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Abstract In this paper, we study some local spectral properties of 3 × 3-block matrix linear
relations. More precisely, we give a necessary and sufficient conditions for linear relations matrix
to have the single valued property in terms of the surjective spectrum and the analytic residuum
of its diagonal entries. On the following, by means of it, we illustrate a new characterization of
spectra and local spectra of linear relations matrix.

1 Introduction

In 1952, N. Dunford, has introduced the notion of single-valued extension property (SVEP) and
some results of local spectral theory for bounded operators in Banach spaces, [10]. An operator
T is said to have the SVEP at λ0 ∈ C, if the only analytic function which satisfies

(λ− T )f(λ) = 0

is f = 0 (see [11]). In addition, P. Aiena treated with this notion in [1, 2, 3, 4]. More precisely,
he establish several results of Fredholm theory, based on the SVEP. Further, A. Ammar, A.
Bouchekoua and A. Jeribi [7] and M. Mnif and A.-A. Ouled-Hmed [12], extended this concept
to linear relation and studied some properties of the local spectral theory of linear relations.
Further, let T is a bounded linear relation and x be a vector in X. The local resolvent of T at x
denoted by ρT (x) is defined as the set of all λ ∈ C for which there exist an open neighborhood
U of λ and an analytic function f : U −→ X such that the equation

(λ0 − T )f(λ0) = x+ T (0), holds for all λ0 ∈ U,

when T (0) is the multivalued part of T . The complement of ρT (x) in C is called the local
spectrum of T at x and denoted by σT (x).
In [8], A. Ammar et all investigated certain properties of local spectral theory for upper triangular
2×2 -block matrix of linear relations. Also, in [?] A. Ammar et all checked up on a few properties
of the local spectra of a 2 × 2-block matrix of linear relations.
In our paper, we treat some results about the local spectral theory of 3× 3-block matrix of linear
relations which is defined by

T0 =

 T11 T12 T13

T21 T22 T23

T31 T32 T33

 ,

on X1 ⊕X2 ⊕X3 where Tii ∈ LR(Xi), and Tij ∈ LR(Xj , Xi) for all i ∈ {1, 2, 3}, j ∈ {2, 3}
and X1, X2, X3 are complex Banach spaces.
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We organize our paper as the following: In section 2, we study some preliminary and auxiliary
results of the local spectral theory of linear relations that we will be needed to prove our main
results. In section 3, we investigate some results of the local spectral theory of 3×3-block matrix
of linear relations involving SVEP. Furthermore, we treat some local spectral properties of T
and T0 through the surjective spectrum and the analytic residuum of its entries. Besides, under
necessary and sufficient conditions, we prove that T has the single valued extension property.

2 Preliminaries and auxiliary results

Throughout the paper, X and Y are two Banach spaces over the complex plane C. We are going
to recall some facts about the linear relations needed eventually. A linear relation T : X −→ Y
is a mapping from a subspace D(T ) = {x ∈ X : Tx ̸= ∅} of X , called the domain of T , into the
collection of nonempty subsets of Y such that

T (αx+ βy) = αT (x) + βT (y),

for all nonzero scalars α, β ∈ C and x, y ∈ D(T ). We denote the class of linear relations
from X into Y by LR(X,Y ) and as useful we write LR(X) = LR(X,X). A linear relation
T ∈ LR(X,Y ) is uniquely determined by its graph, G(T ), which is defined by

G(T ) = {(x, y) ∈ X × Y : x ∈ D(T ) and y ∈ Tx}.

If M and N are subspaces of X , then

M⊥ = {x′ ∈ X∗ such that x′(x) = 0 for all x ∈ M}

and
N⊤ = {x ∈ X such that x′(x) = 0 for all x′ ∈ N} ,

where X∗ is the dual of X . The adjoint T ∗ of T is defined by

G(T ∗) = G(−T−1)⊥ ⊂ X∗ × Y ∗, where

⟨(y, x), (y′, x′)⟩ = ⟨x, x′⟩+ ⟨y, y′⟩ = x′(x) + y′(y).

The null, the range spaces and the multivalued part of T are defined respectively by:

N (T ) = {x ∈ D(T ) : (x, 0) ∈ G(T )} ,
R(T ) = {y : (x, y) ∈ G(T )} and

T (0) = {y : (0, y) ∈ G(T )} .

We note that T is single valued (or operator) if, and only if, T (0) = {0}. T is said to be injective
if N (T ) = {0} and surjective if R(T ) = Y . If T is injective and surjective we say that T is
bijective. T is called to be bounded, if D(T ) = X and ∥T∥LR(X,Y ) < ∞. The set of all bounded
linear relations from X into Y by BR(X,Y ). If X = Y , then BR(X,X) = BR(X). T is said to
be closed if its graph is closed. The class of all closed linear relations is denote by CR(X,Y ) and
as useful we write CR(X,X) := CR(X). Also, the set of all bounded and closed linear relations
from X into Y is denoted by BCR(X,Y ). When X = Y , we have BCR(X,Y ) = BCR(X).

Let us recall some properties of linear relations which shown in [9].

