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Abstract Let R be a noncommutative ring with identity. Let ¢ : S(R) — S(R) U {0} be a
function where S(R) denotes the set of all subsets of R. The aim of this paper is to generalize
the concept of prime radical \/T of an ideal I of R to ¢-prime radical Py(I). A proper ideal Q of
R is called ¢-prime if whenever a,b € R, aRb C @) and aRb j(_ #(Q) implies that either a € Q
orb € Q. In this paper, first we study the properties of several generalizations of prime ideals
of R. Then, we verify that Py(I) is equal to the intersection of all minimal ¢-prime ideals of R
containing 1, and we show that this notion inherits many of the essential properties of the usual
notion of prime radical of an ideal.

1 Introduction

The first generalization of prime ideals in commutative rings is introduced in 2003 by Anderson’s
celebrated work [2]. A proper ideal I of a commutative ring R is weakly prime if 0 # ab € I
for some a,b € R, then a € I orb € I. Afterwards, in 2008, Anderson and Bataineh introduced
¢-prime ideals in commutative rings. In [1], they define a function ¢ : Z(R) — Z(R) U {0}
which maps an ideal of R to an ideal of R or (. A proper ideal I of R is said to be a ¢-prime
ideal of R whenever if ab € I — ¢(I) for some a,b € R, then a € I or b € 1. They gave a
proof showing that I is ¢-prime if and only if whenever J, K are ideals of R with JK C I and
JK ;(_ o(I) imply that J C I or K C I (that is, I is strongly ¢-prime), [1, Theorem 13]. For
some of the different generalizations of prime ideals refer to [3]-[14].

Afterwards, in [9], Groenewald studied weakly prime ideals in noncommutative rings and
the notion of a weakly prime radical of an ideal is introduced. A proper ideal I of R is said to
be weakly prime if a, b € R such that 0 # aRb C I, thena € I orb € L.

Motivated and inspired from the above structures in the literature, we give the following
definition. Let ¢ : S(R) — S(R)U{0} be a function. We call a proper ideal of R a ¢-prime ideal
ifa,b € R such that aRb C P and aRb Q (P), then a € P orb € P. Several characterizations
and properties of this concept are studied in Section 3. At the end of this section, we show how
to construct some interesting examples of ¢-ideals using the method of idealization (Theorem
2.21). In Section 4, we introduce and study the notion of ¢-m-system to generalize the concept
of prime radical of an ideal to ¢-prime radical. We call a subset S of a ring R a ¢-m-system
if for A and B ideals of R such that ANS # O and BN S # 0 and AB ¢ ¢(R\S) then
ABN S # 0. In Theorem 3.4, we obtain a relationship between ¢-prime ideals and ¢-m-system
that if P is an ideal of R maximal with respect to the property that P is disjoint from S where
S C R is a ¢p-m-system, then P is a ¢p-prime ideal. Then, we introduce ¢-prime radical of A,
denoted by Py(A), by the set of {a € R : every ¢-m-system containing a meets A}. We show
that the intersection of all the minimal ¢-prime ideals of R containing the ideal A of R is equal
to the ¢-prime radical Pys(A). (Theorem 3.6)

Furthermore, we call the set of all ¢-prime ideals of R the ¢-prime spectrum of R and denoted
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by Spec(R) or simply X. Also, we have: Xy, C X4, C Xo, € --- C Xy . C Xy, C--- C
X4, C Xy, = S*(R). In particular, if § = ¢y, then Specy(R) = Spec(R) and if ¢ = ¢1, then
Spec(R) = §*(R).

2 ¢-prime ideals of a noncommutative ring

Definition 2.1. Let ¢ : S(R) — S(R) U {0} be a function. We call a proper ideal P of a ring R
a ¢-prime ideal if a,b € R such that aRb C P and aRb ¢ ¢(P), thena € Porb € P.

We shall denote the following notations which are used for the rest of the paper. Let R be
a ring (not necessarily commutative) and ¢, : S(R) — S(R) U {0} be a function where S(R)
denotes the set of subsets of R and if I C S(R) is an ideal of R, then ¢(I) is an ideal. Some
generalized forms of prime ideals correspond to ¢, are presented as follows.

b9 o(I)=10 prime ideal

do ¢(I)=0 weakly prime ideal
¢ o(I)=1? almost prime ideal
On O(I)=1" n-almost prime ideal
b O(I) ="y I™ w-prime ideal

o p(I)=1 any ideal
For two functions ¢, v : S(R) — S(R) U {0}, we write an order ¢ < ¢ when ¢(I) C (1)
Sor all ideals I of R. Note that ¢y < ¢ < ¢y <+ < pg1 < P < -0 < oy < Py (%).
The several equivalent characterizations of ¢-prime ideals of rings are presented in the fol-
lowing.

