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Abstract In this paper, valuation rings in connection with soft modules of the quotient field
are instigated. We prove the equivalence of undeniable soft modules of the quotient field, called
soft fractional ideals. The main motive of this paper is to bring out the properties of multiples
of soft modules, soft submodules of the quotient field and soft fractional ideals of an integral
domain notably that of a Dedekind domain.

1 Introduction

Molodtsov [1] put forward absolutely a new theory, called the soft set theory to overcome the
unpredictable problems in social and economic sectors, environmentology, engineering and tech-
nology fields, computational fields, medical fields, etc., that can’t be handled by using classical
techniques. Jun [2] considered soft bck/bci algebras. Jun and Park [3] instigated various paths
in connection with soft sets applications in the ideal theory of bck/bci algebraic structures. In
addition to, several linked concepts with applications of soft sets, have undergone tremendous
studies. Maji et al. [4] instigated a conceptual research of soft sets in depth that includes super-
set and subset of a soft set, operations of union, operations of intersection, and null soft set etc.
Sezgin and Atagün [5] and Ali et al. [6] explored a few procedures on the soft set theory as well.
Onyeozili and Gwary [7] carried out a critical and systematic research on matrix representation
of soft sets, relations and functions of soft sets, and operational properties of soft sets. Aktas
and Çağman [8] compare the soft set concepts and its properties to the associated rough set and
fuzzy set concepts, then transferred this concept to groups and defined the groups as soft groups
with some properties of the same.

Acar et al. [9] instigated and explained initial concepts of soft rings. Sun et al. [10] insti-
gated the soft module concepts and pointed out several properties of soft modules by utilising
Molodtsov’s concept of soft set theory and modules. Many authors have also discussed this con-
cept. Türkmen and Pancar [11] developed some soft submodule properties over a module. They
have also defined the soft module radicals and its properties, apart from this they proposed the
concepts of direct sums of these soft submodules, soft modules and illustrated these concepts
with examples. Atagün and Sezgin [12] carried out the soft substructures of modules, fields
and rings algebrically. They also proposed the concepts of soft subfield, soft submodule of R-
module. They have also instigated the notions of soft subrings and soft ideals and illustrated
these concepts with examples. Furthermore, they developed the soft submodules, sum operation
of a module, soft ideals and also established the product operations and restricted intersection
of these soft substructures. Taouti and Khan [13] proposed soft fields, soft integral domains and
also introduced fractions of soft rings. Taouti et al. [14] investigated the idealistic soft rings
and defined the soft fractional ideal of soft rings. The authors have also studied fractional ideal
with a few fundamental soft operations. This fractional ideal concept has its unique significance
while studying domains, valuation, and Dedekind domains etc.

Furthermore, the pioneering work of Zadeh [15] for the creation of a fuzzy set notion gives
an acceptable starting point in his fuzzy set theory, the most applicable concepts to deal with
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unpredictable problems. Jin [16] put the idea of a fuzzy ideal and proposed the definitions of the
operations of L-fuzzy ideals in a ring. They have also proved some fundamental properties of
the operations on fuzzy ideals. The revolutionary work of L.A. Zadeh led the way of fuzzifying
algebraic structures. Since then, there has been an additional expansion of this work by Morde-
son and Malik [17]. Lee and Mordeson [18] bring out the concept of fractionary fuzzy ideals
and by making use of these concepts, they signalized the invertibility of undeniable fractionary
fuzzy ideals in connection with Dedekind domains. For an overview of some results on integral
domain, we refer [20].

2 Preliminary

Given a universal set Z, a pair (β,C) over Z is called a soft set, where β is a mapping to the
power set P (Z) from a set of parameters (C).

i.e., β : C −→ P (Z).

Definition 2.1 ([4]). For two soft sets (F,A) and (G,B) over a common universe U , we say that
(F,A) is a soft subset of (G,B), if it fulfils :

(i) A ⊂ B

(ii) ∀ l ∈ A, F (l) and G(l) are identical approximations.

We write (F,A) ⊂̃ (G,B).

Definition 2.2. For a soft set β over a field N and βα = {l ∈ N : β(l) ⊇ α} is called the α -
inclusion of β corresponding to α, for every α ∈ P (N).

