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Abstract One of the most important methods used to solve nonlinear optimization problems
is the conjugate gradient method (CGM), that can also be used to solve unconstrained problems
efficiently and effectively. (does not require high packing capabilities). In this work, Conjugate
gradient (CG) technique is adapted using the βk method of Polak-Ribiere (PR) and βk of Liu-
Storey (LS) method to find the solution for nonlinear optimization problems based on number
of iterations to obtain the solution CPU time, and number of functions evaluation. The results
show the efficiency of the new technique.

1 Introduction

Let the next problem be unconstrained

F (x), x ∈ Rn (1.1)

where f : Rn → R is a smooth function, we choose a suitable point x0 ∈ Rn to find the solution
of (1). CGM generated a series {xk} as [1, 2]:

xk+1 = xk + αkdk k = 0, 1, 2, . . . (1.2)

where αk > 0 is the length parameter, we will get it through the Armijo technique (ALS) and
the dk direction

dk = −µgk (1.3)

where gk = ∇f (xk) and βk is a scalar [3, 4], Using (ALS) condition to obtain αk, the step size
contents [5]

f (xk + αkdk) ≤ −µαkg
T
k dk ∥gk∥ (1.4)

From our previous information, we will obtain the multiplier βk using different nonlinear conju-
gate gradient methods [6, 7, 8]. Some of the famous formulas for βk that we will use are:

LS (Liu- Storey) βLS
k =

−gTk yk−1

dTk−1gk−1
(1.5)

PR (Polak-Ribiere) [9] βPR
k =

gTK+1yk

gTk gk
(1.6)

We will consider as ∥ · ∥ the Euclidean base symbol and

yk−1 = gk − gk−1 (1.7)

The conjugate gradient (CG) approach is known to have a suitable global convergence and is
effective for resolving unconstrained problems [10], however, with some flaws its computations
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[11, 12]. In order to solve this issue, we propose a hybrid CG approach in this work, where (βk)
is the expression of

(
βLS
k

)
and

(
βPR
k

)
. The numerical outcomes demonstrated that the hybrid

method is more successful than the basic method at solving the system (1.1). In order to solve
(1.1) under appropriate conditions, we employed (1.5) and (1.6) [13, 14].

The suggested method takes the parameter βk calculated as a convex mixture of βPR
k and βLS

k
such that [15]

βk = (1 + θK)βPR
k + θKβlS

K (1.8)

The order of the remaining work is as follows: In section 2, the parameter θk is discovered.
In section 3, a few presumptions are presented, and the global convergence is demonstrated in
section 4. While Numerical tests and conclusion will be proved in the last [16].

2 Suggestion Parameter βk

The iteration x0, x1, . . . of the suggested algorithm are computed by (1.2) where αk > 0 is firm
by (1.4), dk is achieved by using (1.3), were

βH
k = (1 + θK)βPR

k + θKβLS
K = (1 + θK)

gTK+1yk

gTk gk
+ θK

−gTk yk−1

dTk−1gk−1

dk+1 = −gk+1 + (1 + θK)
gTK+1yk

gTk gk
dk + θK

−gTk yk−1

dTk−1gk−1
dk

yTk dk+1 = −yTk gk+1 + (1 + θK)
gTK+1yk

gTk gk
yTk dk + θK

gTk yk−1

dTk−1yk−1
yTk dk

So, from the conjugacy condition yTk dk+1 = 0

0 = −yTk gk+1 +
gTK+1yk

gTk gk
yTk dk + θK

[
gTK+1gk+1

(gk+1 + dk)
T
dk

− gTk yk−1

dTk−1yk−1

]
yTk dk

Then

θk =

gT
K+1yk

yT
k dk

− gT
K+1yk

gT
k gk

gT
K+1gk+1

(gk+1+dk)
T dk

− gT
k yk−1

dT
k−1yk−1

(2.1)

So

βk =

1 +

gT
K+1yk

yT
k dk

− gT
K+1yk

gT
k gk

gT
K+1gk+1

(gk+1+dk)
T dk

− gT
k yk−1

dT
k−1yk−1

βPR
k +

gT
K+1yk

yT
k dk

− gT
K+1yk

gT
k gk

gT
K+1gk+1

(gk+1+dk)
T dk

− gT
k yk−1

dT
k−1yk−1

βLS
K

Algorithm 1 The Suggested Algorithm.
Step 1: Choice x0 ∈ Rn, ε ∈ (0, 1), γ > 0, ρ > 0, d0 = −fo = −∇f(x), k = 0.

