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Abstract The main focus of this paper is to introduce and analyze numerical methods for
solving nonlinear Fredholm integro-differential equations. Two specific methods, namely ho-
motopy perturbation and variational iteration methods, are implemented in this study. To assess
the accuracy of the proposed schemes, extensive computational testing is conducted. The conver-
gence analysis is performed using contracting mapping, which is a common method for proving
the convergence of iterative algorithms. Additionally, the paper explores the error bound of an
approximate solution generated from the partial sum of the series. This provides insights into the
quality of the approximation.Comparison studies between the proposed methods are also carried
out to evaluate their performance. The accuracy of the methods is assessed through numerical
examples and compared against existing solutions. To further analyze the errors, l∞ and l2 norms
are used. These norms quantify the differences between the approximate and actual solutions,
providing a measure of accuracy. Finally, the efficiency of the approach is evaluated, considering
factors such as computational complexity and execution time. The results of the numerical ex-
periments are compared with previous studies and analytical solutions to validate their reliability
and compatibility.

1 Introduction

Integro-differential equations (IDEs) play a crucial role in the modeling and analysis of var-
ious engineering applications. These equations arise in a wide range of disciplines, includ-
ing physics, chemistry, biology, and finance. An IDE combines both integrals and derivatives
of functions, making them versatile in representing complex phenomena. Nonlinear Fredholm
integro-differential equations (NFIDs) are a specific type of IDE that have significant importance
in the field of functional analysis. NFIDs find applications in diverse areas such as mechanics,
electric fields, biochemistry, and finances. They provide a framework for studying nonlinear
behaviors and phenomena that involve interactions between different variables and their deriva-
tives. Given the wide range of real-world problems that can be described by IDEs, including
NFIDs, developing efficient and accurate numerical methods for solving these equations is of
great importance in many fields of research and engineering.[1, 2, 3, 4, 5].

The second kind of nonlinear Fredholm integro-differential equation that will be considered
in this work has the form

y′′(x) = f(x) + λ

∫ b

a

k(x, t)G (y(t)) dt, (1.1)

with initial conditions
y(a) = α, y′(a) = β,
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where k(x, t), f(x) are a known functions, G is nonlinear function.

Various methods for solving Fredholm integro-differential equations have been extensively stud-
ied by several authors[6, 7, 8, 9]. For instance, Alao et al. [10] employed the Adomian decompo-
sition and variational iteration methods to solve integro-differential equations. Behzadi at el. [2]
focused on solving a specific class of nonlinear Volterra-Fredholm integro-differential equations.
Moreover, numerous authors have investigated different methods for tackling integro-differential
equations, [11, 12, 13]. A. Daraghmeh, N. Qatanani, and H. Jarar’a focused on three numeri-
cal methods to solve linear systems of Fredholm integral equations. These methods include the
Legendre wavelet method and the Taylor series expansion method. [14]. On the other hand,
Singh proposed a novel approach to develop a numerical solution to obtain the solution of linear
Volterra-type integral equations. This approach involved obtaining asymptotic approximations
to solutions [15]. Furthermore, Jalal and Malik investigated the infinite system of Hammerstein-
type integral equations in two variables. Their study aimed to analyze the behavior and properties
of these equations [16].
The Homotopy perturbation method (HPM) is a powerful technique that combines the ideas of
the homotopy method from topology with the traditional perturbation approach. This coupling
allows for the approximation or analytical solution of various problems that arise in different
scientific fields.One of the key advantages of HPM is its ability to rapidly converge the solu-
tion series in many cases. This leads to efficient and effective solutions with a small number
of iterations. Moreover, HPM is known for providing good approximations of solutions, which
is beneficial in practical applications. The HPM approach has been extensively used to solve
a wide range of problems, particularly those involving integral equations. These include vari-
ous scientific issues spanning different fields, and specific examples can be found in references
[17, 18, 19]. Moreover, HPM has been used to address integral equations in particular, as refer-
ences [18, 20, 21, 22, 23, 24].
The aim of this work is to utilize both the homotopy perturbation method (HPM) and the veri-
tional iteration method to find approximate solutions Eq.(1.1). The primary objective of this
study is to determine a convergence condition for the solutions obtained through these meth-
ods. This condition will help ensure that the solutions converge to the true solution of Eq.(1.1).
Additionally, the authors seek to estimate the error associated with the approximate solutions
obtained using HPM and the veritional iteration method. This error estimation is crucial in
assessing the accuracy and reliability of the obtained solutions. By providing a convergence
condition and error estimation, the authors aim to establish the validity and effectiveness of the
employed methods.
The present study is prepared as follows: In section 2, the Homotopy method with some lemmas
are given. in section 3 and 4 the convergence theorem of the proposed methods and extension
of nonlinear integro-differential equations are given. The error estimate of proposed methos are
proved in section 5. The variational iteration method is explained in section 6. Finally, Some
numerical experiments with conclusion are shown in section 7 and 8 respectively.