Definition 2.3 ([14]). Let R be a ring contained in a field K and (β,K) be a soft subset over the
field K. Then, β is said to be soft R-submodule of K if it fulfils :

(i) β(e− f) ⊇ β(e) ∩ β(f), ∀ e, f ∈ K

(ii) β(re) ⊇ β(e), ∀ e ∈ K, r ∈ R

(iii) β(0) = R

Example 2.4. Let R = (Z10,+, .), N = (Z10,+) be a natural-operating left R-module and a
submodule β1 = {0, 5} of N . Consider the soft set (β, β1) over N , where β : β1 −→ P (N) is a
mapping with set values that is outlined by β(0) = {0, 3, 4, 9} and β(5) = {0, 9}. Then, clearly
(β, β1) is a soft R-submodule of N .

The set is represented by β∗ = {e ∈ N : β(e) = β(0)}. For soft sets δ and ω of Z, then the
soft sets δ ∪̃ ω and δ ∩̃ ω are outlined as below :
(δ ∪̃ ω)(e) = δ(e) ∪ ω(e) and
(δ ∩̃ ω)(e) = δ(e) ∩ ω(e), ∀ e ∈ Z.
Here the soft union and soft intersection operators are denoted by ∪̃ and ∩̃ respectively.

Definition 2.5. An integral domain R is a valuation ring if for any two ideals E and F of R, we
state either E ⊆ F or F ⊆ E. That is, if ‘ ⊆ ,

is a total order on the ideal sets of R.

Proposition 2.6 ([19]). For an integral domain R, the following are equivalent.

(i) An integral domain R is a valuation ring.

(ii) If e, f ∈ R, then either (e) ⊆ (f ) or (f ) ⊆ (e)

(iii) If K is the fraction field of R, then for every f (̸= 0) ∈ K, either f ∈ R or f−1 ∈ R
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3 Soft modules and its R-multiple properties

Definition 3.1. Let β be a soft R-submodule of an R-module K. If r ∈ R, then the function rβ :
K −→ P (K) outlined by (rβ)(x) = β(rx), ∀ x ∈ K is called the R-multiple of β.

Proposition 3.2. Consider an R-module K and β, γ are two soft R-submodules of K. Then

(i) rβ is a soft R-submodule, for every r ∈ R

(ii) If r ∈ R, then β ⊆̃ γ ⇐⇒ rβ ⊆ rγ

(iii) If r, s ∈ R, then r(sβ) = (rs)β. In particular r(rβ) = r2β

(iv) If r ∈ R, then (rβ) ∩̃ (rγ) = r(β ∩̃ γ) and r(
⋂̃
i

βi) =
⋂̃
i

(rβi)

Proof. (i) Let r ∈ R and x, y ∈ K. Since β is a soft R-submodule of K, using the definition of
rβ,

(rβ)(x− y) = β(r(x− y))

= β(rx− ry)

⊇ β(rx) ∩ β(ry)

= (rβ)(x) ∩ (rβ)(y)

(rβ)(sx) = β(rsx) ⊇ β(rx) = (rβ)(x)

(rβ)(0) = β(0) = R

Therefore rβ is a soft R-submodule of K, for all r ∈ R.

(ii) Suppose β ⊆̃ γ. Let r ∈ R, then for x ∈ K,
(rβ)(x) = β(rx) ⊆ γ(rx) = (rγ)(x). Therefore, rβ ⊆ rγ.

(iii) Let r, s ∈ R, then (r(sβ))(x) = (sβ)(rx) = β(srx) = β(rsx) = ((rs)β)(x).
Therefore r(sβ) = (rs)β. In particular, r(rβ) = r2β.

(iv) Let r ∈ R, then
((rβ)∩̃(rγ))(x) = (rβ)(x) ∩ (rγ)(x)

= β(rx) ∩ γ(rx)

= (β ∩ γ)(rx)

= (r(β ∩ γ))(x)

Therefore (rβ) ∩̃ (rγ) = r(β ∩ γ). In general,
⋂̃
i

rβi = r(
⋂̃
i

βi).

4 Soft submodules and its R-multiples of the fraction field and valuation
rings

Proposition 4.1. Consider K be the fraction field of an integral domain R. If β is any soft
R-submodule of K and r ∈ R. Then r(rβ)α = βα , for every α ∈ P (K).

Proof. We already know that x ∈ (rβ)α ⇐⇒ (rβ)(x) ⊇ α ⇐⇒ β(rx) ⊇ α ⇐⇒ rx ∈ βα. Thus
r(rβ)α ⊆̃ βα. Also, if x ∈ βα, then x/r ∈ (rβ)α. Therefore x ∈ r(rβ)α. Thus βα ⊆̃ r(rβ)α.
Hence, r(rβ)α = βα , for every α ∈ P (K).

