GENERALIZATIONS OF PRIME RADICAL IN NONCOMMUTATIVE RINGS

Nico J. Groenewald and Ece Yetkin Celikel

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 16N40; Secondary 16N80, 16L30.

Keywords and phrases: prime ideal, ϕ -prime ideal, ϕ -m-system, prime radical, ϕ -prime radical.

The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that improved the quality of our paper.

Abstract Let R be a noncommutative ring with identity. Let $\phi : S(R) \to S(R) \cup \{\emptyset\}$ be a function where S(R) denotes the set of all subsets of R. The aim of this paper is to generalize the concept of prime radical \sqrt{I} of an ideal I of R to ϕ -prime radical $\mathcal{P}_{\phi}(I)$. A proper ideal Q of R is called ϕ -prime if whenever $a, b \in R$, $aRb \subseteq Q$ and $aRb \notin \phi(Q)$ implies that either $a \in Q$ or $b \in Q$. In this paper, first we study the properties of several generalizations of prime ideals of R. Then, we verify that $\mathcal{P}_{\phi}(I)$ is equal to the intersection of all minimal ϕ -prime ideals of R containing I, and we show that this notion inherits many of the essential properties of the usual notion of prime radical of an ideal.

1 Introduction

The first generalization of prime ideals in commutative rings is introduced in 2003 by Anderson's celebrated work [2]. A proper ideal I of a commutative ring R is weakly prime if $0 \neq ab \in I$ for some $a, b \in R$, then $a \in I$ or $b \in I$. Afterwards, in 2008, Anderson and Bataineh introduced ϕ -prime ideals in commutative rings. In [1], they define a function $\phi : \mathcal{I}(R) \to \mathcal{I}(R) \cup \{\emptyset\}$ which maps an ideal of R to an ideal of R or \emptyset . A proper ideal I of R is said to be a ϕ -prime ideal of R whenever if $ab \in I - \phi(I)$ for some $a, b \in R$, then $a \in I$ or $b \in I$. They gave a proof showing that I is ϕ -prime if and only if whenever J, K are ideals of R with $JK \subseteq I$ and $JK \nsubseteq \phi(I)$ imply that $J \subseteq I$ or $K \subseteq I$ (that is, I is strongly ϕ -prime), [1, Theorem 13]. For some of the different generalizations of prime ideals refer to [3]-[14].

Afterwards, in [9], Groenewald studied weakly prime ideals in noncommutative rings and the notion of a weakly prime radical of an ideal is introduced. A proper ideal I of R is said to be weakly prime if $a, b \in R$ such that $0 \neq aRb \subseteq I$, then $a \in I$ or $b \in I$.

Motivated and inspired from the above structures in the literature, we give the following definition. Let $\phi : S(R) \to S(R) \cup \{\emptyset\}$ be a function. We call a proper ideal of R a ϕ -prime ideal if $a, b \in R$ such that $aRb \subseteq P$ and $aRb \notin \phi(P)$, then $a \in P$ or $b \in P$. Several characterizations and properties of this concept are studied in Section 3. At the end of this section, we show how to construct some interesting examples of ϕ -ideals using the method of idealization (Theorem 2.21). In Section 4, we introduce and study the notion of ϕ -m-system to generalize the concept of prime radical of an ideal to ϕ -prime radical. We call a subset S of a ring R a ϕ -m-system if for A and B ideals of R such that $A \cap S \neq \emptyset$ and $B \cap S \neq \emptyset$ and $AB \notin \phi(R \setminus S)$ then $AB \cap S \neq \emptyset$. In Theorem 3.4, we obtain a relationship between ϕ -prime ideals and ϕ -m-system that if P is an ideal of R maximal with respect to the property that P is disjoint from S where $S \subseteq R$ is a ϕ -m-system, then P is a ϕ -prime ideal. Then, we introduce ϕ -prime radical of A, denoted by $\mathcal{P}_{\phi}(A)$, by the set of $\{a \in R : \text{ every } \phi$ -m-system containing a meets $A\}$. We show that the intersection of all the minimal ϕ -prime ideals of R containing the ideal A of R is equal to the ϕ -prime radical $\mathcal{P}_{\phi}(A)$. (Theorem 3.6)

Furthermore, we call the set of all ϕ -prime ideals of R the ϕ -prime spectrum of R and denoted

by Spec(R) or simply X. Also, we have: $X_{\phi_{\emptyset}} \subseteq X_{\phi_0} \subseteq X_{\phi_{\omega}} \subseteq \cdots \subseteq X_{\phi_{n+1}} \subseteq X_{\phi_n} \subseteq \cdots \subseteq X_{\phi_2} \subseteq X_{\phi_1} = S^*(R)$. In particular, if $\phi = \phi_{\emptyset}$, then $Spec_{\phi}(R) = Spec(R)$ and if $\phi = \phi_1$, then $Spec(R) = S^*(R)$.

2 ϕ -prime ideals of a noncommutative ring

Definition 2.1. Let $\phi : S(R) \to S(R) \cup \{\emptyset\}$ be a function. We call a proper ideal P of a ring R a ϕ -prime ideal if $a, b \in R$ such that $aRb \subseteq P$ and $aRb \notin \phi(P)$, then $a \in P$ or $b \in P$.

We shall denote the following notations which are used for the rest of the paper. Let R be a ring (not necessarily commutative) and $\phi_{\alpha} : S(R) \to S(R) \cup \{\emptyset\}$ be a function where S(R)denotes the set of subsets of R and if $I \subseteq S(R)$ is an ideal of R, then $\phi(I)$ is an ideal. Some generalized forms of prime ideals correspond to ϕ_{α} are presented as follows.

ϕ_{\emptyset}	$\phi(I) = \emptyset$	prime ideal
ϕ_0	$\phi(I) = 0$	weakly prime ideal
ϕ_2	$\phi(I) = I^2$	almost prime ideal
ϕ_n	$\phi(I) = I^n$	n-almost prime ideal
ϕ_{ω}	$\phi(I) = \bigcap_{n=0}^{\infty} I^n$	ω -prime ideal
ϕ_1	$\phi(I) = I$	any ideal
		- (-) - (-) - (-)

For two functions ϕ , ψ : $S(R) \to S(R) \cup \{\emptyset\}$, we write an order $\phi \leq \psi$ when $\phi(I) \subseteq \psi(I)$ for all ideals I of R. Note that $\phi_{\emptyset} \leq \phi_0 \leq \phi_{\omega} \leq \cdots \leq \phi_{n+1} \leq \phi_n \leq \cdots \leq \phi_2 \leq \phi_1$ (*).

The several equivalent characterizations of ϕ -prime ideals of rings are presented in the following.

Theorem 2.2. Let P be a proper ideal of a ring R. Then the following statements are equivalent.

(i) P is a ϕ -prime ideal of R.

(ii) For all $x \in R \setminus P$, $(P : Rx) = \{p \in R : pRx \subseteq P\} = P \cup (\phi(I) : Rx)$.

(iii) For all $x \in R \setminus P$, (P : Rx) = P or $(P : Rx) = (\phi(I) : Rx)$.

(iv) For ideals A and B of R, $AB \subseteq P$ and $AB \not\subseteq \phi(P)$ implies $A \subseteq P$ or $B \subseteq P$.