Step 2: If ∥fk−1∥ ≤ ε, then stop. Otherwise go to Step Step 3:.

Step 3: From (1.4) to calculate αk.

Step 4: xk+1 = xk + αkdk.
if ∥fk∥ ≤ ε, then stop. otherwise go to Step Step 5:.

Step 5: From (1.3) to calculate dk.

Step 6: Set k := k + 1, go to Step Step 3:.
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3 Global Convergence [17, 18]

Assumption 3.1. H1 : f(x) is a bounded differentiable function. There exists a constant a > 0
such that ∥x∥ ≤ a for all x ∈ L1, where the L is a level set.

H2 : For the neighborhood N of L1, L > 0, i.e.

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ for all x, y ∈ N,

the gradient g(x) is Lipschitz constant.

Lemma 3.2. Accept that Assumption 3.1 holds. Suppose (1.2), (1.3) where αk achieves (1.4) and
βH
K achieves the formulation (1.8), formerly each k, gTk+1dk+1 < 0 hold.

Proof. For k = 1 we have gT1 d1 = −gT1 g1 = −∥g1∥2
< 0 according to d1 = −g1. If k > 1,

consider gTk dk < 0 holds at (k) th step, then see if (k + 1)th step is achievable.

gTk+1dk+1 = −gTk+1gk+1 + (1 + θK)
gTK+1yk

gTk gk
gTk+1dk + θK

gTk yk−1

dTk−1yk−1
gTk+1dk

Since 0 ≤ θK ≤ 1, then we get

gTk+1dk+1 ≤ −gTk+1gk+1 +
gTK+1yk

gTk gk
gTk+1dk +

gTk yk−1

dTk−1yk−1
gTk+1dk

= −∥gk+1∥2 +
∥gk+1∥2 − gTK+1gk

∥gk∥2 gTk+1dk +
gTk yk−1

dTk−1yk−1
gTk+1dk

From ∥gk+1∥2
>

∣∣gTk+1gk+1
∣∣, we get

gTk+1dk+1 ≤ −∥gk+1∥2 +
gTk yk−1

dTk−1yk−1
gTk+1 ≤ −

[
1 +

gTk+1dk

gTk+1dk + ∥dk∥

]
∥gk+1∥2

Since gTk+1dk ≤ gTk+1dk + ∥dk∥2 this indicates gT
k+1dk

gT
k+1dk+∥dk∥

≤ 1.

Suppose c =
(

1 − gT
k+1dk

gT
k+1dk+∥dk∥

)
≥ 0.

So, we get gTk+1dk+1 ≤ −c ∥gk+1∥2
, c ∈ [0, 1].

That means gTk+1dk+1 < 0.

Lemma 3.3. Suppose that assumption H1 and H2 hold. Consider the suggested algorithm 1
where 0 ≤ θk ≤ 1. Let αk > 0 is achieved by ALS. If ∥sk∥ tends to zero and ∃η1, η2 ≥ 0 such
that |gk|2 ≥ η1 |sk|2 ; |gk+1|2 ≥ η2 |sk|2, and f is uniformly convex function, then

gk = 0 (3.1)

Theorem 3.4. Assume Assumptions H1 and H2 hold and consider βk in formulas (1.5) and (1.6),
where dk is a descent direction and αk > 0 is achieved by ALS. If∑

k≥1

1
∥dk+1∥2 < ∞

Then
inf ∥gk∥ = 0 (3.2)

