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Abstract Let R be a noncommutative ring with identity. Let ϕ : S(R) → S(R) ∪ {∅} be a
function where S(R) denotes the set of all subsets of R. The aim of this paper is to generalize
the concept of prime radical

√
I of an ideal I of R to ϕ-prime radical Pϕ(I). A proper ideal Q of

R is called ϕ-prime if whenever a, b ∈ R, aRb ⊆ Q and aRb ⊈ ϕ(Q) implies that either a ∈ Q
or b ∈ Q. In this paper, first we study the properties of several generalizations of prime ideals
of R. Then, we verify that Pϕ(I) is equal to the intersection of all minimal ϕ-prime ideals of R
containing I , and we show that this notion inherits many of the essential properties of the usual
notion of prime radical of an ideal.

1 Introduction

The first generalization of prime ideals in commutative rings is introduced in 2003 by Anderson’s
celebrated work [2]. A proper ideal I of a commutative ring R is weakly prime if 0 ̸= ab ∈ I
for some a, b ∈ R, then a ∈ I or b ∈ I. Afterwards, in 2008, Anderson and Bataineh introduced
ϕ-prime ideals in commutative rings. In [1], they define a function ϕ : I(R) → I(R) ∪ {∅}
which maps an ideal of R to an ideal of R or ∅. A proper ideal I of R is said to be a ϕ-prime
ideal of R whenever if ab ∈ I − ϕ(I) for some a, b ∈ R, then a ∈ I or b ∈ I . They gave a
proof showing that I is ϕ-prime if and only if whenever J , K are ideals of R with JK ⊆ I and
JK ⊈ ϕ(I) imply that J ⊆ I or K ⊆ I (that is, I is strongly ϕ-prime), [1, Theorem 13]. For
some of the different generalizations of prime ideals refer to [3]-[14].

Afterwards, in [9], Groenewald studied weakly prime ideals in noncommutative rings and
the notion of a weakly prime radical of an ideal is introduced. A proper ideal I of R is said to
be weakly prime if a, b ∈ R such that 0 ̸= aRb ⊆ I , then a ∈ I or b ∈ I .

Motivated and inspired from the above structures in the literature, we give the following
definition. Let ϕ : S(R) → S(R)∪{∅} be a function. We call a proper ideal ofR a ϕ-prime ideal
if a, b ∈ R such that aRb ⊆ P and aRb ⊈ ϕ(P ), then a ∈ P or b ∈ P. Several characterizations
and properties of this concept are studied in Section 3. At the end of this section, we show how
to construct some interesting examples of ϕ-ideals using the method of idealization (Theorem
2.21). In Section 4, we introduce and study the notion of ϕ-m-system to generalize the concept
of prime radical of an ideal to ϕ-prime radical. We call a subset S of a ring R a ϕ-m-system
if for A and B ideals of R such that A ∩ S ̸= ∅ and B ∩ S ̸= ∅ and AB ⊈ ϕ(R\S) then
AB ∩ S ̸= ∅. In Theorem 3.4, we obtain a relationship between ϕ-prime ideals and ϕ-m-system
that if P is an ideal of R maximal with respect to the property that P is disjoint from S where
S ⊆ R is a ϕ-m-system, then P is a ϕ-prime ideal. Then, we introduce ϕ-prime radical of A,
denoted by Pϕ(A), by the set of {a ∈ R : every ϕ-m-system containing a meets A}. We show
that the intersection of all the minimal ϕ-prime ideals of R containing the ideal A of R is equal
to the ϕ-prime radical Pϕ(A). (Theorem 3.6)

Furthermore, we call the set of all ϕ-prime ideals ofR the ϕ-prime spectrum ofR and denoted
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by Spec(R) or simply X . Also, we have: Xϕ∅ ⊆ Xϕ0 ⊆ Xϕω
⊆ · · · ⊆ Xϕn+1 ⊆ Xϕn

⊆ · · · ⊆
Xϕ2 ⊆ Xϕ1 = S∗(R). In particular, if ϕ = ϕ∅, then Specϕ(R) = Spec(R) and if ϕ = ϕ1, then
Spec(R) = S∗(R).

2 ϕ-prime ideals of a noncommutative ring

Definition 2.1. Let ϕ : S(R) → S(R) ∪ {∅} be a function. We call a proper ideal P of a ring R
a ϕ-prime ideal if a, b ∈ R such that aRb ⊆ P and aRb ⊈ ϕ(P ), then a ∈ P or b ∈ P.

We shall denote the following notations which are used for the rest of the paper. Let R be
a ring (not necessarily commutative) and ϕα : S(R) → S(R) ∪ {∅} be a function where S(R)
denotes the set of subsets of R and if I ⊆ S(R) is an ideal of R, then ϕ(I) is an ideal. Some
generalized forms of prime ideals correspond to ϕα are presented as follows.

ϕ∅ ϕ(I) = ∅ prime ideal
ϕ0 ϕ(I) = 0 weakly prime ideal
ϕ2 ϕ(I) = I2 almost prime ideal
ϕn ϕ(I) = In n-almost prime ideal
ϕω ϕ(I) =

⋂∞
n=0 I

n ω-prime ideal
ϕ1 ϕ(I) = I any ideal

For two functions ϕ, ψ : S(R) → S(R) ∪ {∅}, we write an order ϕ ≤ ψ when ϕ(I) ⊆ ψ(I)
for all ideals I of R. Note that ϕ∅ ≤ ϕ0 ≤ ϕω ≤ · · · ≤ ϕn+1 ≤ ϕn ≤ · · · ≤ ϕ2 ≤ ϕ1 (∗).

The several equivalent characterizations of ϕ-prime ideals of rings are presented in the fol-
lowing.

Theorem 2.2. Let P be a proper ideal of a ring R. Then the following statements are equivalent.