2 Homotopy Perturbation Method (HPM)

The non-linear operator equation is defined as follows:

A(y)− f(x) = 0, x ∈ D, (2.1)

subject to the boundary conditions

B
(
y,
∂y

∂n

)
= 0, x ∈ Ω,

where x and y are independent and dependent variables vector, respectively. Let f(x) is a known
function, and Ω is the boundary of domain D, and A is a nonlinear differential operator formed
by the sum of operators L and N , where L is a linear operator and N is a non-linear operator as
well as B is a boundary operator.
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We construct a homotopy, z(x, p) : D × [0, 1] −→ R according to HPM[25], which satisfies

H(z, p) = (1 − p) (L(z)− L(y0))

+p (L(z) +N(z)− f(x)) = 0, (2.2)

where y0 is an initial approximation verifying the boundary conditions, and p ∈ [0, 1], x ∈ D.

The minor embedding parameter is symbolized by p. The solution of Eq.(2.2) expressed as a
power series with the parameter p as the following

z(x) = z0(x) + pz1(x) + p2z2(x) + · · · . (2.3)

Using p = 1, the solution for Eq.(2.1) expressed as

y(x) = lim
p→1

z(x) =
∞∑
i=0

zi(x). (2.4)

The component of a series solution of Eq.(2.4) are obtained by resolving systems of equations
formed by replacing Eq.(2.3) with Eq.(2.2) and comparing the identical powers of p. Let’s rep-
resent (j + 1)th terms of the approximate solution ŷj(x) as

ŷj(x) =
j∑

m=0

zm(x). (2.5)

Lemma 2.1. The convergence of Eq.(2.4) is a solution of Eq.(2.1).

Let X and Y be a complied normed spaces (Banach space), then the operator A : X → Y is
a nonlinear contraction mapping if there exist a constant α ∈ [0, 1), such that ∥A(z)−A(ẑ)∥ ≤
α∥z − ẑ∥ for all z, ẑ belong to Y ; Furthermore, according to Banach’s fixed point theorem, we
have the fixed point y, in other words A(y) = y.

If Considering the sequence created by the HPM as the form

ŷj = A(ŷj−1), ŷj−1 =
j−1∑
i=0

yi,

where i is a posative integer number.
Suppose

ŷ0 = z0 = y0 ∈ Bx(y), where { Bx(y) = y∗ ∈ X : ∥y∗ − y∥ ≤ x} ,
then we have

(i) ∥ŷj − y∥ ≤ αj∥z0 − y∥,

(ii) ŷj ∈ Bx(y),

(iii) limj−→∞ ŷj = y.

Proof. (i) Using the induction on j, for j = 1, we obtain

∥ŷ1 − y∥ = ∥A(ŷ0)−A(y)∥ ≤ α∥z0 − y∥

Let ∥ŷj−1 − y∥ ≤ αj−1∥ŷ0 − y∥ be an induction hypothesis,then we obtain

∥ŷj−1 − y∥ = ∥A(ŷj−1)−A(y)∥
≤ α∥ŷ0 − y∥
≤ ααj−1∥z0 − y∥ = αj∥z0 − y∥.
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(ii) Applying (i), we have

∥ŷj − y∥ ≤ αj∥z0 − y∥ ≤ αjx < x,

then ŷj ∈ Bx(y).

(iii) Since we have ∥ŷ − y∥ ≤ αj∥z0 − y∥ and limj→∞ αj = 0 , then limj→∞ ∥ŷ − y∥ = 0,

that is
lim
j→∞

ŷ = y.