Proposition 2.1. Let T ∈ LR(X,Y ). Then,
(i) For x ∈ D(T ), we have y ∈ Tx if, and only if, Tx = y + T (0).
(ii) In particular, 0 ∈ Tx if, and only if, Tx = T (0).

Definition 2.2. Let T ∈ LR(X,Y ). A linear operator E is called a selection of T if

T = E + T − T and D(T ) = D(E).
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If E is a selection of T , then we have, for all x ∈ D(T )

Tx = Ex+ T (0).

Now, we recollect some definitions, notations and properties of spectral and Fredholm theory of
a linear relation.
Let T ∈ LR(X). The resolvent set of T is defined as:

ρ(T ) = {λ ∈ C : λ− T is injective, open and has dense range}.

Hence, the spectrum of T is defined by σ(T ) = C\ρ(T ).
A scalar λ such that N (λ− T ) ̸= {0} is called an eigenvalue of T . So, the point spectrum of T
is the set σp(T ) consisting of the eigenvalues of T.

Proposition 2.3. [9, 11, Proposition VI.1.11] Let X be a normed space and let T ∈ BR(X).
Then, σ(T ) = σ(T ∗).

The sets of upper semi-Fredholm, lower semi-Fredholm, semi-Fredholm and Fredholm linear
relations which are, respectively, defined as

Φ+(X,Y ) = {T ∈ BR(X,Y ) : dim(N (T )) < ∞ and R(T ) is closed }
Φ−(X,Y ) = {T ∈ BR(X,Y ) : codim(T ) < ∞ and R(T ) is closed }
Φ±(X,Y ) = Φ+(X,Y ) ∪ Φ−(X,Y )

Φ(X,Y ) = Φ+(X,Y ) ∩ Φ−(X,Y ).

When, X = Y , we denote by Φ+(X,X) = Φ+(X), Φ−(X,X) = Φ−(X) and Φ(X,X) =
Φ(X).
The essential spectra of a linear relation T are defined as follows:

σe1(T ) = {λ ∈ C : λ− T /∈ Φ+(X)}
σe2(T ) = {λ ∈ C : λ− T /∈ Φ−(X)}
σe3(T ) = {λ ∈ C : λ− T /∈ Φ±(X)}
σe4(T ) = {λ ∈ C : λ− T /∈ Φ(X)} .

We point out that,
σe3(T ) = σe1(T ) ∩ σe2(T ) ⊆ σe4(T ) ⊆ σ(T ).

Theorem 2.4. [5] Let S, T ∈ LR(X). Then, we have
(i) If S, T ∈ Φ+(X), then ST ∈ Φ+(X) and TS ∈ Φ+(X).

(ii) If S, T ∈ Φ−(X), with TS (resp. ST ) is closed, then TS ∈ Φ−(X) (resp. ST ∈ Φ−(X)).
(iii) If S, T are everywhere defined and TS ∈ Φ+(X) then S ∈ Φ+(X).

(iv) If S, T are everywhere defined such that TS ∈ Φ(X) and ST ∈ Φ(X), then S ∈ Φ(X) and
T ∈ Φ(X).

In this case, we can define the upper triangular 3 × 3-block matrix of linear relations

T =

 T11 T12 T13

0 T22 T23

0 0 T33


on X1 ⊕X2 ⊕X3 where Tii ∈ LR(Xi), and Tij ∈ LR(Xj , Xi) for all i ∈ {1, 2, 3}, j ∈ {2, 3}
and X1, X2, X3 are complex Banach spaces.

Let us recall a fundamental result of the adjoint of T , which we will need to prove our main
result.
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Theorem 2.5. [5, Theorem 2.1] Let Tii ∈ BR(Xi), for i ∈ {1, 2, 3}. Then, the adjoint of T is:

T =

 T ∗
11 0 0

T ∗
23 T ∗

22 0
T ∗

12 T ∗
13 T ∗

33

 ,

where Tij , for all i ̸= j ∈ {1, 2, 3} are bounded linear relations from Xj to Xi.

In the rest of this section, to orient the reader, we summarize some of the definitions and the
fundamental concepts and facts of the local spectral theory.

Proposition 2.6. [7] Let X be a Banach space, x, y ∈ X and let T ∈ BR(X). Hence, ρT (x) is
open, whereas the spectrum σT (x) is closed.

Definition 2.7. Let T ∈ BR(X), T is said to have the single valued extension property at λ ∈ C,
abbreviated SVEP at λ, if for every neighborhood U of λ the only analytic operator function
f : U −→ X which satisfies the equation

(T − µ)f(µ) = T (0)

is the constant function f ≡ 0.

Definition 2.8. Let T ∈ BR(X). The analytic residuum ST is the set of λ0 ∈ C for which there
exist a neighborhood Vλ0 and f : Vλ0 −→ D(T ), a nonzero analytic function such that

(T − λ)f(λ) = T (0), for all λ ∈ Vλ0 .

Remark 2.9. Let T ∈ BR(X). T has the SVEP if, and only if, ST = ∅ (the empty set).

Proposition 2.10. [7] Let T ∈ CR(X). T have SVEP at λ if, and only if, λ− T have SVEP at 0,
for every λ ∈ C.