Theorem 2.2. Let P be a proper ideal of a ring R. Then the following statements are equivalent.
(i) P isa ¢-prime ideal of R.

(ii) Forallxz € R\P, (P: Rz) ={p € R:pRx C P} =P U (¢(I) : Rx).

(iii) Forall x € R\P, (P : Rz) = Por (P : Rx) = (¢(I) : Rx).

(iv) Forideals A and B of R, AB C P and AB SZ ¢(P) implies AC Por B C P.

(v) If J,K are right (left) ideals of R such that JK C P and JK ¢ ¢(P), then J C P or
K C P. (In this case, we call P a ¢-prime right ideal)

(vi) P/¢(P) is a weakly prime ideal of R/¢(P).

Proof. (1) = (2) Lety € (P : Rx) where z € R\P. Now yRx C P.If yRx ¢ ¢(P), then
we have y € P. If yRx C ¢(P), then y € (¢(P) : Rx) as P is ¢-prime. Hence, (P : Rx) C
PU(¢(P) : Rz). As the reverse containment always holds for any ideal P, we have the equality.

(2) = (3) Since P and (¢(P) : Rz) are both ideals, (P : Rz) = P U (¢(P) : Rx) implies
clearly (P : Rx) = Por (P: Rx) = (¢(P) : Rx).

(3) = (1) Let z,y € R such that zRy C P and yRz ¢ ¢(P). Suppose y € R\P. Then,
(P : Ry) # (¢(P) : Ry) and from (3), we have (P : Ry) = P. Hence x € P, as needed.

(1) = (4) Let A and B be ideals of R with AB C P. Suppose that A ¢ P and B ¢ P.
We show that AB C ¢(P). Let a € A. First, suppose that a ¢ P. Then aRB C P gives
B C (P : Ra). Now B ¢ P;so (P : Ra) = (¢(P) : Ra). Hence aB C ¢(P). Next, choose
ac AnPandd € A\P.Thena+a ¢ A\P. So by the first case, a' B, (a + a')B C ¢(P). Let
be B.Thenab = (a+a )b—a'b e ¢(I) which means aB C ¢(P). Thus AB C ¢(P).

(4) = (1) Let a,b € R such that aRb C P and aRb ¢ ¢(P). Now, since R is a ring
with identity aRb C (RaR)(RbR) C P and (RaR)(RbR) € ¢(P). From (4), we have either
a€ RaRC Porbe RbR C P.

(4) = (5) Assume (4) holds. Suppose that .J, K are right (left) ideals of R such that JK C P
and JK ¢ ¢(P). Let (J), (K) be the ideals generated by J, K respectively. Then (J) (K) C P
and (J) (K) ¢ ¢(P), whence J C (J) C Por K C (K) C P.

(5) = (1) Assume (5) holds. Suppose aRb C P and aRb € ¢(P). Since R has an identity,
(aR)(bR) C P and (aR)(bR) € ¢(P), we conclude a € aR C Porb € bR C P.
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(1) = (5) Suppose that AB C P, and AB ¢ ¢(P), for right ideals A and B of R. Since R
has an identity, AR = A, and (RA)(RB) = RAB C RP = P for ideals RA and RB. On the
other hand, if (RA)(RB) C ¢(P), then AB C RAB = (RA)(RB) C ¢(P), a contradiction.
Thus (RA)(RB) ¢ ¢(P), and by (2) we have either A C RA C P or BC RB C P and we are
done.

(1) < (6) is straightforward. i

Corollary 2.3. Let P be an ideal of a ring R. Then the following are equivalent.

(i) P isa ¢-prime ideal of R.

(ii) For any ideals I, J of R with P C I and P C J, we have either 1] C ¢(P) or IJ { P.
(iii) For any ideals I, J of Rwith I ¢ P and J ¢ P, we have either IJ C ¢(P)or1J ¢ P.

Proof. (1) = (2) and (3) = (1) are clear

(2) = (3) Let I, J be ideals of R with I £ P and J £ P. Suppose that i € I and j € J such
that ij ¢ ¢(P). Since I ¢ P and J € P, there exist i; € I and j; € J such that iy, j; ¢ P. Now
P C (i1)+(i)+Pand P C (ji)+ (j) + P. Furthermore, ({(i1)+ (i) + P)((j1) + (j) + P) € ¢(P).
Hence from our assumption, we have ((i1) + (i) + P)({ji) + (j) + P) € P and it follows that
P+ (i) (1) + (5)) + (&) ((j1) + (j)) € P. For this to be true, we must have I.J ¢ P. O

We define a useful concept, namely “twin-zero”, for a ¢-prime ideal in a noncommutative
ring.