(i) P is a ϕ-prime ideal of R.

(ii) For all x ∈ R\P , (P : Rx) = {p ∈ R : pRx ⊆ P} = P ∪ (ϕ(I) : Rx).

(iii) For all x ∈ R\P , (P : Rx) = P or (P : Rx) = (ϕ(I) : Rx).

(iv) For ideals A and B of R, AB ⊆ P and AB ⊈ ϕ(P ) implies A ⊆ P or B ⊆ P .

(v) If J,K are right (left) ideals of R such that JK ⊆ P and JK ⊈ ϕ(P ), then J ⊆ P or
K ⊆ P . (In this case, we call P a ϕ-prime right ideal)

(vi) P/ϕ(P ) is a weakly prime ideal of R/ϕ(P ).

Proof. (1) ⇒ (2) Let y ∈ (P : Rx) where x ∈ R\P . Now yRx ⊆ P . If yRx ⊈ ϕ(P ), then
we have y ∈ P . If yRx ⊆ ϕ(P ), then y ∈ (ϕ(P ) : Rx) as P is ϕ-prime. Hence, (P : Rx) ⊆
P ∪ (ϕ(P ) : Rx). As the reverse containment always holds for any ideal P , we have the equality.

(2) ⇒ (3) Since P and (ϕ(P ) : Rx) are both ideals, (P : Rx) = P ∪ (ϕ(P ) : Rx) implies
clearly (P : Rx) = P or (P : Rx) = (ϕ(P ) : Rx).

(3) ⇒ (1) Let x, y ∈ R such that xRy ⊆ P and yRx ⊈ ϕ(P ). Suppose y ∈ R\P . Then,
(P : Ry) ̸= (ϕ(P ) : Ry) and from (3), we have (P : Ry) = P . Hence x ∈ P , as needed.

(1) ⇒ (4) Let A and B be ideals of R with AB ⊆ P . Suppose that A ⊈ P and B ⊈ P .
We show that AB ⊆ ϕ(P ). Let a ∈ A. First, suppose that a /∈ P . Then aRB ⊆ P gives
B ⊆ (P : Ra). Now B ⊈ P ; so (P : Ra) = (ϕ(P ) : Ra). Hence aB ⊆ ϕ(P ). Next, choose
a ∈ A ∩ P and a

′ ∈ A\P.Then a+ a
′
/∈ A\P. So by the first case, a

′
B, (a+ a

′
)B ⊆ ϕ(P ). Let

b ∈ B. Then ab = (a+ a
′
)b− a

′
b ∈ ϕ(I) which means aB ⊆ ϕ(P ). Thus AB ⊆ ϕ(P ).

(4) ⇒ (1) Let a, b ∈ R such that aRb ⊆ P and aRb ⊈ ϕ(P ). Now, since R is a ring
with identity aRb ⊆ (RaR)(RbR) ⊆ P and (RaR)(RbR) ⊈ ϕ(P ). From (4), we have either
a ∈ RaR ⊆ P or b ∈ RbR ⊆ P.

(4) ⇒ (5) Assume (4) holds. Suppose that J,K are right (left) ideals ofR such that JK ⊆ P
and JK ⊈ ϕ(P ). Let ⟨J⟩ , ⟨K⟩ be the ideals generated by J,K respectively. Then ⟨J⟩ ⟨K⟩ ⊆ P
and ⟨J⟩ ⟨K⟩ ⊈ ϕ(P ), whence J ⊆ ⟨J⟩ ⊆ P or K ⊆ ⟨K⟩ ⊆ P .

(5) ⇒ (1) Assume (5) holds. Suppose aRb ⊆ P and aRb ⊈ ϕ(P ). Since R has an identity,
(aR)(bR) ⊆ P and (aR)(bR) ⊈ ϕ(P ), we conclude a ∈ aR ⊆ P or b ∈ bR ⊆ P .
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(1) ⇒ (5) Suppose that AB ⊆ P , and AB ⊈ ϕ(P ), for right ideals A and B of R. Since R
has an identity, AR = A, and (RA)(RB) = RAB ⊆ RP = P for ideals RA and RB. On the
other hand, if (RA)(RB) ⊆ ϕ(P ), then AB ⊆ RAB = (RA)(RB) ⊆ ϕ(P ), a contradiction.
Thus (RA)(RB) ⊈ ϕ(P ), and by (2) we have either A ⊆ RA ⊆ P or B ⊆ RB ⊆ P and we are
done.

(1) ⇔ (6) is straightforward.

Corollary 2.3. Let P be an ideal of a ring R. Then the following are equivalent.

(i) P is a ϕ-prime ideal of R.

(ii) For any ideals I, J of R with P ⊂ I and P ⊂ J , we have either IJ ⊆ ϕ(P ) or IJ ⊈ P.

(iii) For any ideals I, J of R with I ⊈ P and J ⊈ P , we have either IJ ⊆ ϕ(P ) or IJ ⊈ P.

Proof. (1) ⇒ (2) and (3) ⇒ (1) are clear
(2) ⇒ (3) Let I, J be ideals of R with I ⫅̸ P and J ⫅̸ P . Suppose that i ∈ I and j ∈ J such

that ij /∈ ϕ(P ). Since I ⊈ P and J ⊈ P, there exist i1 ∈ I and j1 ∈ J such that i1, j1 /∈ P . Now
P ⊂ ⟨i1⟩+⟨i⟩+P and P ⊂ ⟨j1⟩+⟨j⟩+P. Furthermore, (⟨i1⟩+⟨i⟩+P )(⟨j1⟩+⟨j⟩+P ) ⊈ ϕ(P ).
Hence from our assumption, we have (⟨i1⟩+ ⟨i⟩+ P )(⟨j1⟩+ ⟨j⟩+ P ) ⫅̸ P and it follows that
P + ⟨i1⟩ (⟨j1⟩+ ⟨j⟩) + ⟨i⟩ (⟨j1⟩+ ⟨j⟩) ⊈ P. For this to be true, we must have IJ ⊈ P.