Theorem 2.11. [7] Let X be a Banach space and let T ∈ CR(X) with closed range. If T is not
one-one, then T does not have the SVEP at 0.

Let T ∈ LR(X). The surjective spectrum of T is defined by

σsu(T ) := {λ ∈ C : T − λ is not surjective }.

We can find the following result in [12].

Proposition 2.12. Let X be a Banach space and let T ∈ BR(X). Then,

σsu(T ) =
⋃
x∈X

σT (x).

Theorem 2.13. [8, Theorem 2.1] Let an analytic function of the linear relation T : U −→
LR(X,Y ) on an open set U ⊆ C for which the mapping T (λ) : X −→ Y is surjective for all
λ ∈ U . If T has a selection E satisfying T (0) ⊆ R(E), then for every analytic function of the
linear relation K : U −→ Y , there exists an analytic function f : U −→ X such that

T (λ)f(λ) = K(λ), for all λ ∈ U.

For a survey findings related to local spectral theory of linear relations, the reader is referred to
[5, 8, 12].

In the following result, we characterize the ponctuel spectrum of linear relation matrix T .

Proposition 2.14. Let Tii ∈ BR(Xi), and Tij are bouneded operators from Xj , to Xi for all
i ∈ {1, 2, 3} and j ∈ {2, 3}. Then,

σp(T11) ⊂ σp(T ) ⊂ σp(T11) ∪ σp(T22) ∪ σp(T33).
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Proof. To prove that σp(T ) ⊂ σp(T11) ∪ σp(T22) ∪ σp(T33), we assume that λ /∈ σp(T11) ∪
σp(T22)∪σp(T33). Then, (λ−T11), (λ−T22) and (λ−T33) are injective. Let (x, y, z) ∈ N (λ−T ).
Hence,  0

0
0

 ∈ (λ− T )

 x

y

z

.

Also, since (λ − T33) is injective, then z = 0. Further, based on the hypotheses (λ − T22) is
injective and T23 is an operator, we conclude that y = 0. Again, using the fact that (λ − T11) is
injective, T12 and T13 are operators, we infer that x = 0. Thus, N (λ − T ) = {(0, 0, 0)}, which
leads to conclude that λ− T is injective.
Conversely, let λ /∈ σp(T ), hence λ− T is injective. Therefore, 0 ∈ (λ− T11)x and so

0 ∈ (λ− T11)x− T12(0)− T13(0)
0 ∈ (λ− T22)0 − T23(0)
0 ∈ (λ− T33)(0).

As a result, (x, 0, 0) ∈ N (λ−T ), which implies that x = 0. As a consequence, λ /∈ σp(T11).

3 Some local spectral results of linear relations matrices

In the beginning of this section, we discuss some properties of the local spectral theory of T
involving the surjective spectrum and the analytic residuum of its diagonal entries.

3.1 Some local spectral properties of linear relation matrix through surjective
spectrum and analytic residuum

In the further Proposition, we illustrate a new result of the local spectrum of T in terms of the
surjective spectrum.

Proposition 3.1. Let Tii ∈ BR(Xi), and Tij ∈ BR(Xj , Xi) for all i ∈ {1, 2, 3} and j ∈ {2, 3}
such that Tii(0) ⊆ Tij(0) for j ̸= i ∈ {1, 2}. If T11(resp. T22) has a selection E1(resp. E2)
which satisfies T11(0) ⊆ R(E1)(resp. T22(0) ⊆ R(E2)), then

σT (x) ⊆ σsu(T11) ∪ σsu(T22) ∪ σT33(w), for all x =

 y

z

w

 ∈ X1 ×X2 ×X3.

Proof. Let λ0 /∈ σsu(T11) ∪ σsu(T22) ∪ σT33(w). Then, there exist three open neighborhoods V1,
V2 and V3 of λ0 ∈ C and an analytic operator function f3 : V3 −→ X3 such that

(T33 − λ)f3(λ) = w + T33(0), for all λ ∈ V3, V2 ∩ σsu(T22) = ∅ and V1 ∩ σsu(T11) = ∅.

Now, suppose that V =
⋂

i∈{1,2,3}

Vi. Hence, we get

(T33 − λ)f3(λ) = w + T33(0), for all λ ∈ V.

In addition, by referring to Theorem 2.13, we infer that there exist two analytic functions f2 :
V −→ X2 and f1 : V −→ X1 such that{

(T22 − λ)f2(λ) = z − T23f1(λ) + T22(0),
(T11 − λ)f3(λ) = y − T12f2(λ)− T13f1(λ) + T11(0), for all λ ∈ V.

Furthermore, the nonzero analytic function

 f3

f2

f1

 : V −→ X3 ×X2 ×X1 defined by:

 f3

f2

f1

(λ) =

 f3(λ)

f2(λ)

f1(λ)


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such that

(T − λ)

 f3(λ)

f2(λ)

f1(λ)

 =

 y + T11

z + T22

w + T33


= x+ T (0), for all λ ∈ V.

Therefore, λ0 /∈ σT (x).