- (v) If J, K are right (left) ideals of R such that $JK \subseteq P$ and $JK \nsubseteq \phi(P)$, then $J \subseteq P$ or $K \subseteq P$. (In this case, we call P a ϕ -prime right ideal)
- (vi) $P/\phi(P)$ is a weakly prime ideal of $R/\phi(P)$.

Proof. (1) \Rightarrow (2) Let $y \in (P : Rx)$ where $x \in R \setminus P$. Now $yRx \subseteq P$. If $yRx \notin \phi(P)$, then we have $y \in P$. If $yRx \subseteq \phi(P)$, then $y \in (\phi(P) : Rx)$ as P is ϕ -prime. Hence, $(P : Rx) \subseteq P \cup (\phi(P) : Rx)$. As the reverse containment always holds for any ideal P, we have the equality. (2) \Rightarrow (3) Since P and $(\phi(P) : Rx)$ are both ideals, $(P : Rx) = P \cup (\phi(P) : Rx)$ implies

 $(2) \Rightarrow (3)$ since *F* and $(\phi(F) \cdot Rx)$ are both ideals, $(F \cdot Rx) = F \cup (\phi(F) \cdot Rx)$ input clearly (P : Rx) = P or $(P : Rx) = (\phi(P) : Rx)$.

 $(3) \Rightarrow (1)$ Let $x, y \in R$ such that $xRy \subseteq P$ and $yRx \notin \phi(P)$. Suppose $y \in R \setminus P$. Then, $(P:Ry) \neq (\phi(P):Ry)$ and from (3), we have (P:Ry) = P. Hence $x \in P$, as needed.

 $(1) \Rightarrow (4)$ Let A and B be ideals of R with $AB \subseteq P$. Suppose that $A \nsubseteq P$ and $B \nsubseteq P$. We show that $AB \subseteq \phi(P)$. Let $a \in A$. First, suppose that $a \notin P$. Then $aRB \subseteq P$ gives $B \subseteq (P : Ra)$. Now $B \nsubseteq P$; so $(P : Ra) = (\phi(P) : Ra)$. Hence $aB \subseteq \phi(P)$. Next, choose $a \in A \cap P$ and $a' \in A \setminus P$. Then $a + a' \notin A \setminus P$. So by the first case, a'B, $(a + a')B \subseteq \phi(P)$. Let $b \in B$. Then $ab = (a + a')b - a'b \in \phi(I)$ which means $aB \subseteq \phi(P)$. Thus $AB \subseteq \phi(P)$.

 $(4) \Rightarrow (1)$ Let $a, b \in R$ such that $aRb \subseteq P$ and $aRb \notin \phi(P)$. Now, since R is a ring with identity $aRb \subseteq (RaR)(RbR) \subseteq P$ and $(RaR)(RbR) \notin \phi(P)$. From (4), we have either $a \in RaR \subseteq P$ or $b \in RbR \subseteq P$.

 $(4) \Rightarrow (5)$ Assume (4) holds. Suppose that J, K are right (left) ideals of R such that $JK \subseteq P$ and $JK \nsubseteq \phi(P)$. Let $\langle J \rangle, \langle K \rangle$ be the ideals generated by J, K respectively. Then $\langle J \rangle \langle K \rangle \subseteq P$ and $\langle J \rangle \langle K \rangle \oiint \phi(P)$, whence $J \subseteq \langle J \rangle \subseteq P$ or $K \subseteq \langle K \rangle \subseteq P$.

 $(5) \Rightarrow (1)$ Assume (5) holds. Suppose $aRb \subseteq P$ and $aRb \nsubseteq \phi(P)$. Since R has an identity, $(aR)(bR) \subseteq P$ and $(aR)(bR) \nsubseteq \phi(P)$, we conclude $a \in aR \subseteq P$ or $b \in bR \subseteq P$.

 $(1) \Rightarrow (5)$ Suppose that $AB \subseteq P$, and $AB \nsubseteq \phi(P)$, for right ideals A and B of R. Since R has an identity, AR = A, and $(RA)(RB) = RAB \subseteq RP = P$ for ideals RA and RB. On the other hand, if $(RA)(RB) \subseteq \phi(P)$, then $AB \subseteq RAB = (RA)(RB) \subseteq \phi(P)$, a contradiction. Thus $(RA)(RB) \nsubseteq \phi(P)$, and by (2) we have either $A \subseteq RA \subseteq P$ or $B \subseteq RB \subseteq P$ and we are done.

 $(1) \Leftrightarrow (6)$ is straightforward.

Corollary 2.3. Let P be an ideal of a ring R. Then the following are equivalent.

- (i) P is a ϕ -prime ideal of R.
- (ii) For any ideals I, J of R with $P \subset I$ and $P \subset J$, we have either $IJ \subseteq \phi(P)$ or $IJ \nsubseteq P$.
- (iii) For any ideals I, J of R with $I \nsubseteq P$ and $J \nsubseteq P$, we have either $IJ \subseteq \phi(P)$ or $IJ \nsubseteq P$.

Proof. $(1) \Rightarrow (2)$ and $(3) \Rightarrow (1)$ are clear

(2) \Rightarrow (3) Let *I*, *J* be ideals of *R* with $I \nsubseteq P$ and $J \nsubseteq P$. Suppose that $i \in I$ and $j \in J$ such that $ij \notin \phi(P)$. Since $I \nsubseteq P$ and $J \nsubseteq P$, there exist $i_1 \in I$ and $j_1 \in J$ such that $i_1, j_1 \notin P$. Now $P \subset \langle i_1 \rangle + \langle i \rangle + P$ and $P \subset \langle j_1 \rangle + \langle j \rangle + P$. Furthermore, $(\langle i_1 \rangle + \langle i \rangle + P)(\langle j_1 \rangle + \langle j \rangle + P) \nsubseteq \phi(P)$. Hence from our assumption, we have $(\langle i_1 \rangle + \langle i \rangle + P)(\langle j_1 \rangle + \langle j \rangle + P) \oiint P$ and it follows that $P + \langle i_1 \rangle (\langle j_1 \rangle + \langle j \rangle) + \langle i \rangle (\langle j_1 \rangle + \langle j \rangle) \oiint P$. For this to be true, we must have $IJ \nsubseteq P$.

We define a useful concept, namely "twin-zero", for a ϕ -prime ideal in a noncommutative ring.

Definition 2.4. Let *I* be a ϕ -prime ideal of *R*. We say (a, b) is a twin-zero of *I* if $aRb \subseteq \phi(I)$, $a \notin I$, and $b \notin I$.

Note that if I is a ϕ -prime ideal of R that is not a prime ideal, then I has a twin-zero (a,b) for some $a, b \in R$.

Lemma 2.5. Let I be a ϕ -prime ideal of R and suppose that (a,b) is a twin-zero of I for some $a, b \in R$. Then $aI, Ib \subseteq \phi(I)$.

Proof. Suppose that $aI \nsubseteq \phi(I)$. Then there exists $i \in I$ such that $ai \notin \phi(I)$. Hence $aR(b+i) \subseteq I$ and $aR(b+i) \nsubseteq \phi(I)$. Since $a \notin I$ and I is ϕ -prime, we have $b+i \in I$, and hence $b \in I$, a contradiction. Thus $aI \subseteq \phi(I)$. Now, suppose $Ib \nsubseteq \phi(I)$. Then there exists $t \in I$ such that $tb \notin \phi(I)$. Hence $(a+t)Rb \subseteq I$ and $(a+t)Rb \nsubseteq \phi(I)$. Since $b \notin I$ and I is ϕ -prime, we have $a+t \in I$, and hence $a \in I$, a contradiction. Thus $Ib \subseteq \phi(I)$. \Box

Theorem 2.6. Let R be a ring and P an ideal of R. If P is a ϕ -prime ideal but not prime, then $P^2 \subseteq \phi(I)$.