We define a useful concept, namely “twin-zero”, for a ϕ-prime ideal in a noncommutative
ring.

Definition 2.4. Let I be a ϕ-prime ideal of R. We say (a, b) is a twin-zero of I if aRb ⊆ ϕ(I),
a /∈ I , and b /∈ I .

Note that if I is a ϕ-prime ideal of R that is not a prime ideal, then I has a twin-zero (a, b)
for some a, b ∈ R.

Lemma 2.5. Let I be a ϕ-prime ideal of R and suppose that (a, b) is a twin-zero of I for some
a, b ∈ R. Then aI, Ib ⊆ ϕ(I).

Proof. Suppose that aI ⊈ ϕ(I). Then there exists i ∈ I such that ai /∈ ϕ(I). Hence aR(b+i) ⊆ I
and aR(b + i) ⊈ ϕ(I). Since a /∈ I and I is ϕ-prime, we have b + i ∈ I , and hence b ∈ I , a
contradiction. Thus aI ⊆ ϕ(I). Now, suppose Ib ⊈ ϕ(I). Then there exists t ∈ I such that
tb /∈ ϕ(I). Hence (a+ t)Rb ⊆ I and (a+ t)Rb ⊈ ϕ(I). Since b /∈ I and I is ϕ-prime, we have
a+ t ∈ I , and hence a ∈ I , a contradiction. Thus Ib ⊆ ϕ(I).

Theorem 2.6. Let R be a ring and P an ideal of R. If P is a ϕ-prime ideal but not prime, then
P 2 ⊆ ϕ(I).

Proof. Let (a, b) be a twin-zero of P . Suppose that p1p2 /∈ ϕ(P ) for some p1, p2 ∈ P . Then by
Lemma 2.5, we have (a+ p1)(b+ p2) ∈ (a+ p1)R(b+ p2) ⊆ P and (a+ p1)R(b+ p2) ⊈ ϕ(P )
Thus (a + p1) ∈ P or (b + p2) ∈ P and hence a ∈ P or b ∈ P which is a contradiction since
(a, b) is a twin-zero of P . Therefore P 2 ⊆ ϕ(P ).

In view of Theorem 2.6, one can say in other words that if an ideal P of a ring R with
P 2 ⊈ ϕ(P ), then P is prime if and only if P is ϕ-prime.

Corollary 2.7. Let P be a ϕ-prime ideal of a ring R where ϕ ≤ ϕ3. Then P is ω-prime.

Proof. If P is prime, then P is ϕ-prime for each ϕ and there is nothing to prove. Suppose P is
not prime. Then by Theorem 2.6, P 2 ⊆ ϕ(P ) ⊆ P 3. Hence ϕ(P ) = Pn for each n ≥ 2, and so
P is almost prime for each n ≥ 2. Thus P is ω-prime.

It should be noted that a proper ideal P with a property that ϕ(P ) = P 2 need not be ϕ-prime.

Take an ideal P =

[
0 R
0 0

]
of R =

[
Q R
0 Q

]
and ϕ(P ) = {0} . Clearly P 2 = {0} = ϕ(P ),
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but P is not ϕ-prime since

[
3 0
0 0

][
Q R
0 Q

][
0 2
0 3

]
⊆

[
0 6
0 0

]
∈ P and

[
0 0
0 0

]
̸=[

3 0
0 0

][
Q R
0 Q

][
0 2
0 3

]
⊈ ϕ(P ) with

[
3 0
0 0

]
/∈ P and

[
0 2
0 3

]
/∈ P.

Lemma 2.8. Let I be a ϕ-prime ideal of a ring R and suppose that (a, b) is a twin-zero of I . If
aRr ⊆ I for some r ∈ R, then aRr ⊆ ϕ(I).

Proof. Suppose that aRr ⊆ I and aRr ⊈ ϕ(I) for some r ∈ R. Then r ∈ I as ϕ-prime and
(a, b) is a twin-zero of I . Now, since aRr ⊆ aI , we have that aRr ⊆ ϕ(I) from Theorem 2.5, a
contradiction.

Theorem 2.9. Let I be a ϕ-prime ideal of R and suppose that AB ⊆ I for some ideals A,B of
R. If I has a twin-zero (a, b) for some a ∈ A and b ∈ B, then AB ⊆ ϕ(I).

Proof. Suppose that I has a twin-zero (a, b) for some a ∈ A and b ∈ B and assume that cd /∈ ϕ(I)
for some c ∈ A and d ∈ B. Since cRd ⊆ AB ⊆ I and cd ∈ cRd ⊈ ϕ(I) and I ϕ-prime, we
have c ∈ I or d ∈ I . Without loss of generality, we may assume that c ∈ I . Since I2 ⊆ ϕ(I) by
Theorem 2.6 and cd ∈ I and cd /∈ ϕ(I), we conclude that d /∈ I . Since aRd ⊆ AB ⊆ I it follows
from Lemma 2.8 that aRd ⊆ ϕ(I). Now, since (a+ c)Rd ⊆ AB ⊆ I and cd ∈ cRd ⊈ ϕ(I), we
have (a+ c)Rd ⊆ I and (a+ c)Rd ⊈ ϕ(I). Since I is ϕ-prime, we have (a+ c) ∈ I since d /∈ I .
Hence a ∈ I , a contradiction. Thus AB ⊆ ϕ(I).

Proposition 2.10. Any ϕ-prime ideal P in a ring R contains a minimal ϕ-prime ideal.