As a direct consequence of Proposition 3.1, we get the following result:

Corollary 3.2. Let Tii ∈ BR(Xi) and Tij ∈ BR(Xj , Xi) for all i ∈ {1, 2, 3} and j ∈ {2, 3}
such that Tii(0) ⊆ Tij(0) for j ̸= i ∈ {1, 2}. If T11(resp. T22) has a selection E1(resp. E2)
which satisfies T11(0) ⊆ R(E1)(resp. T22(0) ⊆ R(E2)). Then,

σsu(T ) ⊆
⋃

i∈{1,2,3}

σsu(Tii).

Proposition 3.3. Let Tii ∈ BR(Xi) and Tij ∈ BR(Xj , Xi), for all i ∈ {1, 2, 3}, j = 2, 3 and
i ̸= j ∈ {1, 2} such that D(T33) ⊂ N (T23) and T23(0) ⊂ T22(0). Then,

σT33(w) ∪ σT22(z) ⊆ σT

 y

z

w

, for all y ∈ D(T11), z ∈ D(T22), w ∈ D(T33). (3.1)

Proof. Let λ0 /∈ σT

 y

z

w

. Hence, there exist an open neighborhood Vλ0 and a nonzero ana-

lytic function f : Vλ0 −→ D(T11)×D(T22)×D(T33) such that

(T − λ)f(λ) =

 y

z

w

+ T (0), for all λ ∈ Vλ0 .

So, for f =

 f1

f2

f3

 with f1 : Vλ0 −→ D(T11), f2 : Vλ0 −→ D(T22) and f3 : Vλ0 −→ D(T33)

which are analytic functions, we have
(T11 − λ)f1(λ) + T12f2(λ) + T13f3(λ) = y + T11(0)
(T22 − λ)f2(λ) + T23f3(λ) = z + T22(0),
(T33 − λ)f3(λ) = w + T33(0), for all λ ∈ Vλ0 .

(3.2)

Hence, λ /∈ σT33(w). This allows us to deduce that σT33(w) ⊆ σT

 y

z

w

. Moreover, by using

the fact that f3(λ) ∈ D(T33) ⊂ N (T23), we get

T23f3(λ) = T23(0). (3.3)

By combining (3.2) and (3.3) we obtain

z + T22(0) = (T22 − λ)f2(λ) + T23(0)

= (T22 − λ)(f2(λ) + 0) + T23(0)

= (T22 − λ)f2(λ) + (T22 − λ)(0) + (T23 − λ)(0), for all λ ∈ Vλ0 .

Since, T23(0) ⊂ T22(0), then we have

(T22 − λ)f2(λ) = z + T22(0), for all λ ∈ Vλ0 .

As a consequence, σT22(z) ⊆ σT

 y

z

w

.
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Remark 3.4. It is clear that ST11 ⊆ ST ⊆
⋃

i∈{1,2,3}

STii
. Hence, by using of Corollary 3.2, we

obtain that σ(T ) ⊆
⋃

i∈{1,2,3}

σ(Tii).

Proposition 3.5. Let Tii ∈ BR(Xi) and Tij ∈ BR(Xj , Xi), for all i ∈ {1, 2, 3} and j ∈ {2, 3}
such that Tii(0) ⊆ Tij(0) for j ̸= i ∈ {1, 2}. Then, for all x ∈ Vλ0 ,

ST22 ∪ ST33 ∪ σT11(x) = ST22 ∪ ST33 ∪ σT

 x

0
0

.

Proof. Let λ0 /∈ STii
∪σT

 x

0
0

, for all i ∈ {2, 3}. Then, there exist an open neighborhood Vλ0

of λ0 in C and a nonzero analytic function fi : Vλ0 −→ X1 ×X2 ×X3 such that

(T − λ)fi(λ) =

 x

0
0

+ T (0), for all λ ∈ Vλ0 .

Let f1 : Vλ0 −→ X1, f2 : Vλ0 −→ X2 and f3 : Vλ0 −→ X3 be analytic functions such that

fi =

 f1

f2

f3

. Thus,


(T11 − λ)f1(λ) + T12f2(λ) + T13f3(λ) = x+ T11(0)
(T22 − λ)f2(λ) + T23f3(λ) = T22(0),
(T33 − λ)f3(λ) = T33(0), for all λ ∈ Vλ0 .

(3.4)

Since λ0 /∈ ST33 , it follows from (3.4) that f3 = 0 on Vλ0 . In addition, using both of hypothesis
λ0 /∈ ST22 and T22(0) ⊆ T23(0) allows us to conclude that f2 = 0 on Vλ0 . Again, by referring to
(3.4), we infer that

(T11 − λ)f1(λ) = x+ T11(0) for all λ ∈ Vλ0 .

Thus, λ0 /∈ σT11(x). It is easy to see the converse inclusion.

Corollary 3.6. Let Tii ∈ BR(Xi) and Tij ∈ BR(Xj , Xi), for all i ∈ {1, 2, 3} and j ∈ {2, 3}
such that Tii(0) ⊆ Tij(0) for j ̸= i ∈ {1, 2}. If T22 and T33 have the SVEP. Then, for all x ∈ Vλ0 ,

σT11(x) = σT

 x

0
0

.