Before attempting to demonstrate the method’s convergence theorem for the nonlinear in-
tegral problem, we present a new formula to simplify the proof of the convergence theorem.
Recalling Eq.(2.2), yields

H(z, p) = [L(z)] + p [N(z)] = f(x), (2.6)

if z =
∑∞

j=0 p
nzj , where y = z|p=1, then the homotopy in Eq.(2.6) expressed as

H(z, p) = L

( ∞∑
n=0

pnzn

)
+ p

[ ∞∑
n=0

pnBn(z0, · · · , zn)

]
= f(x), (2.7)

the decomposed polynomials of the nonlinear operator are denoted by Bn, n = 0, 1, 2, · · · and
defined by

N(z) =
∞∑
n=0

pnBn(z0, · · · , zn). (2.8)

Therefore, the decomposed polynomials Bj are given as

Bn(z0, · · · , zn) =
1
n!

 ∂n

∂pn
N

 n∑
j=0

pnzj


p=0

(2.9)

where, n = 0, 1, 2, · · · .

3 Assumption

Let N(z) be a non-linear operator and z is described as z =
∑n

j=0 p
nzj , then

(i)

[
∂n

∂pn
N(z)

]
p=0

=

 ∂n

∂pn
N

 ∞∑
j=0

pnzj


p=0

=

 ∂n

∂pn
N

 n∑
j=0

pnzj


p=0

,

(ii)

N(z) =
∞∑
n=0

pnBn(z0, · · · , zn).
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Recalling Eq.(2.7) and linear differential operator L along with applying boundary and initial
conditions, imply that we have

z0(x) + pz1(x) + p2z2(x) + · · ·+ L−1 [pB0(z0)]+

L−1 [p2B1(z0, z1)
]
+ L−1 [p3B2(z0, z1, z2)

]
+ · · ·

= L−1 [f(ρ)] . (3.1)

The above components z0, z1, z2, · · · computed recursively by implemting the coefficients with
powers of p, gives

z0 = ψ0

zn = −L−1 [Bn−1(z0, · · · , zn−1)] , n = 1, 2, · · · . (3.2)

The zeroth term ψ0 reflects the components produced via applying L−1 to the original function
f(x) under the provided condition. We may now described the (n + 1) component’s truncated
series solution ûn of Eq.(2.1) which is defined as

ŷj(x) =
j∑

m=0

pmzm|p=1 =
j∑

m=0

zm . (3.3)

The homotopy in Eq.(2.7) is identical to the recurrence relation in Eq.(3.2). Consider the non-
linear Fredholm integral equation the second type is formed as

y(x) = f(x) + λ

∫ b

a

k(x, t)G (y(t)) dt. (3.4)

The function f(x) in interval [a, b] is a bounded for all x, and the kernel |k(x, t)| ≤ µ, is
abounded, since there exist a posative integer number β this yields G(y(t)) be a Lipschitz conti-
nous for

|G(y)−G(z)| ≤ β|y − z|
and the operator N(y) is expressed as a nonlinear function G(y(t)). in Eq.(2.1) In this situation,
the identity operator is L = L−1 = I with the function G(y(t)) according to the Eq.(2.9) may
be written as

G(y(t)) =
∞∑
n=0

Bn(z0, · · · , zn), (3.5)

where Bn is the sum of decomposed polynomials defined by the formula

Bn(z0, · · · , zn) =
1
n!

 ∂n

∂pn
G

 n∑
j=0

pnzj


p=0

, n = 0, 1, 2, · · · . (3.6)

From Eq.(3.3) and (3.5), we can write

G(ŷn) =
n∑

i=0

Bi(z0, · · · , zi), (3.7)

where ŷn =
∑n

i=0 zi(x) is the partial sum of the solutions.

The nonlinear Fredholm integral in Eq.(3.4) may be solved by applying the recursive relation
in Eq.(3.2) with L = L−1 = I and f(x), and that is

y(x) =
∞∑
i=0

zi(x), (3.8)
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where

z0 = f(x)

zn =

∫ b

a

k(x, t)Bn−1(z0, · · · , zn−1)dt, n = 1, 2, · · · . (3.9)

Theorem 3.1. For the nonlinear Fredholm integral Eq.(3.4), the series solution of the Homotopy
perturbation method which defined as

y(x) =
∞∑
i=0

zi(x)

is converges if ξ ∈ [0, 1) and max
a≤x≤b

|z1| <∞, where ξ = µµ0(µ1 − a), where µ, µ0, µ1 and a are
constants.