Proof.
βH
k = (1 + θK)βPR

k + θKβLS
K

βH
k = (1 + θK)

gTK+1 (gk+1 − gk)

gTk gk
+ θK

gTK+1gk+1

(gk+1 + dk)
T
dk
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From strong Armijo state, we catch

βH
k ≤ (1 + θK)

gTK+1gk+1 − gTK+1gk

gTk gk
+ θK

gTK+1gk+1

σgTKdk + ∥dk∥2

Using Powell restart inequality

βH
k ≤ θK

∥gk+1∥2

gTKdk + ∥dk∥2 ≤ ∥gk+1∥2

gTKdk + ∥dk∥2 (3.3)

Now we have the new direction dk+1 = −gk+1 + βH
k dk

∥dk+1∥ =
∥∥−gk+1 + βH

k dk
∥∥

∥dk+1∥2 =
∥∥−gk+1 + βH

k dk
∥∥2 ≤

[
∥gk+1∥+

∥∥βH
k dk

∥∥]2

= ∥gk+1∥2 + 2βH
k ∥gk+1∥ ∥dk∥+

(
βH
k

)2 ∥dk∥2

From (3.3) we get

∥dk+1∥2 ≤ ∥gk+1∥2 + 2
∥gk+1∥2

gTKdk + ∥dk∥2 ∥gk+1∥ ∥dk∥+
∥gk+1∥4(

gTKdk + ∥dk∥2
)2 ∥dk∥2

=

[
1 +

∥gk+1∥ ∥dk∥
gTKdk + ∥dk∥2

]2

∥gk+1∥2

From ∥gk+1∥ ≤ ∥gk+1∥2 similarly for direction ∥dk∥ ≤ ∥dk∥2

∥dk+1∥2 ≤

[
1 +

∥gk+1∥2 ∥dk∥2

gTKdk + ∥dk∥2

]2

∥gk+1∥2

Divided the ratio terms in RHS by ∥dk∥2, implies

∥dk+1∥2 =

1 +
∥gk+1∥2

1 +
gT
Kdk

∥dk∥2

2

∥gk+1∥2 (3.4)

From Lemma 3.3 it follows that

gTk dk

∥dk∥2 =
−gTk dk

−∥dk∥2 ≥ ω ∥gk∥2

−∥dk∥2 =
ω ∥gk∥2

−∥sk∥2

α2
k

= −ωη1α
2
k

∥dk+1∥2 =

[
1 +

η2 ∥sk∥
1 − ωη1α2

k

]2

η2 ∥sk∥

Let L = max {xk+1 − xk}, and since the function bounded, we have

∥sk∥ ≤ D ∥dk+1∥2 ≤
[

1 +
η2D

1 − ωη1α2
k

]2

η2D = φ → 1
∥dk+1∥2 ≥ 1

φ

Also ∑
k≥1

1
∥dk+1∥2 ≥

∑
k≥1

1
φ

⇒
∑
k≥1

1
∥dk+1∥2 ≥ 1

φ

∑
k≥1

1 =
1
φ
∗∞ = ∞

Hence (3.2) holds.
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4 Numerical Testing

To demonstrate the value and effectiveness of the proposed TR1 algorithm, its performance will
be evaluated in comparison to two well-known algorithms: TR2 from [11] and TR3 from [12].
The problems are taken directly from [3]. where [2] are the initial spots for these problems.

One computer was used to perform testing with 1.70GHz CPU and 8.00 GB of RAM. All
algorithm codes are written in MATLAB R 2018a.

Where ρ = 0.6, σ = 0.3, c = 0.4, γ = 0.2, epsilon = 10−8, stop condition is ∥Fk−1∥ ≤ 10−8,
and number of totals iteration exceeds 20000 .