Proof. Apply Zorn’s Lemma to the family of ϕ-prime ideals of R contained in P. It suffices to
check that for any chain of ϕ-prime ideals {Pi : i ∈ I} in P , the intersection P

′
= ∩ Pi is

ϕ-prime. Let A and B be ideals of R such that AB ⊆ P ′ and AB ⊈ ϕ(P ′). Suppose that A ⊈ P ′

and B ⊈ P ′. Then there exist a ∈ A\P ′ and b ∈ A\P ′. Hence a /∈ Pi and b /∈ Pj for some i,
j ∈ I. If, say Pi ⊆ Pj , then both a, b are outside Pi. Since Pi is ϕ-prime we have aRb ⊆ ϕ(Pi)
or aRb ⊈ Pi. On the other hand, since aRb ⊆ AB ⊆ P ′ ⊆ Pi we must have aRb ⊆ ϕ(Pi).
Hence, (a, b) is a twin zero for Pi. Now, Theorem 2.9 implies that AB ⊆ ϕ(Pi) ⊆ ϕ(P ) which
contradicts to our assumption. Thus A ⊆ P ′ or B ⊆ P ′, and therefore P ′ is a ϕ-prime ideal.

Theorem 2.11. Let R be a Noetherian ring and I a proper ideal of R. Then, the set of minimal
ϕ-prime ideals containing I is finite.

Proof. Assume on the contrary that the claim is false and choose an ideal I ̸= R maximal
concerning the property that I ̸= R and that there are infinitely many ϕ-prime ideals containing I.
This is possible as R is Noetherian. Then clearly I is not a ϕ-prime ideal, so there exist elements
a, b ∈ R such that ⟨a⟩ ⟨b⟩ ⊆ I and ⟨a⟩ ⟨b⟩ ⊈ ϕ(I) but a /∈ I and b /∈ I. Let J = I + ⟨a⟩ and K =
I+⟨b⟩ .Now, J andK properly contain I. Furthermore, ⟨a⟩ ⟨b⟩ ⊆ JK = (I + ⟨a⟩) (I + ⟨b⟩) ⊆ I
and JK = (I + ⟨a⟩) (I + ⟨b⟩) ⊈ ϕ(I). Since I is ϕ-prime we must have J ⊆ I or K ⊆ I. Note
that any ϕ-prime ideal containing I must contain either J or K. In particular, any ϕ-prime
minimal over I is minimal over either J or K. But each of J and K has only finitely many
minimal ϕ-primes (by choice of I), a contradiction.

Proposition 2.12. For a ring R, the following statements are equivalent.

(i) Every proper right ideal of R is ϕ-prime.

(ii) For any right ideals J and K of R with JK ̸= ϕ(JK), JK = J or JK = K.

Proof. (1) ⇒ (2). Let J,K be right ideals of R and JK ̸= ϕ(JK). If JK is proper, then it
is ϕ-prime by our assumption. Thus JK ⊆ JK and JK ⊈ ϕ(JK) implies that J ⊆ JK or
K ⊆ JK. Thus JK = J or JK = K.

(2) ⇒ (1). Let I be a proper right ideal of R. Suppose that JK ⊆ I and JK ⊈ ϕ(I). Since
ϕ(JK) ⊆ ϕ(I), we have JK ̸= ϕ(JK) and (2) implies that J = JK ⊆ I or K = JK ⊆ I .

In view of the proposition above, we have the following.
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Corollary 2.13. Let R be a ring in which every ideal of R is a ϕ-prime right ideal. Then I2 = I
or I2 = ϕ(I) for any right ideal I of R.

Recall that a ring R with unity is said to be a local ring if it contains a unique maximal right
ideal M . We will denote it by (R,M). Recall that M is the unique (two sided) maximal ideal of
R.

Proposition 2.14. Let (R,M) be a local ring, and let I be a right ideal of R such that M2 ⊆
ϕ(I). Then I is a ϕ-prime right ideal. In particular, if (R,M) is a local ring such that M2 = 0,
then every proper ideal of R is a ϕ-prime right ideal.

Proof. Suppose that J,K are two right ideals of R. Since JK ⊆ M2 ⊆ ϕ(I), I is a ϕ-prime
right ideal. The "in particular" case is straightforward.

Example 2.15. Let (R,M) be a local ring and P be a right ideal of R such that P ∩M2 ⊆ ϕ(P )
(P ∩M2 = 0). Then, P is a ϕ-prime right ideal of R. Observe that if A and B are right ideals of
R such that AB ⊆ P , then AB ⊆ P ∩M2 ⊆ ϕ(P ) (AB = 0 ⊆ ϕ(P )).

Next, we discuss the behavior of ϕ-prime right ideals of a ring under an epimorphism.

Proposition 2.16. Let f : R→ S be a ring epimorphism, ϕ : S(R) → S(R) a function such that
ϕ(f(I)) = f(ϕ(I)).

(i) If I is a ϕ-prime right ideal of S where ker f ⊆ I , then f−1(I) is a ϕ-prime right ideal of
R.

(ii) If I is a be a ϕ-prime right ideal of R and ker f ⊆ ϕ(I), then f(I) is a ϕ-prime right ideal
of S.

Proof. (1) Let J,K be two right ideals of S and JK ⊆ f−1(I) and JK ⊈ ϕ(f−1(I)). Then
f(J)f(K) = f(JK) ⊆ I . Since ϕ(f(I)) = f(ϕ(I)), we have f(J)f(K) ⊈ ϕ(I). It follows
either f(J) ⊆ f(I) or f(K) ⊆ f(I) and since as ker f ⊆ I, we conclude that either J ⊆ f−1(I)
or K ⊆ f−1(I), as needed.

(2) Let J := f(J1),K := f(K1) be two right ideals of S and JK = f(J1K1) ⊆ f(I) and
JK ⊈ ϕ(f(I)). Then J1K1 = f−1(JK) ⊆ I . Since ϕ(f(I)) = f(ϕ(I)) and ker f ⊆ ϕ(I),
we have J1K1 = f−1(J)f−1(K) ⊈ ϕ(I). Hence, J1 ⊆ I or K1 ⊆ I , and thus J ⊆ f(I) or
K ⊆ f(I), as needed.