Proof. To prove that the sequence {ŷn}∞n=0 as partial sum is a Cauchy sequence in a Banach
space (C[a, b], ∥.∥∞).

we suppose that n ≥ m, and

∥ŷn − ŷm∥∞ = max
a≤x≤b

|ŷn − ŷm| = max
a≤x≤b

∣∣∣∣∣
n∑

i=m+1

zi(x)

∣∣∣∣∣
= max

a≤x≤b

∣∣∣∣∣
n∑

i=m+1

∫ b

a

k(x, t)Bi−1dt

∣∣∣∣∣
= max

a≤x≤b

∣∣∣∣∣
∫ b

a

k(x, t)
n−1∑
i=m

Bidt

∣∣∣∣∣
Using Eq.(3.5), we obtain

n−1∑
i=m

Bi = [G(ŷn−1)−G(ŷm−1)] .

As a result

∥ŷn − ŷm∥∞ = max
a≤x≤b

|ûn − ûm|

=

∣∣∣∣∣
∫ b

a

k(x, t) [G(ŷn−1)−G(ŷm−1)] dt

∣∣∣∣∣
≤ max

a≤x≤b

∫ b

a

|k(x, t)| |[G(ŷn−1)−G(ŷm−1)]| dt

≤ ξ∥ŷn−1 − ŷm−1∥.

Therefore

∥ŷm+1 − ŷm∥∞ ≤ ξ∥ŷm − ŷm−1∥
≤ ξ2∥ŷm−1 − ŷm−2∥
≤ · · ·
≤ ξm∥ŷ1 − ŷ0∥
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∥ŷn − ŷm∥∞ ≤ ∥ŷm+1 − ŷm∥+ ∥ŷm+2 − ŷm+1∥+ · · ·+ ∥ŷn − ŷn−1∥
≤
[
ξm + ξm+1 + ξm+2 + · · ·+ ξn−1] ∥ŷ1 − ŷ0∥

= ξm
[
1 + ξ + ξ2 + · · ·+ ξn−m−1] ∥z1(x)∥

= ξm
(

1 − ξn−m

1 − ξ

)
∥z1(x)∥.

Therefore (1 − ξn−m) ≤ 1, so we have

∥ŷ1 − ŷ0∥∞ ≤ ξm

1 − ξ
max
a≤x≤b

|z1(x)|, (3.10)

where 0 ≤ ξ < 1.

In spite of |z1(x)| =
∣∣∣∫ b

a
k(x, t)G(z0(t))dt

∣∣∣ < ∞ where k(x, t) and z0(t) = f(t) are bounded,
then ∥ŷn − ŷm∥∞ tends to zero as m tends to infinity.

The series solution in Eq.(3.8) is a converges, because {ŷn}∞n=0 in space of continuous func-
tions C([a, b]) is Couchy sequence.

4 Extension of integro-differential equations

The nonlinear Fredholm integro-differential equation is formulated as follows:

Ly′′(x) = f(x) +

∫ b

a

k(x, t)G(y(t)dt, B
(
y,
∂y

∂n

)
= 0, (4.1)

L is a linear differential operator.
We extended theorem 3.1 to show that the series solution in Eq.(3.8) obtained from the recursive
formulas

z0 = L−1[f(x)] + ψ0

zn = L−1

[∫ b

a

k(x, t)Bi−1(z0, · · · , zi−1)dt

]
, i = 1, 2 · · · , (4.2)

converges to the exact solution y(x) of Eq.(4.1) if it exists, where ψ0 is the function arising from
using the initial or boundary conditions.

5 The Error Estimation of the Integro Differential-Equations

In this section, we will discuss the following theorem demonstrates how to estimate the error of
a nonlinear Fredholm integro-differential equation.