Proof. Let (a, b) be a twin-zero of P. Suppose that $p_1p_2 \notin \phi(P)$ for some $p_1, p_2 \in P$. Then by Lemma 2.5, we have $(a + p_1)(b + p_2) \in (a + p_1)R(b + p_2) \subseteq P$ and $(a + p_1)R(b + p_2) \nsubseteq \phi(P)$ Thus $(a + p_1) \in P$ or $(b + p_2) \in P$ and hence $a \in P$ or $b \in P$ which is a contradiction since (a, b) is a twin-zero of P. Therefore $P^2 \subseteq \phi(P)$.

In view of Theorem 2.6, one can say in other words that if an ideal P of a ring R with $P^2 \not\subseteq \phi(P)$, then P is prime if and only if P is ϕ -prime.

Corollary 2.7. Let P be a ϕ -prime ideal of a ring R where $\phi \leq \phi_3$. Then P is ω -prime.

Proof. If P is prime, then P is ϕ -prime for each ϕ and there is nothing to prove. Suppose P is not prime. Then by Theorem 2.6, $P^2 \subseteq \phi(P) \subseteq P^3$. Hence $\phi(P) = P^n$ for each $n \ge 2$, and so P is almost prime for each $n \ge 2$. Thus P is ω -prime.

It should be noted that a proper ideal P with a property that $\phi(P) = P^2$ need not be ϕ -prime. Take an ideal $P = \begin{bmatrix} 0 & \mathbb{R} \\ 0 & 0 \end{bmatrix}$ of $R = \begin{bmatrix} \mathbb{Q} & \mathbb{R} \\ 0 & \mathbb{Q} \end{bmatrix}$ and $\phi(P) = \{0\}$. Clearly $P^2 = \{0\} = \phi(P)$,

but P is not ϕ -prime since	$\left[\begin{array}{c} 3\\ 0 \end{array}\right]$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} \mathbb{Q} & \mathbb{R} \\ 0 & \mathbb{Q} \end{bmatrix}$	$\left[\begin{array}{c}0\\0\end{array}\right]$	$\begin{bmatrix} 2\\3 \end{bmatrix} \subseteq \begin{bmatrix} 0\\0 \end{bmatrix}$	$\begin{bmatrix} 6 \\ 0 \end{bmatrix}$	$\in P$ and	$\left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right]$	¥
$\left[\begin{array}{cc} 3 & 0 \\ 0 & 0 \end{array}\right] \left[\begin{array}{cc} \mathbb{Q} & \mathbb{R} \\ 0 & \mathbb{Q} \end{array}\right] \left[\begin{array}{cc} 0 \\ 0 \end{array}\right]$	2 3	$\not\subseteq \phi(P)$ with	$\begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}$	$\notin P$ and		$\begin{bmatrix} 2\\3 \end{bmatrix} \notin P.$		

Lemma 2.8. Let I be a ϕ -prime ideal of a ring R and suppose that (a, b) is a twin-zero of I. If $aRr \subseteq I$ for some $r \in R$, then $aRr \subseteq \phi(I)$.

Proof. Suppose that $aRr \subseteq I$ and $aRr \not\subseteq \phi(I)$ for some $r \in R$. Then $r \in I$ as ϕ -prime and (a, b) is a twin-zero of I. Now, since $aRr \subseteq aI$, we have that $aRr \subseteq \phi(I)$ from Theorem 2.5, a contradiction.

Theorem 2.9. Let I be a ϕ -prime ideal of R and suppose that $AB \subseteq I$ for some ideals A, B of R. If I has a twin-zero (a,b) for some $a \in A$ and $b \in B$, then $AB \subseteq \phi(I)$.

Proof. Suppose that *I* has a twin-zero (a, b) for some $a \in A$ and $b \in B$ and assume that $cd \notin \phi(I)$ for some $c \in A$ and $d \in B$. Since $cRd \subseteq AB \subseteq I$ and $cd \in cRd \nsubseteq \phi(I)$ and $I \phi$ -prime, we have $c \in I$ or $d \in I$. Without loss of generality, we may assume that $c \in I$. Since $I^2 \subseteq \phi(I)$ by Theorem 2.6 and $cd \in I$ and $cd \notin \phi(I)$, we conclude that $d \notin I$. Since $aRd \subseteq AB \subseteq I$ it follows from Lemma 2.8 that $aRd \subseteq \phi(I)$. Now, since $(a + c)Rd \subseteq AB \subseteq I$ and $cd \in cRd \oiint \phi(I)$, we have $(a + c)Rd \subseteq I$ and $(a + c)Rd \oiint \phi(I)$. Since *I* is ϕ -prime, we have $(a + c) \in I$ since $d \notin I$. Hence $a \in I$, a contradiction. Thus $AB \subseteq \phi(I)$.

Proposition 2.10. Any ϕ -prime ideal P in a ring R contains a minimal ϕ -prime ideal.

Proof. Apply Zorn's Lemma to the family of ϕ -prime ideals of R contained in P. It suffices to check that for any chain of ϕ -prime ideals $\{P_i : i \in I\}$ in P, the intersection $P' = \cap P_i$ is ϕ -prime. Let A and B be ideals of R such that $AB \subseteq P'$ and $AB \nsubseteq \phi(P')$. Suppose that $A \nsubseteq P'$ and $B \oiint P'$. Then there exist $a \in A \setminus P'$ and $b \in A \setminus P'$. Hence $a \notin P_i$ and $b \notin P_j$ for some i, $j \in I$. If, say $P_i \subseteq P_j$, then both a, b are outside P_i . Since P_i is ϕ -prime we have $aRb \subseteq \phi(P_i)$ or $aRb \nsubseteq P_i$. On the other hand, since $aRb \subseteq AB \subseteq P' \subseteq P_i$ we must have $aRb \subseteq \phi(P_i)$. Hence, (a, b) is a twin zero for P_i . Now, Theorem 2.9 implies that $AB \subseteq \phi(P_i) \subseteq \phi(P)$ which contradicts to our assumption. Thus $A \subseteq P'$ or $B \subseteq P'$, and therefore P' is a ϕ -prime ideal. \Box

Theorem 2.11. Let R be a Noetherian ring and I a proper ideal of R. Then, the set of minimal ϕ -prime ideals containing I is finite.

Proof. Assume on the contrary that the claim is false and choose an ideal $I \neq R$ maximal concerning the property that $I \neq R$ and that there are infinitely many ϕ -prime ideals containing I. This is possible as R is Noetherian. Then clearly I is not a ϕ -prime ideal, so there exist elements $a, b \in R$ such that $\langle a \rangle \langle b \rangle \subseteq I$ and $\langle a \rangle \langle b \rangle \nsubseteq \phi(I)$ but $a \notin I$ and $b \notin I$. Let $J = I + \langle a \rangle$ and $K = I + \langle b \rangle$. Now, J and K properly contain I. Furthermore, $\langle a \rangle \langle b \rangle \subseteq JK = (I + \langle a \rangle) (I + \langle b \rangle) \subseteq I$ and $JK = (I + \langle a \rangle) (I + \langle b \rangle) \nsubseteq \phi(I)$. Since I is ϕ -prime we must have $J \subseteq I$ or $K \subseteq I$. Note that any ϕ -prime ideal containing I must contain either J or K. In particular, any ϕ -prime minimal over I is minimal over either J or K. But each of J and K has only finitely many minimal ϕ -primes (by choice of I), a contradiction.