Corollary 2.17. Let I and J be two right ideals of R with I ⊆ J . If I is a ϕ-prime right ideal
ideal of R, then I/J is a ϕ-prime right ideal of R/J.

Let R and S be noncommutative rings. It is well known that the prime ideals of R × S have
the form P × S or R × Q where P is a prime ideal of R and Q is a prime ideal of S. We next
generalize this result to ϕ-prime ideals.

Theorem 2.18. Let R1 and R2 be noncommutative rings and let ϕi S(Ri) → S(Ri) ∪ {∅} be
functions. Let ϕ = ϕ1 × ϕ2. Then a ϕ-prime ideal of R1 × R2 has exactly one of the following
three forms:

(i) I1 × I2 where Ii is a proper ideal of Ri with ϕi(Ii) = Ii (i = 1, 2).

(ii) I1 ×R2 where I1 is a ϕ1-prime of R1 which must be prime if ϕ2(R2) ̸= R2.

(iii) R1 × I2 where I2 is a ϕ2-prime of R2 which must be prime if ϕ1(R1) ̸= R1.

Proof. We first note that an ideal of R1 × R2 having one of these three types is ϕ-prime. Case
(1) is clear since I1 × I2 = ϕ1(I1)× ϕ2(I2). If I1 is prime, certainly I1 ×R2 is prime and hence
ϕ-prime. So suppose that I1 is ϕ1-prime and ϕ2(R2) = R2. Suppose (a1, b1)R(a2, b2) ⊆ I1 ×R2
and (a1, b1)R(a2, b2) ⊈ ϕ(I1 × R2) = ϕ1(I1) × ϕ2(R2) = ϕ1(I1) × R2 for a1, a2 ∈ R1 and
b1, b2 ∈ R2. Hence a1R1a2 ⊆ I1 and a1R1a2 ⊈ ϕ(I1). Since I1 is ϕ1-prime a1 ∈ I1 or a2 ∈ I1.
Hence (a1, b1) ∈ I1 × R2 or (a2, b2) ∈ I1 × R2. Hence I1 × R2 is ϕ-prime. The proof for Case
(3) is similar. Next, suppose that I1 × I2 is ϕ-prime. Let aR1b ⊆ I1 and aR1b ⊈ ϕ1(I1) for
a, b ∈ R1. Then (a, 0)R(b, 0) = (aR1b, 0R20) ⊆ I1 × I2 and (a, 0)R(b, 0) = (aR1b, 0R20) ⊈
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ϕ1(I1)× ϕ2(I2) = ϕ(I1 × I2). Hence (a, 0) ∈ I1 × I2 or (b, 0) ∈ I1 × I2 since I1 × I2 is ϕ-prime.
Therefore a ∈ I1 or b ∈ I1 and we have I1 is ϕ1-prime. Likewise, I2 is ϕ2-prime. Suppose
that I1 × I2 ̸= ϕ1(I1) × ϕ2(R2). Say I1 ̸= ϕ1(I1). Let p ∈ I1 − ϕ1(I1) and q ∈ I2. Then
(p, 1)R(1, q) = (pR11, 1R2q) ⊆ I1 × I2 and (p, 1)R(1, q) = (pR11, 1R2q) ⊈ ϕ1(I1)× ϕ2(I2) =
ϕ(I1 × I2). Hence (p, 1) ∈ I1 × I2 or (1, q) ∈ I1 × I2 since I1 × I2 is ϕ-prime. So I2 = R2 or
I1 = R1. Suppose that I2 = R2. So I1 ×R2 is ϕ-prime where I1 is ϕ1-prime. It remains to show
that if ϕ2(R2) ̸= R2, then I1 is prime. Let aR1b ⊆ I1 for a, b ∈ R1. Now 1 /∈ ϕ2(R2). Then
(a, 1)R(b, 1) = (aR1b, 1R21) ⊆ I1×R2 and (a, 1)R(b, 1) = (aR1b, 1R21) ⊈ ϕ1(I1)×ϕ2(R2) =
ϕ(I1 × R2). Hence (a, 1) ∈ I1 × R2 or (b, 1) ∈ I1 × R2. Thus, a ∈ I1 or b ∈ I1. Hence I1 is a
prime ideal and we are done.

We next give a way to construct ϕ-prime ideals J where ϕω ≤ ϕ.

Theorem 2.19. Let T and S be noncommutative rings and I be a weakly prime ideal of T . Then
J = I × S is a ϕ-prime ideal of R = T × S for each ϕ with ϕω ≤ ϕ ≤ ϕ1.

Proof. If I is a weakly prime ideal of T , then J = I × S need not be a weakly prime ideal of
R = T × S; indeed J is weakly prime if and only if J (or equivalently, I) is actually prime [9,
Theorem 1.18]. However, J is ϕ-prime for each ϕ with ϕω ≤ ϕ. If I is actually prime, then J is
prime and hence is ϕ-prime for all ϕ. Suppose that I is not prime. Then I2 = 0. So J2 = 0 × S
and hence ϕω(J) = 0×S. Then if (x1, x2)R(y1, y2) ⊆ J and (x1, x2)R(y1, y2) ⊈ ϕω(J). Hence
(x1, x2)R(y1, y2) ⊆ I × S and (x1, x2)R(y1, y2) ⊈ 0 × S ⇒ x1Ty1 ⊆ I and x1Ty1 ⊈ 0. Hence
x1 ∈ I or y1 ∈ I ⇒ (x1, x2) ∈ J or (y1, y2) ∈ J. So J is ϕω-prime and hence ϕ-prime.