3.2 Some spectral properties of linear relation matrix through The SVEP

We begin this subsection by giving a new characterization of the surjective spectrum of T by
means of SVEP. We first need the following result on the surjective spectrum of T .

Lemma 3.7. Let Tii ∈ BR(Xi) and Tij ∈ BR(Xj , Xi), for all i ∈ {1, 2, 3} and j ∈ {2, 3} such
that Tii(0) ⊆ Tij(0) for j ̸= i ∈ {1, 2} and D(T33) ⊂ N (T23). If T11(resp. T22) has a selection
E1(resp. E2) which satisfies T11(0) ⊆ R(E1)(resp. T22(0) ⊆ R(E2)) and T33 has the SVEP,
then

σsu(T ) =
⋃

i∈{1,2,3}

σsu(Tii).

Proof. Applying Corollary 3.6, we can deduce that

σT11(x) = σT

 x

0
0

. (3.5)
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Since σsu(T ) =
⋃
x∈X

σT (x), then we have

σsu(T11) =
⋃

y∈D(T11)

σT11(y)

=
⋃

y∈D(T11)

σT

 y

0
0

, (from (3.5))

⊆ σsu(T ).

In addition, by referring to Proposition 3.3, we infer that

σsu(T33) ⊆
⋃

w∈D(T33)

σT33

 0
0
w


⊆

⋃
w∈D(T33)

σT

 0
0
w


⊆ σsu(T ).

Again, by using of Proposition 3.3, we obtain

σsu(T22) ⊆ σsu(T ).

So, we get ⋃
i∈{1,2,3}

σsu(Tii) ⊆ σsu(T ).

Conversely, by applying Corollary 3.2, we can deduce that

σsu(T ) ⊆ σsu(T11) ∪ σsu(T22) ∪ σsu(T33).

This end the proof.

One of our main results is to find an equality between the spectrum of T and the spectrum of its
diagonal entries invelvig SVEP which is the follwing.

Theorem 3.8. Let Tii ∈ BR(Xi) and Tij ∈ BR(Xj , Xi), for all i ∈ {1, 2, 3} and j ∈ {2, 3}
such that Tii(0) ⊆ Tij(0) for j ̸= i ∈ {1, 2} and D(T33) ⊂ N (T23). If T11(resp. T22) has a
selection E1(resp. E2) which satisfies T11(0) ⊆ R(E1)(resp. T22(0) ⊆ R(E2)) and T33 has the
SVEP, then

σ(T ) =
⋃

i∈{1,2,3}

σ(Tii).

Proof. In view of Lemma 3.7, we obtain

σsu(T ) =
⋃

i∈{1,2,3}

σsu(Tii).

Using the fact that T33 has the SVEP, we infer that⋃
i∈{1,2}

σsu(Tii) ∪ σ(T33) ⊆ σ(T ).

Accordingly, ⋃
i∈{1,2}

STii

⋃
i∈{1,2}

σsu(Tii) ∪ σ(T33) ⊆
⋃

i∈{1,2}

STii ∪ σ(T ).
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Also, applying Corollary 3.6, we have⋃
i∈{1,2}

STii

⋃
i∈{1,2}

σsu(Tii) ∪ σ(T33) =
⋃

i∈{1,2,3}

σ(Tii)

⊆
⋃

i∈{1,2}

STii ∪ σ(T ).

Furthermore, since ST11 ∪ ST22 ⊆ ST , then⋃
i∈{1,2,3}

σ(Tii) ⊂ σ(T ).

Conversely, it follows from Remark 3.4, we get σsu(T ) ⊂
⋃

i∈{1,2,3}

σsu(Tii).

In what follows, under some new conditions, we prove that the upper triangular matrix of linear
relations also has the SVEP.

Proposition 3.9. Let Tii ∈ BR(Xi) and Tij ∈ BR(Xj , Xi), for all i ∈ {1, 2, 3} and j = 2, 3
such that Tii(0) ⊆ Tij(0) for j ̸= i ∈ {1, 2}. If Tii have the SVEP, for all i ∈ {1, 2, 3}, then T
also has the SVEP.

Proof. Let f : Vλ0 −→ X1 ×X2 ×X3 be an analytic function on an open neighborhood Vλ0 of
λ0 in C satisfying

(T − λ)f(λ) = T (0), for all λ ∈ V.

Let f =

 f1

f2

f3

 with f1 : Vλ0 −→ X1, f2 : Vλ0 −→ X2 and f3 : Vλ0 −→ X3 be an analytic

functions. Hence, we get
(T11 − λ)f1(λ) + T12f2(λ) + T13f3(λ) = T11(0)
(T22 − λ)f2(λ) + T23f3(λ) = T22(0),
(T33 − λ)f3(λ) = T33(0), for all λ ∈ Vλ0 .

Based on the hypotheses T33 has the SVEP, we can conclude that f3(λ) = 0, for all λ ∈ V .
Therefore, we have

(T22 − λ)f2(λ) = T22(0), for all µ ∈ V.

The fact that T22 has the SVEP and T22(0) ⊆ T23(0), allows us to deduce that f2(λ) = 0 on V .
So, we obtain

(T11 − λ)f1(λ) = T11(0).