Proposition 2.12. For a ring R, the following statements are equivalent.

- (i) Every proper right ideal of R is ϕ -prime.
- (ii) For any right ideals J and K of R with $JK \neq \phi(JK)$, JK = J or JK = K.

Proof. (1) \Rightarrow (2). Let J, K be right ideals of R and $JK \neq \phi(JK)$. If JK is proper, then it is ϕ -prime by our assumption. Thus $JK \subseteq JK$ and $JK \nsubseteq \phi(JK)$ implies that $J \subseteq JK$ or $K \subseteq JK$. Thus JK = J or JK = K.

 $(2) \Rightarrow (1)$. Let *I* be a proper right ideal of *R*. Suppose that $JK \subseteq I$ and $JK \nsubseteq \phi(I)$. Since $\phi(JK) \subseteq \phi(I)$, we have $JK \neq \phi(JK)$ and (2) implies that $J = JK \subseteq I$ or $K = JK \subseteq I$. \Box

In view of the proposition above, we have the following.

Corollary 2.13. Let R be a ring in which every ideal of R is a ϕ -prime right ideal. Then $I^2 = I$ or $I^2 = \phi(I)$ for any right ideal I of R.

Recall that a ring R with unity is said to be a local ring if it contains a unique maximal right ideal M. We will denote it by (R, M). Recall that M is the unique (two sided) maximal ideal of R.

Proposition 2.14. Let (R, M) be a local ring, and let I be a right ideal of R such that $M^2 \subseteq \phi(I)$. Then I is a ϕ -prime right ideal. In particular, if (R, M) is a local ring such that $M^2 = 0$, then every proper ideal of R is a ϕ -prime right ideal.

Proof. Suppose that J, K are two right ideals of R. Since $JK \subseteq M^2 \subseteq \phi(I)$, I is a ϕ -prime right ideal. The "in particular" case is straightforward.

Example 2.15. Let (R, M) be a local ring and P be a right ideal of R such that $P \cap M^2 \subseteq \phi(P)$ $(P \cap M^2 = 0)$. Then, P is a ϕ -prime right ideal of R. Observe that if A and B are right ideals of R such that $AB \subseteq P$, then $AB \subseteq P \cap M^2 \subseteq \phi(P)$ $(AB = 0 \subseteq \phi(P))$.

Next, we discuss the behavior of ϕ *-prime right ideals of a ring under an epimorphism.*

Proposition 2.16. Let $f : R \to S$ be a ring epimorphism, $\phi : S(R) \to S(R)$ a function such that $\phi(f(I)) = f(\phi(I))$.

- (*i*) If I is a ϕ -prime right ideal of S where ker $f \subseteq I$, then $f^{-1}(I)$ is a ϕ -prime right ideal of R.
- (ii) If I is a be a ϕ -prime right ideal of R and ker $f \subseteq \phi(I)$, then f(I) is a ϕ -prime right ideal of S.

Proof. (1) Let J, K be two right ideals of S and $JK \subseteq f^{-1}(I)$ and $JK \nsubseteq \phi(f^{-1}(I))$. Then $f(J)f(K) = f(JK) \subseteq I$. Since $\phi(f(I)) = f(\phi(I))$, we have $f(J)f(K) \nsubseteq \phi(I)$. It follows either $f(J) \subseteq f(I)$ or $f(K) \subseteq f(I)$ and since as ker $f \subseteq I$, we conclude that either $J \subseteq f^{-1}(I)$ or $K \subseteq f^{-1}(I)$, as needed.

(2) Let $J := f(J_1), K := f(K_1)$ be two right ideals of S and $JK = f(J_1K_1) \subseteq f(I)$ and $JK \nsubseteq \phi(f(I))$. Then $J_1K_1 = f^{-1}(JK) \subseteq I$. Since $\phi(f(I)) = f(\phi(I))$ and ker $f \subseteq \phi(I)$, we have $J_1K_1 = f^{-1}(J)f^{-1}(K) \nsubseteq \phi(I)$. Hence, $J_1 \subseteq I$ or $K_1 \subseteq I$, and thus $J \subseteq f(I)$ or $K \subseteq f(I)$, as needed.

Corollary 2.17. Let I and J be two right ideals of R with $I \subseteq J$. If I is a ϕ -prime right ideal ideal of R, then I/J is a ϕ -prime right ideal of R/J.

Let R and S be noncommutative rings. It is well known that the prime ideals of $R \times S$ have the form $P \times S$ or $R \times Q$ where P is a prime ideal of R and Q is a prime ideal of S. We next generalize this result to ϕ -prime ideals.

Theorem 2.18. Let R_1 and R_2 be noncommutative rings and let $\phi_i S(R_i) \to S(R_i) \cup \{\emptyset\}$ be functions. Let $\phi = \phi_1 \times \phi_2$. Then a ϕ -prime ideal of $R_1 \times R_2$ has exactly one of the following three forms:

- (i) $I_1 \times I_2$ where I_i is a proper ideal of R_i with $\phi_i(I_i) = I_i$ (i = 1, 2).
- (ii) $I_1 \times R_2$ where I_1 is a ϕ_1 -prime of R_1 which must be prime if $\phi_2(R_2) \neq R_2$.

(iii) $R_1 \times I_2$ where I_2 is a ϕ_2 -prime of R_2 which must be prime if $\phi_1(R_1) \neq R_1$.

Proof. We first note that an ideal of $R_1 \times R_2$ having one of these three types is ϕ -prime. Case (1) is clear since $I_1 \times I_2 = \phi_1(I_1) \times \phi_2(I_2)$. If I_1 is prime, certainly $I_1 \times R_2$ is prime and hence ϕ -prime. So suppose that I_1 is ϕ_1 -prime and $\phi_2(R_2) = R_2$. Suppose $(a_1, b_1)R(a_2, b_2) \subseteq I_1 \times R_2$ and $(a_1, b_1)R(a_2, b_2) \nsubseteq \phi(I_1 \times R_2) = \phi_1(I_1) \times \phi_2(R_2) = \phi_1(I_1) \times R_2$ for $a_1, a_2 \in R_1$ and $b_1, b_2 \in R_2$. Hence $a_1R_1a_2 \subseteq I_1$ and $a_1R_1a_2 \nsubseteq \phi(I_1)$. Since I_1 is ϕ_1 -prime $a_1 \in I_1$ or $a_2 \in I_1$. Hence $(a_1, b_1) \in I_1 \times R_2$ or $(a_2, b_2) \in I_1 \times R_2$. Hence $I_1 \times R_2$ is ϕ -prime. The proof for Case (3) is similar. Next, suppose that $I_1 \times I_2$ is ϕ -prime. Let $aR_1b \subseteq I_1$ and $aR_1b \nsubseteq \phi_1(I_1)$ for $a, b \in R_1$. Then $(a, 0)R(b, 0) = (aR_1b, 0R_20) \subseteq I_1 \times I_2$ and $(a, 0)R(b, 0) = (aR_1b, 0R_20) \nsubseteq$