Theorem 5.1. A maximum absolute error for them+1 term’s can be truncated the series solution

y(x) =
∞∑
i=0

zi(x)

of the nonlinear Fredholm integro-differential equation can be estimated as

max
a≤x≤b

∣∣∣∣∣y(x)−
m∑
i=0

zi(x)

∣∣∣∣∣ ≤ gξm + 1
µ0(1 − ξ)

,

and g is defined as g = max
a≤x≤b

|G(y(x))|.
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Proof. By replacing Eq.(3.10) to the Theorem (3.1), we obtain ∥ŷn − ŷm∥ ≤ ξm

1−ξ max
a≤x≤b

|z1(x)|,

as a result if ŷn convergence to y(x), when n convergence to the ∞ , so

max
a≤x≤b

|z1(x)| ≤ (L0 − a)µ max
a≤x≤b

|G(y0(x))|,

then
∥y(x)− ŷm∥ ≤ ξm + 1

µ0(1 − ξ)
max
a≤x≤b

|G(y(x))|.

As a result, the greatest absolute error of the truncated series solution of the (m+ 1) component
in [a, b] can be approximated as

max
a≤x≤b

∣∣∣∣∣y(x)−
m∑
i=0

zi(x)

∣∣∣∣∣ ≤ gξm + 1
µ0(1 − ξ)

.

6 The Variational Iteration Method

This section aims to provide fast converging approximations of the exact solution for nonlinear
Fredholm integro-differential equations. The correction functional for the equation is defined
by using this technique [26]. Previous studies on numerical solutions of integral problems have
utilized various methods such as the Several numerical solutions of integral problems have been
studied by finite element method [27, 28] Adomian decomposition method, Taylor expansion
method, Direct computation method, and Bernstein polynomials method. [29, 30]. In this work,
the focus is on implementing a variational iteration technique specifically for solving nonlinear
Fredholm integro-differential equations. The main idea behind this technique is to generate con-
secutive approximations of the exact solution that converge rapidly. By defining a suitable cor-
rection functional, the technique aims to iteratively improve the accuracy of the approximation.
This enables a more efficient and accurate solution of the nonlinear Fredholm integro-differential
equation.

yn+1(x) = yn(x) +

∫ x

0
λ(t)

(
y(i)n (t)− f(t)−

∫ b

a

k(t, r)G(yn(r))dr

)
dt.

The Lagrange multiplier λi(t) is calculated by

λi(t) =
(−1)n(t− x)n−1

(n− 1)!
, i = 1, 2, . . . .

Using the Taylor series, we can represented the initial conditions as the following

y0(x) = y(0) + xy′(0) +
x2

2!
y′′(0) +

x3

3!
y′′′(0) + . . .

7 Numerical Experiments

The section illustrates the performance of a proposed methods, through an implementation based
on Matlab programming. The pointwise error is used to measure the error between the numerical
and analytical solutions. We denote by E errors term described by

EV IM = y(x)− YV IM .(x)

EHPM = y(x)− YHPM .(x).

Let us introduce the three accuracy indicators when using space step size h
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The pointwise error
εV IM = |E(xi)|
εHPM = |E(xi)|.

The l∞ norm of the error

l∞(EV IM , h) = max
0≤i≤N

|EV IM (xi)|.

The l2 norm of the error

l2(EV IM , h) =

√√√√h

N∑
i=0

|EV IM (xi)|2.

The l∞ norm of the error

l∞(EHPM , h) = max
0≤i≤N

|EHPM (xi)|.

The l2 norm of the error

l2(EHPM , h) =

√√√√h

N∑
i=0

|EHPM (xi)|2.

Example 7.1. Consider non linear Fredholm integro-differential equation

y′′(x) = −cosx− π2x

288
+

1
72

∫ π

0
xty2(t)dt, (7.1)

with initial conditions y(0) = 1, y′(0) = 0, and exact solution y(x) = cosx.

The HPM of Eq.(7.1) is given by

H(z, p) = z′′(x) + cosx+
π2x

288
− 1

72

∫ π

0
xtz2(t)dt = 0.