Definition 2.4. Let I be a ¢-prime ideal of R. We say (a,b) is a twin-zero of I if aRb C ¢(I),
a¢ I, andb ¢ I.

Note that if I is a ¢-prime ideal of R that is not a prime ideal, then I has a twin-zero (a,b)
for some a,b € R.

Lemma 2.5. Let I be a ¢-prime ideal of R and suppose that (a,b) is a twin-zero of I for some
a,b € R. Then al, Ib C ¢(I).

Proof. Suppose that al ¢ ¢(I). Then there exists i € I such thatai ¢ ¢(I). Hence aR(b+i) C I
and aR(b +1i) € ¢(I). Since a ¢ I and I is ¢-prime, we have b + i € I, and hence b € I, a
contradiction. Thus al C ¢(I). Now, suppose Ib ¢ ¢(I). Then there exists ¢ € I such that
tb ¢ ¢(I). Hence (a + t)Rb C I and (a + t)Rb € ¢(I). Since b ¢ I and I is ¢-prime, we have
a+t € I, and hence a € I, a contradiction. Thus Ib C ¢(I). O

Theorem 2.6. Let R be a ring and P an ideal of R. If P is a ¢-prime ideal but not prime, then
P2 C ¢(I).

Proof. Let (a,b) be a twin-zero of P. Suppose that p;p, ¢ ¢(P) for some p;,p, € P. Then by
Lemma 2.5, we have (a + p1)(b+p2) € (a+p1)R(b+p2) C Pand (a+p1)R(b+p2) € #(P)
Thus (a +p1) € Por (b+ py) € P and hence a € P or b € P which is a contradiction since
(a,b) is a twin-zero of P. Therefore P> C ¢(P). i

In view of Theorem 2.6, one can say in other words that if an ideal P of a ring R with
P2 ¢ ¢(P), then P is prime if and only if P is ¢-prime.

Corollary 2.7. Let P be a ¢-prime ideal of a ring R where ¢ < ¢3. Then P is w-prime.

Proof. If P is prime, then P is ¢-prime for each ¢ and there is nothing to prove. Suppose P is
not prime. Then by Theorem 2.6, P? C ¢(P) C P3. Hence ¢(P) = P" for each n > 2, and so
P is almost prime for each n > 2. Thus P is w-prime. O

It should be noted that a proper ideal P with a property that (P) = P> need not be ¢-prime.

Take an ideal P = 0 K of R = QR ] and ¢(P) = {0}. Clearly P*> = {0} = ¢(P),

0 0 0 Q
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but P is not ¢-prime since [ 0 ] 0 0

0 0
30
0 0

Lemma 2.8. Let I be a ¢-prime ideal of a ring R and suppose that (a,b) is a twin-zero of I. If
aRr C I for some r € R, then aRr C ¢(I).
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Proof. Suppose that aRr C I and aRr ¢ ¢(I) for some r € R. Then r € I as ¢-prime and
(a,b) is a twin-zero of I. Now, since aRr C al, we have that aRr C ¢(I) from Theorem 2.5, a
contradiction. O

Theorem 2.9. Let I be a ¢-prime ideal of R and suppose that AB C I for some ideals A, B of
R. If I has a twin-zero (a,b) for some a € A and b € B, then AB C ¢(I).

Proof. Suppose that I has a twin-zero (a, b) for some a € A and b € B and assume that cd ¢ ¢(I)
for some ¢ € Aand d € B. Since cRd C AB C I and cd € cRd ¢ ¢(I) and I ¢-prime, we
have ¢ € T or d € I. Without loss of generality, we may assume that ¢ € I. Since I> C ¢(I) by
Theorem 2.6 and cd € I and ¢d ¢ ¢(I), we conclude that d ¢ I. Since aRd C AB C I it follows
from Lemma 2.8 that aRd C ¢(I). Now, since (a + ¢)Rd C AB C I and cd € cRd ¢ ¢(I), we
have (a+c)Rd C I and (a+ ¢)Rd € ¢(I). Since I is ¢-prime, we have (a+c) € I since d ¢ 1.
Hence a € I, a contradiction. Thus AB C ¢(I). O

Proposition 2.10. Any ¢-prime ideal P in a ring R contains a minimal ¢-prime ideal.