Proposition 4.2. Consider K be the fraction field of an integral domain R. If any soft R-
submodule of K is β, then for r1, r2 ∈ R, r1β ⊆̃ r2β =⇒ r2βα ⊆̃ r1βα , for every α ∈ P (K).

Proof. By Proposition 4.1, r1(r1β)α = βα and r2(r2β)α = βα. Therefore r2r1(r1β)α = r2βα and
r1r2(r2β)α = r1βα. i.e., (r1r2)(r1β)α = r2βα and (r1r2)(r2β)α = r1βα. Now suppose r1β ⊆̃
r2β, then (r1β)α ⊆̃ (r2β)α , for every α ∈ P (K). It follows that (r1r2)(r1β)α ⊆̃ (r1r2)(r2β)α.
Hence, r2βα ⊆̃ r1βα , for every α ∈ P (K).
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Proposition 4.3. Consider K be the fraction field of an integral domain R. In case of any soft
R-submodule β of K, there is linear order to the set {rβ : r ∈ R} of soft submodules iff R is a
valuation ring.

Proof. Consider a valuation ring R and the fraction field K of R. Let β be a soft R-submodule of
K. Let r1, r2 ∈ R. Since for being a valuation ring R, either (r1) ⊆̃ (r2) or (r2) ⊆̃ (r1). Suppose
(r1) ⊆̃ (r2), then r1 = rr2, for some r ∈ R. Now (r1β)(x) = β(r1x) = β(rr2x) ⊇ β(r2x) =
(r2β)(x), ∀ x ∈ K. Therefore r2β ⊆̃ r1β. But on the other side, if (r2) ⊆̃ (r1), then r1β ⊆̃ r2β.
As a result, the submodules set {rβ : r ∈ R} is linearly ordered.
Conversely, assume that given any soft R-submodule β of the field of quotients K, the set of soft
submodules {rβ : r ∈ R} is linearly ordered. For proving that a valuation ring is R. Suppose
r1, r2 ∈ R, by supposition we mean, either r1β ⊆̃ r2β or r2β ⊆̃ r1β. If r1β ⊆̃ r2β, then clearly
by Proposition 4.2, r2βα ⊆̃ r1βα , for every α ∈ P (K) . If β is chosen to be the characteristic
function of R, then we state β∗ = βα = R. It follows that r2R ⊆̃ r1R. i.e., (r2) ⊆̃ (r1). If r2β ⊆̃
r1β, then in a similar way we get (r1) ⊆̃ (r2). Hence, R is a valuation ring.

Remark 4.4. Consider R an integral domain and K be the field of fractions of R. Assuming L
be the subset of K whose characteristic function is symbolized by χ

L
. Now for every α ∈ P (K),

the soft subset of K is symbolized by χα
L

, which is outlined by χα
L
(m) = Z, if m ∈ R and χα

L
(m)

= α, if m ∈ K −R.
We symbolized the soft subset of K by dα outlined by dα(m) = α if m = d and dα(m) = 0
otherwise, for every α ∈ P (K) and d ∈ K. The soft subset dα(m) is called a soft singleton set.
If soft sets δ and ω of K exists, then the definitions of soft sets δ ◦ ω and δω of K are given by

(δ ◦ ω)(m) = ∪{δ(p) ∩ ω(q) : m = pq ; p, q ∈ K}, ∀ m ∈ K

(δω)(m) = ∪{
n⋂

i=1
(δ(pi) ∩ ω(qi)) : pi, qi ∈ K, n ≥ i ≥ 1, n ∈ N,

m =
n∑

i=1
piqi}, ∀ m ∈ K

Definition 4.5 ([14]). Let K be the field of fractions of an integral domain R. A soft R-
submodule β of K is called a soft fractionary ideal of R, if there exists d ∈ R ; d ̸= 0 such
that d

R
◦ β ⊆ χα

R
for some α ∈ K −R.

Theorem 4.6. Consider R an integral domain and K be the field of fractions of R. Then the
statements given below are satisfied :

(i) R is a valuation ring.

(ii) For any soft R-submodule β of K, the set of soft submodules {rβ : r ∈ R} is linearly
ordered.

Proof. The proof can be simply obtained by using Proposition 4.3, and thus omitted.

Proposition 4.7. Consider a prime ideal P of a valuation ring V . Then, the localization V
P

of
V at P is also a valuation ring.