Proposition 2.20. Let R = R1 × R2, where R1, R2 are nonzero rings with identity elements.
Then every proper ideal of R is ϕ-prime if and only if ϕi(Ji) = Ji for any proper ideal Ji of Ri
(i = 1, 2).

Proof. Suppose that every proper ideal of R is ϕ-prime. Let I = J1 × J2 be a proper ideal of
R where Ji is an ideal of Ri (i = 1, 2). If both J1 and J2 are proper, then ϕ1(J1) = J1 and
ϕ2(J2) = J2 by Theorem 2.18(1). Assume that J1 = R1. Then J2 must be a ϕ-prime ideal by
Theorem 2.18(2). Assume on the contrary that there exists b ∈ J2\ϕ2(J2) which implies that
(R1× < b >)(0 ×R2) ⊆ 0 × J2 and (R1× < b >)(0 ×R2) ⊈ ϕ(0)× ϕ(J2) = ϕ(0 × J2). Since
0 × J2 is also ϕ-prime from our assumption, we conclude that either R1× < b >⊆ 0 × J2 or
0 ×R2 ⊆ 0 × J2 which yields R1 = {0} or J2 = R2, a contradiction. Thus ϕ2(J2) = J2. In case
of J2 = R1, we conclude that ϕ1(J1) = J1 by a similar argument above. The converse part is
clear by Theorem 2.18.

We end this section by showing how to construct some interesting examples of ϕ-ideals using
the Method of Idealization. In what follows,R is a ring (associative, not necessarily commutative
and not necessarily with identity) andM is anR−R-bimodule. The idealization ofM is the ring
R ⊞M with (R ⊞M,+) = (R,+) ⊕ (M,+) and the multiplication is given by (r,m)(s, n) =
(rs, rn + ms). R ⊞M itself is, in a canonical way, an R − R-bimodule and M ≃ 0 ⊞M is
a nilpotent ideal of R ⊞M of index 2. We also have R ≃ R ⊞ 0 and the latter is a subring of

R ⊞M . Note also that R ⊞M is a subring of the Morita ring

[
R M

0 R

]
via the mapping

(r,m) 7→

[
r m

0 r

]
. We will require some knowledge about the ideal structure of R⊞M . If I

is an ideal of R and N is an R−R-bi-submodule of M , then I ⊞N is an ideal of R⊞M if and
only if IM+MI ⊆ N . Let ψ1 : L(R) −→ L(R)∪{∅} and ψ2 : L(R⊞M) −→ L(R⊞M)∪{∅}
be two functions such that ψ2(I ⊞M) = ψ1(I)⊞M for a proper ideal I of R.

It follows from [13] that the prime ideals of R⊞M are exactly the ideals of the form I ⊞M
where I is a prime ideal of R.

Theorem 2.21. Let R be a ring, M an R−R−bimodule and I a proper ideal of R. Then I ⊞M
is a ψ2 prime ideal of R⊞M if and only if I is a ψ1 prime ideal of R
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Proof. Suppose I ⊞M is a ψ2 prime ideal of R ⊞M . Let aRb ⊆ I and aRb ⊈ ψ1(I) where
a, b ∈ R. Now (a, 0)R⊞M(b, 0) ⊆ I ⊞M and (a, 0)R⊞M(b, 0) ⊈ ψ2(I ⊞M) = ψ1(I)⊞M .
I ⊞M a ψ2-prime ideal gives (a, 0) ∈ I ⊞M or (a, 0) ∈ I ⊞M. Hence a ∈ I or b ∈ I . So I is
ψ1 prime.

Suppose I is a ψ1-prime ideal ofR. Let (a, n), (b,m) ∈ R⊞M such that (a, n)R⊞M(b,m) ⊆
I ⊞M and (a, n)R⊞M(b,m) ⊈ ψ2(I ⊞M) = ψ1(I)⊞M) Hence aRb ⊆ I and aRb ⊈ ψ1(I).
Since I is a ψ1-prime, we have a ∈ I or b ∈ I. Hence (a, n) ∈ I ⊞M or (b,m) ∈ I ⊞M , we are
done.

3 ϕ-prime radical

Let ϕ : S(R) −→S(R) be a function from the set of subsets of the ring R such that if A is an
ideal of R,then ϕ(A) is an ideal.

Definition 3.1. A subset S of a ring R is a ϕ-m-system if for A and B ideals of R such that
A ∩ S ̸= ∅ and B ∩ S ̸= ∅ and AB ⊈ ϕ(R\S) then AB ∩ S ̸= ∅.

Lemma 3.2. A proper ideal P of R is a ϕ-prime ideal if and only if S = R\P is an ϕ-m-system.

Proof. Suppose A∩S ̸= ∅ and B ∩S ̸= ∅ and AB ⊈ ϕ(R\S). If AB ∩S = ∅ then AB ⊆ P and
since AB ⊈ ϕ(R\S) = ϕ(R\(R\P )) = ϕ(P ) and P a ϕ-prime ideal gives A ⊆ P or B ⊆ P a
contradiction. Hence AB ∩ S ̸= ∅ and we have S an ϕ-m-system.

Conversely, let A,B be ideals such that AB ⊆ P and AB ⊈ ϕ(P ) = ϕ(R\S). If A ⊈ P
and B ⊈ P, then A ∩ S ̸= ∅ and B ∩ S ̸= ∅. Now, since AB ⊈ ϕ(P ) = ϕ(R\S) and S an
ϕ−m-system we get AB ∩ S = AB ∩ (R\P ) ̸= ∅, a contradiction.

Proposition 3.3. Let R be a ring and P be a proper ideal of R and let S := R\P . Then the
following statements are equivalent.

(i) P is ϕ-prime ideal of R.

(ii) S is a ϕ-m-system.