Proof. Apply Zorn’s Lemma to the family of ¢-prime ideals of R contained in P. It suffices to
check that for any chain of ¢-prime ideals {P; : ¢ € I} in P, the intersection P =nPis
¢-prime. Let A and B be ideals of R such that AB C P' and AB ¢ ¢(P’). Suppose that A ¢ P’
and B ¢ P'. Then there exist a € A\P’" and b € A\P'. Hence a ¢ P, and b ¢ P; for some i,
J € 1.1, say P; C P;, then both a, b are outside P;. Since P; is ¢-prime we have aRb C ¢(F;)
or aRb ¢ P;. On the other hand, since aRb C AB C P’ C P; we must have aRb C ¢(F;).
Hence, (a,b) is a twin zero for P;. Now, Theorem 2.9 implies that AB C ¢(F;) C ¢(P) which
contradicts to our assumption. Thus A C P’ or B C P’, and therefore P’ is a ¢-prime ideal. O

Theorem 2.11. Let R be a Noetherian ring and I a proper ideal of R. Then, the set of minimal
¢-prime ideals containing I is finite.

Proof. Assume on the contrary that the claim is false and choose an ideal / # R maximal
concerning the property that  # R and that there are infinitely many ¢-prime ideals containing /.
This is possible as R is Noetherian. Then clearly [ is not a ¢-prime ideal, so there exist elements
a,b € Rsuch that (a) (b) C I and (a) (b) € ¢(I)buta ¢ Iandb ¢ I.Let J =1+ (a) and K =
I+(b) . Now, J and K properly contain I. Furthermore, (a) (b) C JK = (I + (a)) (I + (b)) C I
and JK = (I + (a)) (I + (b)) € #(I). Since I is ¢-prime we must have J C I or K C I. Note
that any ¢-prime ideal containing / must contain either J or K. In particular, any ¢-prime
minimal over I is minimal over either J or K. But each of J and K has only finitely many
minimal ¢-primes (by choice of I), a contradiction. O

Proposition 2.12. For a ring R, the following statements are equivalent.
(i) Every proper right ideal of R is ¢-prime.
(ii) For any right ideals J and K of R with JK # ¢(JK), JK = Jor JK = K.

Proof. (1) = (2). Let J, K be right ideals of R and JK # ¢(JK). If JK is proper, then it
is ¢-prime by our assumption. Thus JK C JK and JK ¢ ¢(JK) implies that J C JK or
KCJK. Thus JK =JorJK = K.

(2) = (1). Let I be a proper right ideal of R. Suppose that JK C I and JK ¢ ¢(I). Since
¢(JK) C ¢(I), we have JK # ¢(JK) and (2) impliesthat J = JK CTor K =JK CI. O

In view of the proposition above, we have the following.
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Corollary 2.13. Let R be a ring in which every ideal of R is a ¢-prime right ideal. Then I* = I
or I* = ¢(I) for any right ideal I of R.

Recall that a ring R with unity is said to be a local ring if it contains a unique maximal right
ideal M. We will denote it by (R, M). Recall that M is the unique (two sided) maximal ideal of
R.

Proposition 2.14. Let (R, M) be a local ring, and let I be a right ideal of R such that M* C
&(I). Then I is a ¢-prime right ideal. In particular, if (R, M) is a local ring such that M? = 0,
then every proper ideal of R is a ¢-prime right ideal.

Proof. Suppose that J, K are two right ideals of R. Since JK C M? C ¢(I), I is a ¢-prime
right ideal. The "in particular" case is straightforward. O

Example 2.15. Let (R, M) be a local ring and P be a right ideal of R such that P N M? C ¢(P)
(PN M? =0). Then, P is a ¢-prime right ideal of R. Observe that if A and B are right ideals of
R such that AB C P, then AB C PN\ M? C ¢(P) (AB=0C ¢(P)).

Next, we discuss the behavior of ¢-prime right ideals of a ring under an epimorphism.

Proposition 2.16. Let f : R — S be a ring epimorphism, ¢ : S(R) — S(R) a function such that
o(f(1)) = f(o(1)).

(i) If I is a ¢-prime right ideal of S where ker f C I, then f~'(I) is a ¢-prime right ideal of
R.

(ii) If I is a be a ¢-prime right ideal of R and ker f C ¢(I), then f(I) is a ¢p-prime right ideal
of S.