 $\begin{array}{l} \phi_1(I_1) \times \phi_2(I_2) = \phi(I_1 \times I_2). \text{ Hence } (a,0) \in I_1 \times I_2 \text{ or } (b,0) \in I_1 \times I_2 \text{ since } I_1 \times I_2 \text{ is } \phi_1 \text{ prime.} \\ \text{Therefore } a \in I_1 \text{ or } b \in I_1 \text{ and we have } I_1 \text{ is } \phi_1 \text{ prime.} \text{ Likewise, } I_2 \text{ is } \phi_2 \text{ prime.} \text{ Suppose } \\ \text{that } I_1 \times I_2 \neq \phi_1(I_1) \times \phi_2(R_2). \text{ Say } I_1 \neq \phi_1(I_1). \text{ Let } p \in I_1 - \phi_1(I_1) \text{ and } q \in I_2. \text{ Then } \\ (p,1)R(1,q) = (pR_11,1R_2q) \subseteq I_1 \times I_2 \text{ and } (p,1)R(1,q) = (pR_11,1R_2q) \nsubseteq \phi_1(I_1) \times \phi_2(I_2) = \\ \phi(I_1 \times I_2). \text{ Hence } (p,1) \in I_1 \times I_2 \text{ or } (1,q) \in I_1 \times I_2 \text{ since } I_1 \times I_2 \text{ is } \phi_1 \text{ prime.} \text{ So } I_2 = R_2 \text{ or } \\ I_1 = R_1. \text{ Suppose that } I_2 = R_2. \text{ So } I_1 \times R_2 \text{ is } \phi_1 \text{ prime where } I_1 \text{ is } \phi_1 \text{ prime.} \text{ It remains to show } \\ \text{that if } \phi_2(R_2) \neq R_2, \text{ then } I_1 \text{ is prime.} \text{ Let } aR_1b \subseteq I_1 \text{ for } a, b \in R_1. \text{ Now } 1 \notin \phi_2(R_2). \text{ Then } \\ (a, 1)R(b, 1) = (aR_1b, 1R_21) \subseteq I_1 \times R_2 \text{ and } (a, 1)R(b, 1) = (aR_1b, 1R_21) \nsubseteq \phi_1(I_1) \times \phi_2(R_2) = \\ \phi(I_1 \times R_2). \text{ Hence } (a, 1) \in I_1 \times R_2 \text{ or } (b, 1) \in I_1 \times R_2. \text{ Thus, } a \in I_1 \text{ or } b \in I_1. \text{ Hence } I_1 \text{ is a } \\ \text{ prime ideal and we are done.} \\ \Box$

We next give a way to construct ϕ -prime ideals J where $\phi_{\omega} \leq \phi$.

Theorem 2.19. Let T and S be noncommutative rings and I be a weakly prime ideal of T. Then $J = I \times S$ is a ϕ -prime ideal of $R = T \times S$ for each ϕ with $\phi_{\omega} \leq \phi \leq \phi_1$.

Proof. If *I* is a weakly prime ideal of *T*, then $J = I \times S$ need not be a weakly prime ideal of $R = T \times S$; indeed *J* is weakly prime if and only if *J* (or equivalently, *I*) is actually prime [9, Theorem 1.18]. However, *J* is ϕ -prime for each ϕ with $\phi_{\omega} \leq \phi$. If *I* is actually prime, then *J* is prime and hence is ϕ -prime for all ϕ . Suppose that *I* is not prime. Then $I^2 = 0$. So $J^2 = 0 \times S$ and hence $\phi_{\omega}(J) = 0 \times S$. Then if $(x_1, x_2)R(y_1, y_2) \subseteq J$ and $(x_1, x_2)R(y_1, y_2) \nsubseteq \phi_{\omega}(J)$. Hence $(x_1, x_2)R(y_1, y_2) \subseteq I \times S$ and $(x_1, x_2)R(y_1, y_2) \nsubseteq 0 \times S \Rightarrow x_1Ty_1 \subseteq I$ and $x_1Ty_1 \nsubseteq 0$. Hence $x_1 \in I$ or $y_1 \in I \Rightarrow (x_1, x_2) \in J$ or $(y_1, y_2) \in J$. So *J* is ϕ_{ω} -prime and hence ϕ -prime.

Proposition 2.20. Let $R = R_1 \times R_2$, where R_1 , R_2 are nonzero rings with identity elements. Then every proper ideal of R is ϕ -prime if and only if $\phi_i(J_i) = J_i$ for any proper ideal J_i of R_i (i = 1, 2).

Proof. Suppose that every proper ideal of R is ϕ -prime. Let $I = J_1 \times J_2$ be a proper ideal of R where J_i is an ideal of R_i (i = 1, 2). If both J_1 and J_2 are proper, then $\phi_1(J_1) = J_1$ and $\phi_2(J_2) = J_2$ by Theorem 2.18(1). Assume that $J_1 = R_1$. Then J_2 must be a ϕ -prime ideal by Theorem 2.18(2). Assume on the contrary that there exists $b \in J_2 \setminus \phi_2(J_2)$ which implies that $(R_1 \times \langle b \rangle)(0 \times R_2) \subseteq 0 \times J_2$ and $(R_1 \times \langle b \rangle)(0 \times R_2) \not\subseteq \phi(0 \times J_2)$. Since $0 \times J_2$ is also ϕ -prime from our assumption, we conclude that either $R_1 \times \langle b \rangle \subseteq 0 \times J_2$ or $0 \times R_2 \subseteq 0 \times J_2$ which yields $R_1 = \{0\}$ or $J_2 = R_2$, a contradiction. Thus $\phi_2(J_2) = J_2$. In case of $J_2 = R_1$, we conclude that $\phi_1(J_1) = J_1$ by a similar argument above. The converse part is clear by Theorem 2.18.

We end this section by showing how to construct some interesting examples of ϕ -ideals using the Method of Idealization. In what follows, R is a ring (associative, not necessarily commutative and not necessarily with identity) and M is an R-R-bimodule. The idealization of M is the ring $R \boxplus M$ with $(R \boxplus M, +) = (R, +) \oplus (M, +)$ and the multiplication is given by (r, m)(s, n) =(rs, rn + ms). $R \boxplus M$ itself is, in a canonical way, an R - R-bimodule and $M \simeq 0 \boxplus M$ is a nilpotent ideal of $R \boxplus M$ of index 2. We also have $R \simeq R \boxplus 0$ and the latter is a subring of

 $R \boxplus M$. Note also that $R \boxplus M$ is a subring of the Morita ring $\begin{bmatrix} R & M \\ 0 & R \end{bmatrix}$ via the mapping

 $(r,m) \mapsto \begin{bmatrix} r & m \\ 0 & r \end{bmatrix}$. We will require some knowledge about the ideal structure of $R \boxplus M$. If I

is an ideal of R and \overline{N} is an R - R-bi-submodule of M, then $I \boxplus N$ is an ideal of $R \boxplus M$ if and only if $IM + MI \subseteq N$. Let $\psi_1 : \mathcal{L}(R) \longrightarrow \mathcal{L}(R) \cup \{\emptyset\}$ and $\psi_2 : \mathcal{L}(R \boxplus M) \longrightarrow \mathcal{L}(R \boxplus M) \cup \{\emptyset\}$ be two functions such that $\psi_2(I \boxplus M) = \psi_1(I) \boxplus M$ for a proper ideal I of R.