Proof. Consider a valuation ring V and K be the field of fractions of V . Then the fraction field
of V

P
is also K. Assume β be any soft V

P
-submodule of K. Consider the submodules set

{aβ : a ∈ V
P
}. We prove that this set of submodules is linearly ordered. Note that β is also a

soft V -submodule of K. If r ∈ V and b ∈ K, then β(rb) = β((r/1)b) ⊇ β(b), since r/1 ∈ V
P

.
Since V being a valuation ring, then clearly by Proposition 4.3, {rβ : r ∈ R} is linearly ordered.
Let a = r1/s1, c = r2/s2 ∈ V

P
, then r1s2, r2s1 ∈ V . Thus either (r1s2)β ⊆̃ (r2s1)β or (r2s1)β

⊆̃ (r1s2)β. But since 1/s1s2 ∈ V
P

, clearly by Proposition 3.2, we have (1/s1s2)(r1s2)β ⊆̃
(1/s1s2)(r2s1)β or (1/s1s2)(r2s1)β ⊆̃ (1/s1s2)(r1s2)β. i.e., (r1/s1)β ⊆̃ (r2/s2)β or (r2/s2)β ⊆̃
(r1/s1)β. i.e., aβ ⊆̃ cβ or cβ ⊆̃ aβ. Therefore the set of submodules {aβ : a ∈ V

P
} is linearly

ordered. By Proposition 4.3, V
P

is therefore a valuation ring.
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5 Soft fractional ideals and its R-multiple properties

Definition 5.1. Let R be an integral domain and β be a soft fractionary ideal of R, then β is
soft invertible if there exists another soft fractionary ideal β

′
of R such that ββ

′
= χα

R
, for every

α ∈ P (K).

The following theorem provides the necessary and sufficient condition for soft invertibility.

Theorem 5.2. Let R be an integral domain and K be the fraction field of R. Let β be a soft
fractionary ideal of R. If β is soft invertible, then ∪{β(m) : m ∈ K \ β∗} exists iff β∗ is an
invertible fractionary ideal of R.

Proof. Considering that if β is soft invertible, then ∪{β(m) : m ∈ K \ β∗} exists. We must now
demonstrate that β∗ is an invertible fractionary ideal of R. First, we show that β∗ is invertible
fractionary ideal of R iff β∗ is finitely generated principal ideal of R. Suppose that β∗ is invert-
ible fractionary ideal. i.e., β∗β

′

∗ = R. Then we have to demonstrate that β∗ is finitely generated
principal ideal of R . For this we claim that 1 = qijkj , ij ∈ β∗ and kj , β∗ ∈ β−1

∗ be an ideal.
Let l ∈ β∗, then l = qij lkj . But lkj ∈ R as l ∈ β∗ and n

l
∈ β−1

∗ . Thus ij generates β∗, so
β∗ ̸= 0. Hence β∗ is finitely generated. Moreover if M ⊂ R, then (M−1β∗)(M−1β

′

∗) = M−1R.
Considering that i be a maximal ideal. Therefore β∗i

is an invertible over Ri. So β∗i
is principal

ideal. More clearly, we take β∗ is invertible, so β∗ ̸= 0. Say 1 =
∑

ijkj ; ij ∈ β∗ and kj ∈ β−1
∗ .

Fix a nonzero l ∈ β∗, then l =
∑

ij lkj . But kj l ∈ R as l ∈ β∗ and kl ∈ β−1
∗ . Consider the set

d = gcd{kj l} ∈ R and m =
∑

(kj l/d)ij ∈ β∗, then l = dm. Given l
′ ∈ β∗, write l

′
/l = e/f

; e and f in R are prime. So d
′
= gcd{kj l

′} = gcd{kj le/f} = e(gcd{kj l}/f) = ed/f . So
l
′
= (e/f)l = (ed/f)m = d

′
m, but d

′ ∈ R. Thus β∗ = Rm. Again let us consider that β∗
is finitely generated principal ideal, then we need to demonstrate that β∗ of R is invertible frac-
tionary ideal. Consider the set c = β∗(R : β∗) ⊂ R. Since β∗ be finitely generated, therefore
ci = β∗i

(Ri : β∗i
). Further assume that β∗i

is a nonzero principal ideal, so ci = Ri. Therefore
c = R that implies c = R = β∗β