(iii) For left ideals A,B of R, if A ∩ S ̸= ∅, B ∩ S ̸= ∅ and AB ⊈ ϕ(R\S) then AB ∩ S ̸= ∅.

(iv) For right ideals A,B of R if A ∩ S ̸= ∅, B ∩ S ̸= ∅ and AB ⊈ ϕ(R\S), then AB ∩ S ̸= ∅.

(v) For each a, b ∈ R, if a, b ∈ S and aRb ⊈ ϕ(R\S), then aRb ∩ S ̸= ∅.

Proof. (1) ⇔ (2) follows from Lemma 3.2.
(2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (1) follows from Theorem 2.2.

Theorem 3.4. Let S ⊆ R be a ϕ-m-system, and let P an ideal of R maximal with respect to the
property that P is disjoint from S. Then P is a ϕ-prime ideal.

Proof. Since P ∩ S = ∅,we have P = R − S. Suppose AB ⊆ P and AB ⊈ ϕ(P ) = ϕ(R − S)
where A and B are ideals of R. If A ⊈ P and B ⊈ P , then by the maximal property of P , we
have, (P + A) ∩ S ̸= ∅ and (P + B) ∩ S ̸= ∅. Furthermore, AB ⊆ (P + A)(P + B) ⊆ P and
(P+A)(P+B) ⊈ ϕ(P ) = ϕ(R−S). Thus, since S is a ϕ-m-system (P+A)(P+B)∩S ̸= ∅ and
it follows that (P +A)(P +B) ⊈ P. For this to happen, we must have AB ⊈ P , a contradiction.
Thus, P must be a ϕ-prime ideal.

It is well-known that for an ideal I of a ring R, prime radical of I is P(I) =
⋂
{P : I ⊆ P

and P a prime ideal of R} and P(R) =
⋂
{P : P a prime ideal of R} where P(R) is the prime

radical of R.Now, we are ready to generalize the notion of prime radical P(I) for any ideal I of
R.

Definition 3.5. Let R be a ring. For an ideal A of R, if there is a ϕ-prime ideal containing A,
then we define ϕ-prime radical by the set of {a ∈ R : every ϕ-m-system containing a meets A}
,denoted by Pϕ(A). If there is no ϕ-prime ideal containing A, then we put Pϕ(A) = R.

Note that, for an ideal A of R, A and Pϕ(A) are contained in precisely the same ϕ-prime
ideals of R.
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Theorem 3.6. Let A be an ideal of the ring R Then either Pϕ(A) = R or Pϕ(A) equals the
intersection of all the ϕ-prime ideals of R containing A.

Proof. Suppose that Pϕ(A) ̸= R. This means that {P | P is a ϕ-prime ideal of R and A ⊆ P} ≠
∅. We first prove that Pϕ(A) ⊆ {P |P is a ϕ-prime ideal ofR andA ⊆ P}. Letm ∈ Pϕ(A) and P
be any ϕ-prime ideal ofR containingA. Consider the ϕ-m-systemR\P . This ϕ-m-system cannot
contain m, for otherwise it meets A and hence also P . Therefore, we have m ∈ P . Conversely,
assume m /∈ Pϕ(A). Then, by Definition 3.5, there exists a ϕ-m-system S containing m which is
disjoint from A. By Zorn’s Lemma, there exists an ideal P ⊇ A which is maximal with respect
to being disjoint from S. By Proposition 3.4, P is a ϕ-prime ideal of R and we have m /∈ P , as
desired.

Theorem 3.7. Let A be an ideal of the ring R. Then Pϕ(A) equals the intersection of all the
minimal ϕ-prime ideals of R containing A.

Proof. This follows from Theorem 3.6 and Proposition 2.10.

For the following examples, let ϕ : I(R) → I(R)∪{∅} be a function. Fot the ϕ-prime radical
of the ideal Q of the ring R we take ϕ(Q) = 0 i.e. a ϕ-prime radical of an ideal is a weakly
prime radical of the ideal.

Example 3.8. Let R =

{[
a b

0 0

]
: a, b ∈ Z4, b ∈ {0, 2}

}
.

Then, R has proper ideals

P1 =

{[
0 0
0 0

]
,

[
0 2
0 0

]}
,

P2 =

{[
0 0
0 0

]
,

[
2 0
0 0

]}
,

M =

{[
0 0
0 0

]
,

[
0 2
0 0

]
,

[
2 0
0 0

]
,

[
2 2
0 0

]}
where P 2

1 = P 2
2 = M2 = {0}. Now, P1 is a ϕ0-prime ideal which is not a prime ideal

since P 2
2 = {0} ⊆ P1 but P2 ⊈ P1. Also, observe that Pϕ0(P1) = P1 and Pϕ0(P2) = R and

Pϕ2(P1) = P1 ∩M = P1,Pϕ2(P2) = P2 ∩M = P2 and Pϕ2(M) =M.

Example 3.9. Let R be the noncommutative ring of endomorphisms of a countably infinite di-
mensional vector space. R is a prime ring with exactly one nonzero proper ideal P . Every ideal
of S1 = R ⊞ P is ϕ0-prime: the maximum ideal P1 = P ⊞ P is idempotent and the nonzero
minimal ideal P2 = 0⊞P is nilpotent, both of which are prime. Let S2 = S1⊞P2. Every ideal of
S2 is ϕ0-prime: The maximum ideal Q1 = P1 ⊞P2 is idempotent and the three nonzero nilpotent
ideals are Q2 = P2 ⊞ P2, Q3 = 0 ⊞ P2, and Q4 = P2 ⊞ 0. Q3 and Q4 are not prime ideals since
0 = Q2

2 ⊆ Q3 and 0 = Q2
2 ⊆ Q4. For the ϕ0-prime and prime radicals of the ideal Q3 we have

Pϕ0(Q3) = Q3 ∩Q2 ∩Q1 = Q3 and P(Q3) = Q2 ∩Q1 = Q2.