It follows from [13] that the prime ideals of $R \boxplus M$ are exactly the ideals of the form $I \boxplus M$ where I is a prime ideal of R.

Theorem 2.21. Let R be a ring, M an R - R-bimodule and I a proper ideal of R. Then $I \boxplus M$ is a ψ_2 prime ideal of $R \boxplus M$ if and only if I is a ψ_1 prime ideal of R

Proof. Suppose $I \boxplus M$ is a ψ_2 prime ideal of $R \boxplus M$. Let $aRb \subseteq I$ and $aRb \notin \psi_1(I)$ where $a, b \in R$. Now $(a, 0)R \boxplus M(b, 0) \subseteq I \boxplus M$ and $(a, 0)R \boxplus M(b, 0) \notin \psi_2(I \boxplus M) = \psi_1(I) \boxplus M$. $I \boxplus M$ a ψ_2 -prime ideal gives $(a, 0) \in I \boxplus M$ or $(a, 0) \in I \boxplus M$. Hence $a \in I$ or $b \in I$. So I is ψ_1 prime.

Suppose *I* is a ψ_1 -prime ideal of *R*. Let $(a, n), (b, m) \in R \boxplus M$ such that $(a, n)R \boxplus M(b, m) \subseteq I \boxplus M$ and $(a, n)R \boxplus M(b, m) \nsubseteq \psi_2(I \boxplus M) = \psi_1(I) \boxplus M)$ Hence $aRb \subseteq I$ and $aRb \nsubseteq \psi_1(I)$. Since *I* is a ψ_1 -prime, we have $a \in I$ or $b \in I$. Hence $(a, n) \in I \boxplus M$ or $(b, m) \in I \boxplus M$, we are done.

3 ϕ -prime radical

Let $\phi : S(R) \longrightarrow S(R)$ be a function from the set of subsets of the ring R such that if A is an ideal of R, then $\phi(A)$ is an ideal.

Definition 3.1. A subset S of a ring R is a ϕ -m-system if for A and B ideals of R such that $A \cap S \neq \emptyset$ and $B \cap S \neq \emptyset$ and $AB \not\subseteq \phi(R \setminus S)$ then $AB \cap S \neq \emptyset$.

Lemma 3.2. A proper ideal P of R is a ϕ -prime ideal if and only if $S = R \setminus P$ is an ϕ -m-system.

Proof. Suppose $A \cap S \neq \emptyset$ and $B \cap S \neq \emptyset$ and $AB \nsubseteq \phi(R \setminus S)$. If $AB \cap S = \emptyset$ then $AB \subseteq P$ and since $AB \nsubseteq \phi(R \setminus S) = \phi(R \setminus (R \setminus P)) = \phi(P)$ and P a ϕ -prime ideal gives $A \subseteq P$ or $B \subseteq P$ a contradiction. Hence $AB \cap S \neq \emptyset$ and we have S an ϕ -m-system.

Conversely, let A, B be ideals such that $AB \subseteq P$ and $AB \nsubseteq \phi(P) = \phi(R \setminus S)$. If $A \nsubseteq P$ and $B \nsubseteq P$, then $A \cap S \neq \emptyset$ and $B \cap S \neq \emptyset$. Now, since $AB \nsubseteq \phi(P) = \phi(R \setminus S)$ and S an $\phi - m$ -system we get $AB \cap S = AB \cap (R \setminus P) \neq \emptyset$, a contradiction.

Proposition 3.3. Let R be a ring and P be a proper ideal of R and let $S := R \setminus P$. Then the following statements are equivalent.

- (i) P is ϕ -prime ideal of R.
- (ii) S is a ϕ -m-system.
- (iii) For left ideals A, B of R, if $A \cap S \neq \emptyset$, $B \cap S \neq \emptyset$ and $AB \nsubseteq \phi(R \setminus S)$ then $AB \cap S \neq \emptyset$.
- (iv) For right ideals A, B of R if $A \cap S \neq \emptyset$, $B \cap S \neq \emptyset$ and $AB \not\subseteq \phi(R \setminus S)$, then $AB \cap S \neq \emptyset$.
- (v) For each $a, b \in R$, if $a, b \in S$ and $aRb \not\subseteq \phi(R \setminus S)$, then $aRb \cap S \neq \emptyset$.

Proof. (1) \Leftrightarrow (2) follows from Lemma 3.2. (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (1) follows from Theorem 2.2.

Theorem 3.4. Let $S \subseteq R$ be a ϕ -m-system, and let P an ideal of R maximal with respect to the property that P is disjoint from S. Then P is a ϕ -prime ideal.

Proof. Since $P \cap S = \emptyset$, we have P = R - S. Suppose $AB \subseteq P$ and $AB \nsubseteq \phi(P) = \phi(R - S)$ where A and B are ideals of R. If $A \nsubseteq P$ and $B \nsubseteq P$, then by the maximal property of P, we have, $(P + A) \cap S \neq \emptyset$ and $(P + B) \cap S \neq \emptyset$. Furthermore, $AB \subseteq (P + A)(P + B) \subseteq P$ and $(P + A)(P + B) \oiint \phi(P) = \phi(R - S)$. Thus, since S is a ϕ -m-system $(P + A)(P + B) \cap S \neq \emptyset$ and it follows that $(P + A)(P + B) \nsubseteq P$. For this to happen, we must have $AB \nsubseteq P$, a contradiction. Thus, P must be a ϕ -prime ideal.

It is well-known that for an ideal I of a ring R, prime radical of I is $\mathcal{P}(I) = \bigcap \{P : I \subseteq P \text{ and } P \text{ a prime ideal of } R\}$ and $\mathcal{P}(R) = \bigcap \{P : P \text{ a prime ideal of } R\}$ where $\mathcal{P}(R)$ is the prime radical of R.Now, we are ready to generalize the notion of prime radical $\mathcal{P}(I)$ for any ideal I of R.

Definition 3.5. Let *R* be a ring. For an ideal *A* of *R*, if there is a ϕ -prime ideal containing *A*, then we define ϕ -prime radical by the set of $\{a \in R : \text{every } \phi\text{-m-system containing } a \text{ meets } A\}$, denoted by $\mathcal{P}_{\phi}(A)$. If there is no ϕ -prime ideal containing *A*, then we put $\mathcal{P}_{\phi}(A) = R$.

Note that, for an ideal A of R, A and $\mathcal{P}_{\phi}(A)$ are contained in precisely the same ϕ -prime ideals of R.

Theorem 3.6. Let A be an ideal of the ring R Then either $\mathcal{P}_{\phi}(A) = R$ or $\mathcal{P}_{\phi}(A)$ equals the intersection of all the ϕ -prime ideals of R containing A.