By substituting Eq.(3.8) into Eq.(7.1), and comparing the equivalent terms with regard to the
powers of p, we obtain

p0 : z′′0 (x) = cosx,

p1 : z′′1 (x) = −π
2x

288
+

1
72

∫ π

0
xtz2

0(t)dt,

p2 : z′′2 (x) =
1

72

∫ π

0
xt (2z1(t)z0(t)) dt,

p3 : z′′3 (x) =
1

72

∫ π

0
xt
(
2z0(t)z2(t) + z2

1(t)
)
dt. (7.2)

By simple computation of Eq.(7.2), we obtain

p0 : z0(x) = cosx,

p1 : z1(x) = −π
2x2

1728
+

x3

432

∫ π

0
tz2

0(t)dt =⇒ z1(x) = 0,

p2 : z2(x) =
x3

432

∫ π

0
t (2z1(t)z0(t)) dt =⇒ z2(x) = 0,

p3 : z3(x) =
x3

432

∫ π

0
t
(
2z0(t)z2(t) + z2

1(t)
)
dt =⇒ z3(x) = 0. (7.3)
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Using this approach repeatedly, we obtain zn(x) = 0,∀n ≥ 1, then the approximate solution is
derived by

y(x) =
∞∑
i=0

zi(x) = z0(x) + z1(x) + z2(x) + ...

and

y(x) = cosx,

it is the exact solution.

The correction functional for Eq.(7.1) is used to solve Eq.(7.1) via variational iteration approach
as the following

yn+1(x) = yn(x) +

∫ x

0
(t− x)

(
y′′n(t) + cos(t) +

π2t

288
− 1

72

∫ π

0
try2

n(r)dr

)
dt.

By setting the initial condition y0(x) = 1, of the second kind Fredholm integro differential
equations, replacing choosing into the correction functional yields

y0(x) = 1

y1(x) = cosx+ 0.00571157662 x3

y2(x) = cosx− 0.00056929712 x3

y3(x) = cosx+ 0.00126764676 x3.

Table 1. Comparison of approximate and exact solution for Example 7.1 .
xi y(x) YVIM(x) YHPM(x) εVIM l∞VIM l2VIM
0 1 1 1 0

0.1 0.995 0.9950054 0.995 1.27e-06
0.2 0.98007 0.980076 0.98007 1.014e-05
0.3 0.95534 0.955370 0.95534 3.423e-05
0.4 0.92106 0.921142 0.92106 8.113e-05 N = 20 N = 20
0.5 0.87758 0.877741 0.87758 0.00015846 0.00126764 0.08359371
0.6 0.82534 0.825609 0.82534 0.00027381
0.7 0.76484 0.765276 0.76484 0.0004348
0.8 0.69671 0.697355 0.69671 0.00064904
0.9 0.62161 0.622534 0.62161 0.00092411
1 0.5403 0.541569 0.5403 0.00126765
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Figure 1. Comparative between the exact and approximate solution of Example 7.1 using HPM.
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Figure 2. Comparative between the exact and approximate solution of Example 7.1 using VIM.
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Example 7.2. Consider second order nonlinear Fredholm integro-differential equation

y′′′(x) = sinx− x−
∫ π/2

0
xty′(t)dt, (7.4)

with initial conditions y(0) = 1, y′(0) = 0 and y′(0) = −1, the analytical solution is y(x) =
cosx.

The HPM of Eq.(7.4) is as the form

H(z, p) = z′′′(x)− sinx−

(
−x−

∫ π/2

0
xtz′(t)dt

)
= 0. (7.5)

By replacing the approximate solution provided by Eq.(3.8)) into Eq.(7.5), and comparing the
appropriate power components of the embedding parameter p, the recurrence relations that result
to the approximate solution are obtained.

p0 : z′′′0 (x) = sinx− x,

p1 : z′′′1 (x) = −x
∫ π/2

0
tz′0(t)dt,

p2 : z′′′2 (x) = −x
∫ π/2

0
tz′1(t)dt,

p3 : z′′′3 (x) = −x
∫ π/2

0
tz′2(t)dt,

p4 : z′′′4 (x) = −x
∫ π/2

0
tz′3(t)dt,

p5 : z′′′5 (x) = −x
∫ π/2

0
tz′4(t)dt. (7.6)

Finally, an approximation solution may be found by

y(x) =
∞∑
i=0

zi(x) = z0(x) + z1(x) + z2(x) + z3(x) + z4(x) + z5(x) + ...,

and

y(x) = cosx− 0.0416666666666x4 − 0.0194366217904x4

+0.0061958217433x4 − 0.001975042259x4

+0.0006295852182x4 − 0.0002006931979x4 + . . . ,

which is the approximate solution.

