with rµ ≤ ϵ is bounded by[

72
√

2 (1 + p cosh(2)) p
p+ 1

]
Ψ

p+1
2p

0
log r

ϵ

θ
.

Proof. An upper bound for the total number of iterations is obtained by multiplying the upper
bound K by the number of barrier parameter updates, which is bounded above by 1

θ (log r
ϵ ) (see

[28, Lemma II.17, page 116]). Thus, we obtain the result due to the above lemma.

For large-update methods with τ = O (r) and θ = Θ (1) , the complexity of the primal-dual
interior-point algorithm for SCO based the new KF is O

(
pr

p+1
2p log r

ϵ

)
iterations complexity. An

interesting choice is p = log r, which gives O
(√
r log r log r

ϵ

)
iterations complexity.

5 Numerical tests

In our computational study, we consider LO as a special case of SCO. We implemented our
algorithm as well as the algorithms based on the KFs provided in Table 1 in MATLAB R2012b.
The considered algorithms are all tested on a selection of LO problems from NETLIB [11].
Our experiments are performed on Supermicro dual-2.80 GHz Intel Core i5 server with 4.00 Go
RAM for the following parameters ϵ = 10−8, τ = n, and θ ∈ {0.7, 0.99}.

In order to make a fair comparison, we chose a practical step size α as in [17] i.e.
α = min(αx, αs), with αx and αs defined as follows

αx = min
i=1..n

− xi
∆xi

if ∆xi < 0,

1 elsewhere.
αs = min

i=1..n

− si
∆si

if ∆si < 0,

1 elsewhere.

Since there are parameters involved in the definition of all the considered KFs, we chose a
common value of these parameters: p = 2. We also tested our KF for p = 1, 3, 4. This left us
with 8 different KFs. The summary of results is given in Table 2.
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Table 1: Considered KFs with their complexity bounds.

KF Complexity Ref.

ψ1,p(t) =
t2−1

2 −
∫ t

1
e−1

(ex−1)p dx, p ≥ 1 O
(
pn

p+1
2p log n

ϵ

)
[8]

ψ2,p(t) =
t2−1

2 −
∫ t

1 e
p
x−pdx, p ≥ 1 O

(
p
√
pn log n

ϵ

)
[5]

ψ3,p(t) =
t2−1

2 −
∫ t

1 e
1

xp −1dx, p ≥ 1 O
(
p
√
n(logn)

p+1
p log n

ϵ

)
[2]

ψ4,p(t) =
t2−1

2 −
∫ t

1
1
x2p e

p
x−pdx, p ≥ 1 O

(
p
√
n(1 + 1

p logn)2 log n
ϵ

)
[20]

ψnew,p(t) =
t2−1

2 − 1
coshp(2)

∫ t
1 coshp( 2

x)dx, p ≥ 1 O
(
pn

p+1
2p log n

ϵ

)
New

Table 2: Number of iterations for θ = {0.7, 0.99}.

Problem θ ψ1,2 ψ2,2 ψ3,2 ψ4,2 ψnew,1 ψnew,2 ψnew,3 ψnew,4

A
FI

R
O 0.7

0.99
110
112

99
108

110
106

106
125

102
99

96
106

108
119

106
105

B
L

E
N

D

0.7
0.99

45
75

52
74

69
57

73
58

48
87

82
50

47
56

55
74

N
U

G
6

0.7
0.99

74
56

89
71

88
67

107
51

83
70

69
59

74
55

71
71

N
U

G
7

0.7
0.99

92
67

68
70

86
78

73
80

64
94

83
83

74
84

75
74

SC
TA

P2 0.7
0.99

68
86

47
84

70
71

44
99

82
47

78
76

84
89

72
73

SC
TA

P3 0.7
0.99

75
47

50
45

49
46

46
47

77
49

75
45

79
50

71
49

5.1 Comments

Recall that the numerical results were obtained by performing Algorithm 1 with the KFs defined
in Table 1 on six NETLIB problems. For each example, we used bold font to highlight the best,
i.e., the smallest, iteration number. From Table 2 we may conclude a few remarks. First, the
iteration numbers of the algorithm based on the new KF depend on the values of the parameter
p. In fact, the value p = 2 gives better iteration numbers in general. For AFIRO problem, our KF
outperformed all other KFs for both values of θ. In all cases, we can observe that the efficiency
of each KF depends on the problem under consideration and the value of θ.

Based on these results, we conclude that the algorithm based on the new KF attains the most
wins among the considered algorithms.

6 Conclusions and remarks

In this paper, we introduce a new kernel-based interior-point algorithm for symmetric cone pro-
gramming which includes linear programming, second-order cone programming and semidefi-
nite programming as special cases. The proposed algorithm differs from the existing algorithms,
since the barrier term involved in its definition is of hyperbolic type. We prove that, by choos-
ing a special value of the parameter p, our algorithm has the same complexity as the currently
best-known IPMs for SCO with large-update methods. Finally, the numerical results show that
the newly proposed KF is well promising and outperforms some existing KFs in the literature.
In fact, the new algorithm had the smallest number of iterations in most cases.
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As a further research we would like to extend our approach to more general optimization
problems. Another question of interest is whether the new KF can be used to design an efficient
infeasible interior-point algorithm as in [27, 13].
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