Proof. Suppose that $\mathcal{P}_{\phi}(A) \neq R$. This means that $\{P \mid P \text{ is a } \phi\text{-prime ideal of } R \text{ and } A \subseteq P\} \neq \emptyset$. We first prove that $\mathcal{P}_{\phi}(A) \subseteq \{P \mid P \text{ is a } \phi\text{-prime ideal of } R \text{ and } A \subseteq P\}$. Let $m \in \mathcal{P}_{\phi}(A)$ and P be any ϕ -prime ideal of R containing A. Consider the ϕ -m-system $R \setminus P$. This ϕ -m-system cannot contain m, for otherwise it meets A and hence also P. Therefore, we have $m \in P$. Conversely, assume $m \notin \mathcal{P}_{\phi}(A)$. Then, by Definition 3.5, there exists a ϕ -m-system S containing m which is disjoint from A. By Zorn's Lemma, there exists an ideal $P \supseteq A$ which is maximal with respect to being disjoint from S. By Proposition 3.4, P is a ϕ -prime ideal of R and we have $m \notin P$, as desired.

Theorem 3.7. Let A be an ideal of the ring R. Then $\mathcal{P}_{\phi}(A)$ equals the intersection of all the minimal ϕ -prime ideals of R containing A.

Proof. This follows from Theorem 3.6 and Proposition 2.10.

For the following examples, let $\phi : \mathcal{I}(R) \to \mathcal{I}(R) \cup \{\emptyset\}$ be a function. Fot the ϕ -prime radical of the ideal Q of the ring R we take $\phi(Q) = 0$ i.e. a ϕ -prime radical of an ideal is a weakly prime radical of the ideal.

Example 3.8. Let $R = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} : a, b \in \mathbb{Z}_4, b \in \{0, 2\} \right\}.$ Then, R has proper ideals $P_1 = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} \right\},$ $P_2 = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \right\},$ $M = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 2 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 2 \\ 0 & 0 \end{bmatrix} \right\}$

where $P_1^2 = P_2^2 = M^2 = \{0\}$. Now, P_1 is a ϕ_0 -prime ideal which is not a prime ideal since $P_2^2 = \{0\} \subseteq P_1$ but $P_2 \notin P_1$. Also, observe that $\mathcal{P}_{\phi_0}(P_1) = P_1$ and $\mathcal{P}_{\phi_0}(P_2) = R$ and $\mathcal{P}_{\phi_2}(P_1) = P_1 \cap M = P_1, \mathcal{P}_{\phi_2}(P_2) = P_2 \cap M = P_2$ and $\mathcal{P}_{\phi_2}(M) = M$.

Example 3.9. Let *R* be the noncommutative ring of endomorphisms of a countably infinite dimensional vector space. *R* is a prime ring with exactly one nonzero proper ideal *P*. Every ideal of $S_1 = R \boxplus P$ is ϕ_0 -prime: the maximum ideal $P_1 = P \boxplus P$ is idempotent and the nonzero minimal ideal $P_2 = 0 \boxplus P$ is nilpotent, both of which are prime. Let $S_2 = S_1 \boxplus P_2$. Every ideal of S_2 is ϕ_0 -prime: The maximum ideal $Q_1 = P_1 \boxplus P_2$ is idempotent and the three nonzero nilpotent ideals are $Q_2 = P_2 \boxplus P_2$, $Q_3 = 0 \boxplus P_2$, and $Q_4 = P_2 \boxplus 0$. Q_3 and Q_4 are not prime ideals since $0 = Q_2^2 \subseteq Q_3$ and $0 = Q_2^2 \subseteq Q_4$. For the ϕ_0 -prime and prime radicals of the ideal Q_3 we have $\mathcal{P}_{\phi_0}(Q_3) = Q_3 \cap Q_2 \cap Q_1 = Q_3$ and $\mathcal{P}(Q_3) = Q_2 \cap Q_1 = Q_2$.

The ϕ -prime radical satisfies the following properties analogous to prime radical of an ideal.

Proposition 3.10. Let R be a ring, $: S(R) \to S(R) \cup \{\emptyset\}$ be a function.

- (i) If I, J are ideals of R with $I \subseteq J$, then $\mathcal{P}_{\phi}(I) \subseteq \mathcal{P}_{\phi}(J)$.
- (ii) $\mathcal{P}_{\phi}(I_1I_2\cdots I_n) \subseteq (I_1\cap I_2\cap\cdots\cap I_n) \subseteq \mathcal{P}_{\phi}(I_1)\cap \mathcal{P}_{\phi}(I_2)\cap\cdots\cap \mathcal{P}_{\phi}(I_n)$ for all ideals $I_1, ..., I_n$ of R.
- (iii) $\mathcal{P}_{\phi}(\mathcal{P}_{\phi}(I)) = \mathcal{P}_{\phi}(I).$
- (iv) If $\mathcal{P}_{\phi}(I) = R$, then I = R

Proof. (1) Let Q be a ϕ -prime ideal containing J. Since $I \subseteq J$, Q also contains I. Thus $\mathcal{P}_{\phi}(I) \subseteq \bigcap_{\substack{Q_{\alpha} \ \phi \text{-prime}\\ J \subseteq Q_{\alpha}}} Q_{\alpha} = \mathcal{P}_{\phi}(J).$

(2) Since $I_1I_2 \cdots I_n \subseteq I_1 \cap I_2 \cap \cdots \cap I_n$, we have $\mathcal{P}_{\phi}(I_1I_2 \cdots I_n) \subseteq \mathcal{P}_{\phi}(I_1 \cap I_2 \cap \cdots \cap I_n)$ by (1). Also, since $I_i \subseteq \mathcal{P}_{\phi}(I_i)$ for each i = 1, 2, ..., n, we have clearly $(I_1 \cap I_2 \cap \cdots \cap I_n) \subseteq \mathcal{P}_{\phi}(I_1) \cap \mathcal{P}_{\phi}(I_2) \cap \cdots \cap \mathcal{P}_{\phi}(I_n)$.

(3) If Q is a ϕ -prime ideal containing I, then it contains also $\bigcap_{\substack{Q_{\alpha} \ \phi \text{-prime}\\I \subseteq Q_{\alpha}}} Q_{\alpha} = \mathcal{P}_{\phi}(I)$. Thus

 $\mathcal{P}_{\phi}(\mathcal{P}_{\phi}(I)) \subseteq \mathcal{P}_{\phi}(I)$. The inverse inclusion follows from (2) as $I \subseteq \mathcal{P}_{\phi}(I)$. (4) Since $\mathcal{P}_{\phi}(I) \subseteq \mathcal{P}(I)$, we have $\mathcal{P}(I) = R$ which implies I = R.

Proposition 3.11. Let I be an ideal of a ring R and $\phi, \psi : S(R) \to S(R) \cup \{\emptyset\}$ be two functions with $\psi \leq \phi$.

- (i) $\mathcal{P}_{\phi}(I) \subseteq \mathcal{P}_{\psi}(I)$. In particular, $\mathcal{P}_{\phi_1}(I) \subseteq \mathcal{P}_{\phi_2}(I) \subseteq \cdots \subseteq \mathcal{P}_{\phi_n}(I) \subseteq \mathcal{P}_{\phi_{n+1}}(I) \subseteq \mathcal{P}_{\phi}(I) \subseteq \mathcal{P}_{\phi_0}(I)$.
- (ii) $\mathcal{P}_{\phi}(\mathcal{P}_{\psi}(I)) = \mathcal{P}_{\psi}(\mathcal{P}_{\phi}(I)) = \mathcal{P}_{\psi}(I)$. In particular, $\mathcal{P}_{\phi}(\mathcal{P}(I)) = \mathcal{P}(\mathcal{P}_{\phi}(I)) = \mathcal{P}(I)$.