Again, since T11 has the SVEP, T11(0) ⊆ T12(0) and T11(0) ⊆ T13(0), then f1(λ) = 0 on V .
Consequently, T has the SVEP.

An immediate consequence of the Proposition 3.9 is the following:

Corollary 3.10. Let Tii ∈ BR(Xi) and Tij ∈ BR(Xj , Xi), for all i ∈ {1, 2, 3} and j = 2, 3 such
that Tii(0) ⊆ Tij(0) for j ̸= i ∈ {1, 2}. If Tii have the SVEP, for all i ∈ {1, 2, 3}, then

σ(T ) =
⋃

i∈{1,2,3}

σ(Tii). (3.6)

Proof. By referring to Theorem 3.7, we infer that

σsu(T ) =
⋃

i∈{1,2,3}

σsu(Tii) (3.7)

Also, since Tii have the SVEP, for all i ∈ {1, 2, 3}, we can obtain that

ST11 = ST22 = ST33 = ∅.
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This is equivalent to

σsu(T11) = σ(T11), σsu(T22) = σ(T22) and σsu(T33) = σ(T33). (3.8)

In view of Proposition 3.9, we deduce that T also has the SVEP. This leads to

σsu(T ) = σ(T ). (3.9)

As a consequence, by combining (3.7), (3.8) and (3.9), we conclude that (3.6) holds.

Proposition 3.11. Let Tii ∈ BR(Xi) and Tij ∈ BR(Xj , Xi) for all i ∈ {1, 2, 3} and j ∈ {2, 3}
such that Tii(0) ⊆ Tij(0) for j ̸= i ∈ {1, 2}. If T11(resp. T22) has a selection E1(resp. E2)
which satisfies T11(0) ⊆ R(E1)(resp. T22(0) ⊆ R(E2)). Then,

ST22 ∪ ST33 ∪ σsu(T ) = σsu(T11) ∪ σ(T22) ∪ σ(T33).

Proof. By using of Corollary 3.2, we obtain

σsu(T ) ⊆
⋃

∈{1,2,3}

σsu(Tii).

Hence,
ST22 ∪ ST33 ∪ σsu(T ) ⊆ ST22 ∪ ST33 ∪

⋃
∈{1,2,3}

σsu(Tii).

Consequently,
ST22 ∪ ST33 ∪ σsu(T ) ⊆ σsu(T11) ∪

⋃
∈{2,3}

σ(Tii).

Conversely, by referring to Proposition 3.5, we infer that

ST22 ∪ ST33 ∪ σT11(x) = ST22 ∪ ST33 ∪ σT

 x

0
0

.

Therefore,
ST22 ∪ ST33 ∪ σsu(T11) ⊆ ST22 ∪ ST33 ∪ σsu(T ).

Using the fact that σsu(T22) ⊆ σsu(T ) and σsu(T33) ⊆ σsu(T ), we can deduce that

σsu(T22) ∪ σsu(T33) ∪ ST22 ∪ ST33 ∪ σsu(T11) = σsu(T11) ∪ σ(T22) ∪ σ(T33)

⊆ ST22 ∪ ST33 ∪ σsu(T ).

This complete the proof.

In the following theorem, we will study a new characterization of σ(T ) by means of its adjoint
T ∗.

Theorem 3.12. Let Tii ∈ BR(Xi) and Tij ∈ BR(Xj , Xi) for all i ∈ {1, 2, 3} and j ∈ {2, 3}
such that Tii(0) ⊆ Tij(0) for j ̸= i ∈ {1, 2}. If T11(resp. T22) has a selection E1(resp. E2)
which satisfies T11(0) ⊆ R(E1)(resp. T22(0) ⊆ R(E2)). Then,(

ST∗
11
∪ ST22 ∪ ST33

)⋃
σ(T ) =

⋃
i∈{1,2,3}

σ(Tii).

Proof. In the one hand, we show that

(ST22 ∪ ST33)
⋃

σ(T ) =
⋃

i∈{1,2,3}

σ(Tii).

Then, by referring to Remark 3.4 and Proposition 3.11, we infer that

[ST11 ∪ σsu(T11)]
⋃

i∈{2,3}

σ(Tii) ⊆ ST22 ∪ ST33 ∪ σsu(T ) ∪ ST .
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It follows that, ⋃
i∈{1,2,3}

σ(Tii) ⊆ ST22 ∪ ST33 ∪ σ(T ).

In the other hand, in view of Theorem 2.5, we get that the adjoint of T is:

T =

 T ∗
11 0 0

T ∗
23 T ∗

22 0
T ∗

12 T ∗
13 T ∗

33

 .

Using the same reasoning as before, we have

ST∗
11
∪ σ(T ∗) =

⋃
i∈{1,2,3}

σ(T ∗
ii).

In view of Proposition 2.3, we obtain

ST∗
11
∪ σ(T ) =

⋃
i∈{1,2,3}

σ(Tii)

which proves the statement.