′

∗. Thus β∗ is an invertible fractionary ideal of R.
Conversely, consider the case when β∗ is an invertible fractionary ideal of R. Then we demon-
strate that if β is soft invertible, then ∪{β(m) : m ∈ K \ β∗} exists. By Proposition 4.1, if β
is any soft R-submodule of the fraction field K of R and r ∈ R, then we have r(rβ)α = βα

, for all α ∈ P (K). Particularly, β∗ = r(rβ)∗. Thus (rβ)∗ = (1/r)β∗. Let us consider that
∪{β(m) : m ∈ K \ β∗} exists and ∪{β(m) : m ∈ K \ β∗} = α. If m ∈ K \ β∗, then
m /∈ β∗. Therefore β(m) ⊂ R, thus m /∈ β∗ or m ∈ K \ β∗. Therefore β(m) ⊆ α. Hence
∪{β(m) : m ∈ K \ β∗} exists.

Proposition 5.3. Consider an integral domain R and K be the fraction field of R. Let β be a soft
R-submodule of K . Then

(i) β is a soft fractionary ideal of R ⇐⇒ rβ is soft fractionary ideal of R, for any r ∈ R.

(ii) β is a soft invertible and ∪{β(x) : x ∈ K \ β∗} exists ⇐⇒ rβ is soft invertible and
∪{(rβ)(y) : y ∈ K \ β∗} exists.

Proof. (i) Suppose β be a soft fractionary ideal of R, then ∃ d ̸= 0, d ∈ R and α ∈ P (K)
such that d

R
◦ β ⊆ χα

R
. Thus β(x/d) ⊆ α, ∀ x ∈ K − R. Since (rβ)(x/rd) = β(x/d), we get

(rβ)(x/rd) ⊆ α, ∀ x ∈ K − R. Hence (rd)
R
◦ (rβ) ⊆ χα

R
. Therefore rβ is a soft fractionary

ideal.
Conversely, suppose for any r ∈ R, rβ is soft fractionary ideal of R. Then ∃ h ∈ R and
α ∈ P (K) such that h

R
◦ (rβ) ⊆ χα

R
. Therefore (rβ)(x/h) ⊆ α, ∀ x ∈ K −R. Thus β(rx/h) ⊆

α, ∀ x ∈ K − R. But since β is a soft R-submodule. It implies β(rx/h) ⊇ β(x/h). Therefore
β(x/h) ⊆ α, ∀ x ∈ K −R. It implies h

R
◦ β ⊆ χα

R
. Hence, β is a soft fractionary ideal of R.

(ii) By Proposition 4.1, we have r(rβ)α = βα, for every α ∈ P (K). Particularly, r(rβ)∗ = β∗.
Therefore (rβ)∗ = (1/r)β∗. Assume that ∪{β(x) : x ∈ K \β∗} exists and ∪{β(x) : x ∈ K \β∗}
= α. If y ∈ K \(rβ)∗, then y /∈ (rβ)∗. Thus β(ry) = (rβ)(y)⊂ R, hence ry /∈ β∗ or ry ∈ K \β∗.
Therefore (rβ)(y) = β(ry) ⊆ α. Thus ∪{(rβ)(y) : y ∈ K \ (rβ)∗} exists. Moreover if
β is soft invertible, then by Theorem 5.2, β∗ is fractionary ideal of R which is invertible. It
follows (rβ)∗ = (1/r)β∗ is invertible. By Theorem 5.2 again, we can conclude that rβ is soft
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Figure 1. Graphical representation of L

invertible. By the same way, we may demonstrate that if ∪{(rβ)(y) : y ∈ K \ (rβ)∗} exists,
then ∪{β(x) : x ∈ K \ β∗} exists and if in addition β is soft invertible, then rβ is also soft
invertible.

Proposition 5.4. Let K be the fraction field of an integral domain R. Suppose β be a soft R-
submodule of K. If β ̸= R

K
and β∗ ̸= (0), then (r1)⊊̃(r2) implies r2β ⊊̃ r1β.