Proof. (1) As $\psi \leq \phi$, any ψ -prime ideal is a ϕ -prime ideal. Hence, $\mathcal{P}_{\phi}(I) \subseteq \mathcal{P}_{\psi}(J)$. The "in particular" statement follows from the order $\phi_{\emptyset} \leq \phi_0 \leq \phi_{\omega} \leq \cdots \leq \phi_{n+1} \leq \phi_n \leq \cdots \leq \phi_2 \leq \phi_1$.

(2) From (1), we have $\mathcal{P}_{\psi}(I) \subseteq \mathcal{P}_{\phi}(\mathcal{P}_{\psi}(I)) \subseteq \mathcal{P}_{\psi}\mathcal{P}_{\psi}(I)$ and we have $\mathcal{P}_{\psi}\mathcal{P}_{\psi}(I) = \mathcal{P}_{\psi}(I)$ by 3.10(3). Thus $\mathcal{P}_{\phi}(\mathcal{P}_{\psi}(I)) = \mathcal{P}_{\psi}(I)$. Similarly, as $\mathcal{P}_{\phi}(\mathcal{P}_{\psi}(I)) \subseteq \mathcal{P}_{\psi}(\mathcal{P}_{\psi}(I)) \subseteq \mathcal{P}_{\psi}(I) \subseteq \mathcal{P}$

Theorem 3.12. Let $\psi_1 : S(R) \longrightarrow S(R) \cup \{\emptyset\}$ and $\psi_2 : S(R \boxplus M) \longrightarrow S(R \boxplus M) \cup \{\emptyset\}$ be two functions such that $\psi_2(I \boxplus M) = \psi_1(I) \boxplus M$ for a proper ideal I of R. For the ring R we have $\mathcal{P}_{\psi_2}(I \boxplus M) = \mathcal{P}_{\psi_1}(I) \boxplus M$.

Proof. Let Q be a ψ_2 -prime ideal of $R \boxplus M$ containing $I \boxplus M$. Since Q contains $0 \boxplus M$, $Q = P \boxplus M$ where P is a ψ_1 -prime ideal of R containing I by Theorem 2.21. Hence $\mathcal{P}_{\psi_1}(I) \boxplus M \subseteq \mathcal{P}_{\psi_2}(I \boxplus M)$. Also, if P is a ψ_1 -prime ideal of R containing I, then $P \boxplus M$ is a ψ_1 -prime ideal containing $I \boxplus M$. Thus $\mathcal{P}_{\psi_2}(I \boxplus M) \subseteq \mathcal{P}_{\psi_1}(I) \boxplus M$ and we are done.

Proposition 3.13. Let *R* be a ring and $I \in S^*(R)$. Then either $\mathcal{P}_{\phi}(I) = \mathcal{P}(I)$ or $(\mathcal{P}_{\phi}(I))^2 \subseteq \phi(P)$ for some ϕ -prime ideal *P* of *R* containing *I*. In particular, if *I* is an *n*-almost prime ideal, then $\mathcal{P}_{\phi_n}(I) = \mathcal{P}(I)$ or $(\mathcal{P}_{\phi_n}(I))^2 \subseteq P^n$, and $\mathcal{P}_{\phi_0}(I) = \mathcal{P}(I)$ or $(\mathcal{P}_{\phi_0}(I))^2 = \{0\}$.

Proof. If every ϕ -prime ideal of R containing I is prime, then clearly $\mathcal{P}_{\phi}(I) = \mathcal{P}(I)$. Now let P be a ϕ -prime ideal of R containing I which is not prime and let $x, y \in \mathcal{P}_{\phi}(I)$. Then $x, y \in P$ and hence $xy \in P^2 \subseteq \phi(P)$, by Proposition 2.6. Thus $(\mathcal{P}_{\phi}(I))^2 \subseteq \phi(P)$. The "in particular" part follows by considering $\phi = \phi_0$.

Proposition 3.14. Let R be a ring, $I \in S^*(R)$ and $\phi : S(R) \to S(R) \cup \{\emptyset\}$ be a function such that $\phi_{\omega} \leq \phi \leq \phi_3$. Then $\mathcal{P}_{\phi}(I) = \mathcal{P}_{\phi_{\omega}}(I)$.

Proof. Since $\phi_{\omega} \leq \phi$, $\mathcal{P}_{\phi_{\omega}}(I) \subseteq \mathcal{P}_{\phi}(I)$. Let *P* be a ϕ -prime ideal of *R* containing *I*. Since $\phi \leq \phi_3$ by Corollary 2.7, *P* is a ϕ_{ω} -prime ideal and so $\mathcal{P}_{\phi_{\omega}}(I) \subseteq \mathcal{P}_{\phi}(I)$.

References

- D. D. Anderson, M. Bataineh, Generalizations of prime ideals, Commun. Algebra., 36(2), 686–696, (2008).
- [2] D. D. Anderson, E. Smith, Weakly prime ideals, Houston J. Math., 29(4), 831-840, (2003).
- [3] A. Badawi, On 2-Absorbing Ideals of Commutative Rings, Bull. Austral. Math. Soc., 75, 417-429, (2007).
- [4] A. Badawi, E. Yetkin Celikel, On 1-absorbing primary ideals of commutative rings, J. Algebra its Appl., 19(06), 2050111, (2020).
- [5] A. Badawi, U. Tekir, E.Yetkin, On weakly 2-absorbing primary ideals of commutative rings, J. Korean Soc. Math., 52(1), 97–111, (2015).
- [6] A. Badawi, Ü. Tekir, E. A. Uğurlu, G. Ulucak, E. Yetkin Celikel, Generalizations of 2-absorbing primary ideals of commutative rings, *Turk. J. Math.*, **40**(**3**), 703–717, (2016).

- [7] F. Çallialp, C. Jayaram, U. Tekir, Weakly prime elements in multiplicative lattices, Commun. Algebra., 40(8), 2825-2840, (2012).
- [8] N. Groenewald, On Weakly right primary ideals, Palest. J. Math., 11(4), 282–292, (2022).
- [9] N. Groenewald, Weakly prime and weakly completely prime ideals of noncommutative rings, Int. Electron. J. Algebra, 28, 43–60, (2020).
- [10] M. Hamoda, On (m, n)-closed δ primary ideals of commutative rings, Palest. J. Math. 12(2), 280–290, (2023).
- [11] A. E. Khalf, Generalization of (m, n)-closed ideals, Palest. J. Math., 11(3), 161-166, (2022).
- [12] S. Koc, U. Tekir, G. Ulucak, On strongly quasi primary ideals, Bull. Korean Math. Soc., 56(3), 729–743, (2019).
- [13] S. Veldsman, A Note on the Radicals of Idealizations, Southeast Asian Bull. Math., 32, 545-551, (2008).
- [14] A. Yassine, M. J. Nikmehr, R. Nikandish, On 1-absorbing prime ideals of commutative rings, J. Algebra its Appl., **20(10)**, 2150175, (2021).

Author information

Nico J. Groenewald, Department of Mathematics and Applied Mathematics, Nelson Mandela University, South Africa.

E-mail: Nico.Groenewald@nmmu.ac.za

Ece Yetkin Celikel, Department of Basic Sciences, Faculty of Engineering, Hasan Kalyoncu University, Turkey. E-mail: ece.celikel@hku.edu.tr, yetkinece@gmail.com

Received: 2023-04-28 Accepted: 2023-10-25