Corollary 3.13. Let Tii ∈ BR(Xi) and Tij ∈ BR(Xj , Xi) for all i ∈ {1, 2, 3} and j ∈ {2, 3}
such that Tii(0) ⊆ Tij(0) for j ̸= i ∈ {1, 2}. If T11(resp. T22) has a selection E1(resp. E2)
which satisfies T11(0) ⊆ R(E1)(resp. T22(0) ⊆ R(E2)) and

(
ST∗

11
∪ ST22 ∪ ST33

)
= ∅. Then,

σ(T ) =
⋃

i∈{1,2,3}

σ(Tii).

Moving forward, we show an equivalence between the SVEP of T and the SVEP of its
diagonal entries.

Theorem 3.14. Let Tii ∈ BR(Xi) and Tij ∈ BR(Xj , Xi) for all i ∈ {1, 2, 3} and j ∈ {2, 3}
such that Tii(0) ⊆ Tij(0) for j ̸= i ∈ {1, 2}. If T11(resp. T22) has a selection E1(resp. E2)
which satisfies T11(0) ⊆ R(E1)(resp. T22(0) ⊆ R(E2)). Then,

ST = ∅ if, and only if, ST11 = ST22 = ST33 = ∅.

In particular, T has the SVEP if, and only if, Tii for all i ∈ {1, 2, 3} have the SVEP.

Proof. Suppose that ST = ∅, then T has the SVEP. Hence, σ(T ) = σsu(T ). Based on the fact
that

σsu(T22) ⊆ σsu(T ) and ST22 ⊆ ST ,

we can conclude that ST11 = ∅. The same reasoning, we can deduce that

ST11 = ST33 = ∅.

Conversely, if Tii for all i ∈ {1, 2, 3} have the SVEP. Then, using Proposition 3.9, we obtain T
which has the SVEP.

The next theorem shows that an inclusion between the essential spectrum of T and the essential
spectrum of its entries by using the analytic residuum.

Theorem 3.15. Let Tii ∈ BR(Xi) and Tij ∈ BR(Xj , Xi), for all i ∈ {1, 2, 3} and j ∈ {2, 3}
such that Tii(0) ⊆ Tij(0) for j ̸= i ∈ {1, 2} and D(T33) ⊂ N (T23). If T11(resp. T22) has a
selection E1(resp. E2) which satisfies T11(0) ⊆ R(E1)(resp. T22(0) ⊆ R(E2)), then⋃

i∈{1,2,3}

σe4(Tii) ⊂ σe4(T ) ∪
(
ST∗

11
∪ ST22 ∪ ST33

)
.
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Proof. Let λ ∈ C, then we have

T − λ =

 I 0 0
0 I 0
0 0 T33 − λ

 I 0 T13

0 I T23

0 0 I

 I 0 0
0 T22 − λ 0
0 0 I


 I T12 0

0 I 0
0 0 I

 T11 − λ 0 0
0 I 0
0 0 I

 . (3.10)

Now, let us suppose that λ /∈ σe4(T ) ∪
(
ST∗

11
∪ ST22 ∪ ST33

)
. Hence, T − λ is a Fredholm. Our

purpose is to prove that λ /∈
⋃

i∈{1,2,3}

σe4(Tii). By (3.10), we have

 I 0 0
0 I 0
0 0 T33 − λ

 is lower

semi Fredholm, then T33 − λ is so. Now, to prove that T33 − λ is a Fredholm, it remains to show
that dim(N (T33 − λ)) is finite. Since λ /∈ ST33 , then by using of Proposition 2.10 and Theorem
2.11, we obtain that dim(N (T33 − λ)) = 0. Thus, λ /∈ σe4(T33). The same reasoning as before,
we show that λ /∈ σe4(T22). Let us prove that T11 − λ is Fredholm linear relation. Using the

fact that T − λ is a Fredholm and by (3.10), we infer that

 T11 − λ 0 0
0 I 0
0 0 I

 is upper semi

Fredholm. Therefore, T11−λ is upper semi Fredholm. It follows from the fact λ /∈ ST∗
11

and again
by using of Proposition 2.10 and Theorem 2.11 that N (T ∗

11 − λ) = {0}. Since T11 is bounded
linear relation, then

{0} = N (T ∗
11 − λ)

= N ((T11 − λ)∗)

= R(T11 − λ)⊥.

This implies that codim(T ) < ∞. Accordingly, T11 − λ is a Fredholm linear relation.

As a direct consequence of Theorem 3.15, we get:

Corollary 3.16. Let Tii ∈ BR(Xi) and Tij ∈ BR(Xj , Xi), for all i ∈ {1, 2, 3} and j ∈ {2, 3}
such that Tii(0) ⊆ Tij(0) for j ̸= i ∈ {1, 2} and D(T33) ⊂ N (T23). If T11(resp. T22) has a
selection E1(resp. E2) which satisfies T11(0) ⊆ R(E1)(resp. T22(0) ⊆ R(E2)), and T ∗

11, T22
and T33 have a SVEP, then

σe4(T ) =
⋃

i∈{1,2,3}

σe4(Tii).

We finish this section by giving a new characterization of the local spectrum of 3 × 3-block
matrix of linear relations.