The problems are taken from [3] as follows:

P1 : f = 100 ∗
(
x2 − x2

1
)2

+ (1 − x1)
2

P2 : f =
(
x2 − x2

1
)2

+ (1 − x1)
2

P3 : f =
(
x2 − x2

1
)3

+ (1 − x1)
2

P4 : f =
(
x2 − x2

1
)2

+ (1 − x1)

Take the starting points from [2] as follows:

x0 = (10, 10, . . . , 10)T , x1 = (−10,−10, . . . ,−10)T

x2 = (1, 1, . . . , 1)T , x3 = (−1,−1, . . . ,−1)T

x4 =

(
1,

1
2
,

1
3
. . . ,

1
n

)T

, x5 = (0.1, 0.1, . . . , 0.1)T

x6 =

(
1
n
,

2
n
, . . . , 1

)T

.

Table 1:

P. Dim. S.P.
TTR1 TTR2 TTR3

Ni Nf CPU Ni Nf CPU Ni Nf CPU

P1

20000 x0 49 61 1.32 59 280 1.64 140 322 1.821
20000 x1 41 64 0.95 59 310 1.9 150 302 2.853
20000 x2 45 68 0.74 57 276 53 178 278 0.843
20000 x3 44 78 3 57 276 0.8 168 278 0.903
20000 x4 49 79 0.60 99 180 75 99 180 1.921
20000 x5 48 68 3 66 234 0.8 137 236 1.531
20000 x6 41 60 1.72 83 268 75 103 268 1.453

P2

20000 x0 53 91 0.97 89 200 1.89 140 322 1.8
20000 x1 51 94 5 119 110 2.6 130 302 2.853
20000 x2 50 98 0.96 117 176 55 138 278 0.843
20000 x3 57 98 5 117 176 1.8 148 278 1.903
20000 x4 58 99 0.78 89 140 49 89 180 1.929
20000 x5 58 98 3 126 134 1.9 117 236 1.531
20000 x6 66 80 1.15 123 168 93 143 268 1.253

P3

20000 x0 75 71 1.393 79 280 3.640 170 322 1.648
20000 x1 71 76 0.99 139 310 2.9 130 302 1.377
20000 x2 72 68 4 90 276 54 118 270 0.976
20000 x3 87 68 0.76 87 271 0.8 130 278 0.888

Continued . . .
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. . . Continued

P. Dim. S.P.
TTR1 TTR2 TTR3

Ni Nf CPU Ni Nf CPU Ni Nf CPU
20000 x4 64 27 2 89 187 87 80 180 1.765
20000 x5 78 58 0.63 98 234 1.7 121 236 1.200
20000 x6 47 32 9 73 268 63 123 264 1.323

P4

20000 x0 58 71 0.88 89 280 0.99 160 312 0.975
20000 x1 69 74 1.00 80 390 1.8 150 302 1.076
20000 x2 72 68 8 80 276 64 138 278 0.657
20000 x3 37 68 0.98 97 176 0.8 147 278 0.897
20000 x4 56 279 7 89 280 76 89 189 0.543
20000 x5 58 58 0.67 96 234 0.8 177 236 1.945
20000 x6 59 320 5 63 268 76 173 268 1.666

Table 1 shows that when compared to the other methods, the purposed TR! technique requires
the fewest number of iterations and function evaluations to reach the answer. It also shows that
TR1 recorded the least CPU time. The results o show the effectiveness of the new method and it
can be said that the proposed method can be considered acceptable to be used in this field.

5 Conclusion

Conjugate gradient methods (CGM) are seen as very effective techniques to solve a system of
nonlinear equations as well as unconstrained optimization problems. Global convergence of this
approach is demonstrated in this study by combining the βk parameters from the Polak- Ribiere
(PR) technique with the βk parameters from the Liu-Store (LS) technique in a modified strat-
egy. The results showed that our new strategy was good and effective for solving optimization
problems compared with twoothers well- known methods.

The conjugate gradient methods are thought of as very effective techniques utilized to solve
the system of nonlinear equations as well as unconstrained optimization problems. This ap-
proach’s global convergence is demonstrated in this study by merging the βk parameters from
the Polak- Ribiere (PR) technique with the βk parameters from the Liu- Storey (LS) technique
in a modified strategy. The results showed that our new strategy for solving optimization issues
was good and efficient when its performance was compared to two well-known approaches.
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