Proof. We have proved that (r1) ⊆̃ (r2) implies r2β ⊆̃ r1β in Proposition 4.3. Let us assume that
β ̸= R

K
and β∗ ̸= (0), and that (r1) ⊊̃ (r2). Then r1 = r2c, where c is a non-unit of R. Choose

0 ̸= x ∈ β∗ but x/c /∈ β∗. This is possible since β ̸= R
K

and β∗ ̸= 0. For β∗ ̸= 0 implies that
there exists 0 ̸= x ∈ β∗. If x/c ∈ β∗ for all 0 ̸= x ∈ β∗, then β∗/c ⊆̃ β∗. At the same time
β∗ ⊆̃ β∗/c, since r/s ∈ β∗ =⇒ β(r/s) = R =⇒ β(rc/s) ⊇ β(r/s) = R, so that β(rc/s) = R
=⇒ r/s = rc/sc = (rc/s)/c ∈ β∗/c. Either one suggests that β∗/c = β∗ or β∗ = cβ∗. But
that is impossible when c becomes a unit. Now take y = x/(r2c), then (r1β)(y) = β(r1y) =
β(r1x/r2c) = β(x) = R. Since x ∈ β∗, but (r2β)(y) = β(r2y) = β(r2x/r2c) = β(x/c) ⊂ R,
since x/c /∈ β∗. Thus (r2β)(y) ⊂ (r1β)(y). Hence (r2β) ⊊̃ (r1β) =⇒ r2β ⊊̃ r1β.

Remark 5.5. The following example shows that the converse of the above Proposition is not true
in general.

Example 5.6. Consider the integers ring Z and

L =
⋃̃∞

m=1(5)/3m = (5) ∪ (5)/3 ∪ (5)/32 ∪ (5)/33 ∪ .......

Then L is a Z-submodule of the field of fractions Q. But L is not a fractional ideal. Let β
be the characteristic function of Z-submodule L in Q, then β is a soft submodule of Q and
β

R
= β∗ = L. We have 3L = 2L, therefore 3β = 2β. At the same time 4L ⊊̃ 2L, thus 2β ⊊̃ 4β.

Therefore 3β ⊊̃ 4β, but (4) ⊈ (3).

Graphically Figure 1 shows that L is not a fractional ideal.

Definition 5.7. Let K be the field of fractions of an integral domain R. A soft fractional ideal β
of K such that β ̸= R

K
and β∗ ̸= (0) is said to be minimal with respect to r ∈ R, if rβ ⊋̃ β and

that ∃ no s1 ∈ R such that rβ ⊋̃ s1β ⊋̃ β. In other words, rβ ⊇̃ s1β ⊇̃ β, for s1 ∈ R implies that
either (r) = (s1) or (s1) = R.

Proposition 5.8. Let K be the fraction field of a Dedekind domain R. Suppose β be a soft
fractional ideal of K such that β ̸= R

K
and β∗ ̸= (0). Then β is minimal with respect to r ∈ R

if and only if for all proper principal ideals set of R, (r) is maximal.



398 M. Yahya Abbasi, Tasaduk Rashid Mir* and Sabahat Ali Khan

Proof. By assuming if (r) is not maximal in all proper principal ideals set of R, then ∃ s1 ∈ r

such that (r) ⊊̃ (s1) ⊊̃ (R). By Proposition 5.4, β ⊊̃ s1β ⊊̃ rβ. Hence β is not minimal with
respect to r ∈ R.
Conversely, by assuming if β is not minimal in relation to r, then ∃ s1 ∈ R such that β ⊊̃ s1β ⊊̃
rβ. Thus by Proposition 4.2, rβα ⊆̃ s1βα ⊆̃ βα , for every α ∈ P (K). Since β is a soft fractionary
ideal of a Dedekind domain R, βα is a fractional ideal, for every α. Since in a Dedekind domain,
fractional ideals are invertible and multiplying with its inverse, we get (r) ⊆̃ (s1) ⊆̃ (R). Now if
(r) = (s1), then by Proposition 4.3, s1β = rβ and if (s1) = (R), then β = β

R
. Since β ⊊̃ s1β ⊊̃

rβ, this leads to a contradiction. Therefore (r) ⊊̃ (s1) ⊊̃ (R) and hence (r) is not maximal.

Remark 5.9. Knowing this, (r) is maximal iff r is irreducible. If β is a soft fractionary ideal of
a Dedekind domain R. Then the set of all minimal elements of β is equivalent to the set of all
irreducible elements of R.

6 Conclusion

Motivated while studying and analysing the concepts in connection with fuzzification of frac-
tional ideals proposed by Lee and Mordeson [18]. Properties of multiples play a dominant role
in soft fractional ideals of an integral domain. We bring out the new concepts in relation to soft
modules, soft submodules and equivalence of certain soft modules of the quotient field, called
soft fractionary ideals. In this paper, using these concepts and freshly defined concepts, we
have characterized valuation domains, integral domains especially that of Dedekind domains.
The results carried out in this research article will create new ideas and provide a solid point of
departure for studying and analysing soft fractional ideal theory.
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