The ϕ-prime radical satisfies the following properties analogous to prime radical of an ideal.

Proposition 3.10. Let R be a ring, : S(R) → S(R) ∪ {∅} be a function.

(i) If I , J are ideals of R with I ⊆ J , then Pϕ(I) ⊆ Pϕ(J).

(ii) Pϕ(I1I2 · · · In) ⊆ (I1∩I2∩· · ·∩In) ⊆ Pϕ(I1)∩Pϕ(I2)∩· · ·∩Pϕ(In) for all ideals I1, ..., In
of R.

(iii) Pϕ(Pϕ(I)) = Pϕ(I).

(iv) If Pϕ(I) = R, then I = R

Proof. (1) Let Q be a ϕ-prime ideal containing J . Since I ⊆ J , Q also contains I . Thus
Pϕ(I) ⊆

⋂
Qα ϕ-prime
J⊆Qα

Qα = Pϕ(J).
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(2) Since I1I2 · · · In ⊆ I1 ∩ I2 ∩ · · · ∩ In, we have Pϕ(I1I2 · · · In) ⊆ Pϕ(I1 ∩ I2 ∩ · · · ∩ In)
by (1). Also, since Ii ⊆ Pϕ(Ii) for each i = 1, 2, ..., n, we have clearly (I1 ∩ I2 ∩ · · · ∩ In) ⊆
Pϕ(I1) ∩ Pϕ(I2) ∩ · · · ∩ Pϕ(In).

(3) If Q is a ϕ-prime ideal containing I , then it contains also
⋂

Qα ϕ-prime
I⊆Qα

Qα = Pϕ(I). Thus

Pϕ(Pϕ(I)) ⊆ Pϕ(I). The inverse inclusion follows from (2) as I ⊆ Pϕ(I).
(4) Since Pϕ(I) ⊆ P(I), we have P(I) = R which implies I = R.

Proposition 3.11. Let I be an ideal of a ring R and ϕ, ψ : S(R) → S(R)∪ {∅} be two functions
with ψ ≤ ϕ.

(i) Pϕ(I) ⊆ Pψ(I). In particular, Pϕ1(I) ⊆ Pϕ2(I) ⊆ · · · ⊆ Pϕn(I) ⊆ Pϕn+1(I) ⊆ Pϕ(I) ⊆
Pϕ0(I).

(ii) Pϕ(Pψ(I)) = Pψ(Pϕ(I)) = Pψ(I). In particular, Pϕ(P(I)) = P(Pϕ(I)) = P(I).

Proof. (1) As ψ ≤ ϕ, any ψ-prime ideal is a ϕ-prime ideal. Hence, Pϕ(I) ⊆ Pψ(J). The "in
particular" statement follows from the order ϕ∅ ≤ ϕ0 ≤ ϕω ≤ · · · ≤ ϕn+1 ≤ ϕn ≤ · · · ≤ ϕ2 ≤
ϕ1.

(2) From (1), we have Pψ(I) ⊆ Pϕ(Pψ(I)) ⊆ PψPψ(I) and we have PψPψ(I) = Pψ(I) by
3.10(3). Thus Pϕ(Pψ(I)) = Pψ(I). Similarly, as Pϕ(Pψ(I)) ⊆ Pψ(Pψ(I)) ⊆ Pψ(I) ⊆ and we
have PψPψ(I) = Pψ(I)

Theorem 3.12. Let ψ1 : S(R) −→ S(R)∪{∅} and ψ2 : S(R⊞M) −→ S(R⊞M)∪{∅} be two
functions such that ψ2(I ⊞M) = ψ1(I)⊞M for a proper ideal I of R. For the ring R we have
Pψ2(I ⊞M) = Pψ1(I)⊞M.

Proof. Let Q be a ψ2-prime ideal of R ⊞ M containing I ⊞ M . Since Q contains 0 ⊞ M,
Q = P ⊞M where P is a ψ1-prime ideal of R containing I by Theorem 2.21. Hence Pψ1(I)⊞
M ⊆ Pψ2(I ⊞M). Also, if P is a ψ1-prime ideal of R containing I , then P ⊞M is a ψ1-prime
ideal containing I ⊞M . Thus Pψ2(I ⊞M) ⊆ Pψ1(I)⊞M and we are done.

Proposition 3.13. Let R be a ring and I ∈ S∗(R). Then either Pϕ(I) = P(I) or (Pϕ(I))2 ⊆
ϕ(P ) for some ϕ-prime ideal P of R containing I . In particular, if I is an n-almost prime ideal,
then Pϕn(I) = P(I) or (Pϕn(I))

2 ⊆ Pn, and Pϕ0(I) = P(I) or (Pϕ0(I))
2
= {0} .

Proof. If every ϕ-prime ideal of R containing I is prime, then clearly Pϕ(I) = P(I). Now let
P be a ϕ-prime ideal of R containing I which is not prime and let x, y ∈ Pϕ(I). Then x, y ∈ P

and hence xy ∈ P 2 ⊆ ϕ(P ), by Proposition 2.6. Thus (Pϕ(I))2 ⊆ ϕ(P ). The "in particular" part
follows by considering ϕ = ϕ0.

Proposition 3.14. Let R be a ring, I ∈ S∗(R) and ϕ : S(R) → S(R) ∪ {∅} be a function such
that ϕω ≤ ϕ ≤ ϕ3. Then Pϕ(I) = Pϕω

(I).

Proof. Since ϕω ≤ ϕ, Pϕω
(I) ⊆ Pϕ(I). Let P be a ϕ-prime ideal of R containing I. Since

ϕ ≤ ϕ3 by Corollary 2.7, P is a ϕω-prime ideal and so Pϕω
(I) ⊆ Pϕ(I).
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