Now we apply the variational iteration approach to solve Eq.(7.4), and we defined the correction
functional of Eq.(7.4) as the following formula

yn+1(x) = yn(x) +

∫ x

0

−(t− x)2

2

(
y′′′n (t)− sint+ t+

∫ π
2

0
try′n(r)dr

)
dt.

The initial condition of the Fredholm integro-differential equation is choosing as

y0(x) = 1 − x2

2
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, and the consecutive approximations are obtained by putting it into the correction functional.

y0(x) = 1 − x2

2
,

y1(x) = cosx+ 0.012163674792 x4,

y2(x) = cosx− 0.0038774207559 x4,

y3(x) = cosx+ 0.0012360073723 x4,

y4(x) = cosx− 0.0003940026942 x4,

y5(x) = cosx+ 0.0001255964377 x4.

Table 2. Comparison of approximate and exact solution for Example 7.2.
xi y(x) YVIM(x) εVIM YHPM(x) εHPM l∞VIM l2VIM l∞HPM l2HPM
0 1 1 0 1 0

0.1 0.995 0.995004 1e-08 0.995 0
0.2 0.9801 0.980066 2e-07 0.98 0.0001
0.3 0.9553 0.955337 1.02e-06 0.9552 0.0001
0.4 0.9211 0.921064 3.22e-06 0.9206 0.0005 N = 20 N = 20 N = 20 N = 20
0.5 0.8776 0.877590 7.85e-06 0.8764 0.0012 1.25596437e-04 0.02381743 0.01840 0.28844410
0.6 0.8253 0.825351 1.628e-05 0.8229 0.0024
0.7 0.7648 0.764872 3.016e-05 0.7604 0.0044
0.8 0.6967 0.696758 5.144e-05 0.6892 0.0075
0.9 0.6216 0.621692 8.24e-05 0.6095 0.0121
1 0.5403 0.540427 0.0001256 0.5219 0.0184
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Figure 3. Comparative between the exact and approximate solution of Example 7.2 using HPM.
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Figure 4. Comparative between the exact and approximate solution of Example 7.2 using VIM.

The proposed methods for finding approximate solutions, namely HPM and VIM, have been
compared in Tables 1 and 2. The pointwise error norms for both methods are reported in these
tables. The results demonstrate that both methods are efficient and provide solutions that are
comparable to analytical solutions. To further evaluate the performance of these methods, the
physical behavior of the exact and approximate solutions at different space levels is depicted
graphically in Figures 1, 2, 3, and 4. These figures illustrate that the numerical solutions obtained
from both HPM and VIM are in good agreement with the exact solutions. However, it is observed
that the Homotopy perturbation method (HPM) outperforms the variational iteration method
(VIM). This is attributed to the fact that the errors produced by the HPM are much closer to
zero. The obtained numerical solutions from HPM also indicate that this method is reliable and
yields results that are compatible with the analytical solutions. In summary, the comparative
analysis of HPM and VIM in Tables 1 and 2, as well as the graphical illustrations in Figures 1, 2,
3, and 4, demonstrate the efficiency and accuracy of these methods for approximating solutions.
The HPM, in particular, stands out as a faster and more reliable method in this study.

8 Conclusion

In this paper, we proposed an efficient numerical scheme for solving nonlinear Fredholm integro-
differential equations (NFID) using the homotopy perturbation and variational iteration methods.
The proposed method incorporates the contraction mapping technique to handle convergence
analysis.The numerical scheme devised in this study proves to be highly effective in solving
NFID problems quickly and accurately. Through the calculation of error norms such as l∞
and l2 for different spatial levels, the authors demonstrate the reliability and efficiency of their
proposed method. Numerical experiments conducted in this study further validate the proposed
method, showing that the results obtained are fruitful, powerful, and dependable. Moreover, the
performance of the method aligns well with previous results reported in the literature. Overall,
we assert that their proposed method represents a significant advancement in the field of solving
NFID problems. By offering an efficient numerical approach capable of achieving high levels of
accuracy. In our future research, we plan to explore the continuous and discontinuous Galerkin
methods in both spatial and temporal dimensions [31, 32, 33, 34, 35, 36] for solving the NFID
problem, with the goal of achieving higher levels of accuracy in our solutions. Additionally, we
intend to broaden the application of the compact finite difference method to various challenging
real-world problems including, integro-differential problems [37, 38, 39, 40].
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