Theorem 3.17. Let Tii ∈ BR(Xi) and Tij ∈ BR(Xj , Xi), for all i ∈ {1, 2, 3} and j ∈ {2, 3}
such that T12(0) ∩ T13(0) ⊂ T11(0), T21(0) ∩ T23(0) ⊂ T22(0) and T31(0) ∩ T32(0) ⊂ T33(0).
If D(T11) ⊂ N (T23) ∩ N (T31), D(T22) ⊂ N (T12) ∩ N (T32), and D(T33) ⊂ N (T13) ∩ N (T23).
Then,

σT

 x

y

z

 = σT11(x) ∪ σT22(y) ∪ σT33(z), for all

 x

y

z

 ∈ X1 ×X2 ×X3.

Proof. First, it should be noted that the result is equivalent to show that

ρT

 x

y

z

 = ρT11(x) ∩ ρT22(y) ∩ ρT33(z), for all

 x

y

z

 ∈ X1 ×X2 ×X3.
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Let λ ∈ ρT11(x) ∩ ρT22(y) ∩ ρT33(z), then there exist there exist three open neighborhoods V1, V2
and V3 of λ ∈ C and three analytic functions f1 : V1 −→ X1, f2 : V2 −→ X2 and f3 : V3 −→ X3
such that for all λ0 ∈ V1 ∩ V2 ∩ V3, we have

(T11 − λ0)f1(λ0) = x+ T11(0),
(T22 − λ0)f2(λ0) = x+ T22(0),
(T33 − λ0)f3(λ0) = x+ T33(0).

(3.11)

Now, let

 f1

f2

f3

 : V1 ∩ V2 ∩ V3 −→ X1 ×X2 ×X3. Then,

 f1

f2

f3

 is an analytic function and

for all λ0 ∈ V1 ∩ V2 ∩ V3, we obtain

(T0 − λ0)

 f1(λ0)

f2(λ0)

f3(λ0)

 =

 T11 − λ0 T12 T13

T21 T22 − λ0 T23

T31 T32 T33 − λ0


 f1(λ0)

f2(λ0)

f3(λ0)



=

 (T11 − λ0)f1(λ0) + T12f2(λ0) + T13f3(λ0)

T21f1(λ0) + (T22 − λ0)f2(λ0) + T23f3(λ0)

T31f1(λ0) + T32f2(λ0) + (T33 − λ0)f3(λ0)



=

 x+ T11(0) + T12f2(λ0) + T13f3(λ0)

T21f1(λ0) + y + T22(0) + T23f3(λ0)

T31f1(λ0) + T32f2(λ0) + y + T33(0)

 (from (3.11)).

Based on the hypotheses D(T11) ⊂ N (T23)∩N (T31), D(T22) ⊂ N (T12)∩N (T32), and D(T33) ⊂
N (T13) ∩N (T23) and by referring to Proposition 2.1, we infer that

(T0 − λ0)

 f1(λ0)

f2(λ0)

f3(λ0)

 =

 x+ T11(0) + T12(0) + T13(0)
T21(0) + y + T22(0) + T23(0)
T31(0) + T32(0) + y + T33(0)



=

 T11(0) + T12(0) + T13(0)
T21(0) + T22(0) + T23(0)
T31(0) + T32(0) + T33(0)

+

 x

y

z



= T0

 0
0
0

+

 x

y

z

 .

Hence,

ρT11(x) ∩ ρT22(y) ∩ ρT33(z) ⊂ ρT

 x

y

z

 .

For the reverse inclusion, let us suppose that λ ∈ ρT

 x

y

z

, then there exist an open neighbor-

hoods V of λ ∈ C and an analytic function

 f1

f2

f3

 : V −→ X1 × X2 × X3 such that for all

λ0 ∈ V , we have

(T0 − λ0)

 f1(λ0)

f2(λ0)

f3(λ0)

 =

 x

y

z

+ T0

 0
0
0

 .
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This is equivalent to
(T11 − λ0)f1(λ0) + T12f2(λ0) + T13f3(λ0) = x+ T11(0) + T12(0) + T13(0),
T21f1(λ0) + (T22 − λ0)f2(λ0) + T23f3(λ0) = T21(0) + y + T22(0) + T23(0),
T31f1(λ0) + T32f2(λ0) + (T33 − λ0)f3(λ0) = T31(0) + T32(0) + y + T33(0).

Since, T12(0) ∩ T13(0) ⊂ T11(0), then

(T11 − λ0)f1(λ0) + T12f2(λ0) + T13f3(λ0) = x+ T11(0).

Also, it follows from f2(λ0) ∈ D(T22) ⊂ N (T12) and f3(λ0) ∈ D(T33) ⊂ N (T13) that

x+ T11(0) = (T11 − λ0)f1(λ0) + T12f2(λ0) + T13f3(λ0)

= (T11 − λ0)f1(λ0) + T12(0) + T13(0)

= (T11 − λ0)f1(λ0) + (T11 − λ0)(0) + (T12 − λ0)(0) + (T13 − λ0)(0)

= (T11 − λ0)f1(λ0).

Thus, λ ∈ ρT11(x). The same reasoning allows us to conclude that λ ∈ ρT22(y) and λ ∈ ρT33(z).
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