Proof. (1) Let J, K be two right ideals of S and JK C f~'(I) and JK ¢ ¢(f~'(I)). Then
FONFE) = F(IK) C 1. Since 6(7(1)) = f(o(D)), we have F(J)f(K) & o(I). It follows
either f(J) C f(I)or f(K) C f(I) and since as ker f C I, we conclude that either J C f~!(I)
or K C f~1(I), as needed.

(2) Let J := f(J1), K := f(K) be two right ideals of S and JK = f(J1K;) C f(I) and
JE € 9(f(1)). Then JiK) = f~1(JK) C I. Since 6(/(I)) = J(#(1}) and ker /' C o(I
we have J1K| = f~1(J)f~'(K) € ¢(I). Hence, J; C I or K; C I, and thus J C f(I) or
K C f(I), as needed.

O

Corollary 2.17. Let I and J be two right ideals of R with I C J. If I is a ¢-prime right ideal
ideal of R, then 1/J is a ¢-prime right ideal of R/ J.

Let R and S be noncommutative rings. It is well known that the prime ideals of R x S have
the form P x S or R x Q where P is a prime ideal of R and Q) is a prime ideal of S. We next
generalize this result to ¢-prime ideals.

Theorem 2.18. Let Ry and R, be noncommutative rings and let ¢; S(R;) — S(R;) U {0} be
functions. Let ¢ = ¢1 X ¢. Then a ¢-prime ideal of Ry X R has exactly one of the following
three forms:

(i) I} x I where I; is a proper ideal of R; with ¢;(I;) = I; (i = 1,2).
(ii) I} X Ry where I, is a ¢y-prime of R which must be prime if $2(R;) # Rs.
(iii) Ry X I, where I, is a ¢p-prime of Ry which must be prime if ¢1(R1) # Ry.

Proof. We first note that an ideal of R; x R, having one of these three types is ¢-prime. Case
(1)isclear since I} x I = ¢1(I1) X ¢o(Iy). If I is prime, certainly I; x R, is prime and hence
¢-prime. So suppose that I; is ¢;-prime and ¢, (R,) = R;. Suppose (a1, b1)R(az,b02) C I} x Ry
and (al,bl)R(abbz) g ¢(Il X Rz) = ¢1(I]) X ¢2(R2) = d)l(Il) X R2 for ay,ay € R1 and
bl,bz € R,. Hence a1 Rja; C I and a; Rja, g ¢(11). Since I is qbl—prime a1 € I) oray € 1.
Hence (a1,b1) € I} X Ry or (az,by) € I} X Ry. Hence I) x Ry is ¢-prime. The proof for Case
(3) is similar. Next, suppose that I; x I, is ¢-prime. Let aRib C I; and aRib € ¢y(I;) for
a,b S R]. Then (a,O)R(b,O) = (aR1b, ORQO) - I] X Iz and (a,O)R(b, 0) = (aR1 b, ORQO) 7¢_



456 Nico J. Groenewald and Ece Yetkin Celikel

d1(11) X ¢2(I2) = ¢(I1 x I). Hence (a,0) € I) x I or (b,0) € I} x I, since I} x I, is ¢-prime.
Therefore @ € I} or b € I} and we have I} is ¢,-prime. Likewise, I; is ¢-prime. Suppose
that I} x I, # ¢1(11) X ¢2(R2) Say I # (bl(ll)- Letp € I} — (ﬁ](h) and ¢ € I,. Then
(p, 1)R(1,q) = (pR11,1Raq) € I x Iy and (p, 1)R(1,q) = (pR11,1R2q) € ¢1(I1) x $a(I2) =
¢(I1 x I). Hence (p,1) € I} x L or (1,q) € I x I, since I} x I, is ¢-prime. So I, = R, or
I = Ry. Suppose that I, = R,. So I} X R; is ¢-prime where I is ¢-prime. It remains to show
that if ¢,(R;) # Ry, then I is prime. Let aRib C I for a,b € Ry;. Now 1 ¢ ¢»(R,). Then
(a, I)R(b, 1) = (aRlb, IRQI) - 11 XR2 and (a, I)R(b, 1) = (aRlb, lel) g ¢1(Il) X ¢2(R2) =
¢(I1 X Rp). Hence (a,1) € I} x Ry or (b,1) € I} x Ry. Thus, a € I; orb € I;. Hence I; is a
prime ideal and we are done. O

We next give a way to construct ¢-prime ideals J where ¢,, < ¢.

Theorem 2.19. Let T and S be noncommutative rings and I be a weakly prime ideal of T. Then
J =1 x Sisa ¢-prime ideal of R =T x S for each ¢ with ¢, < ¢ < ¢;.

Proof. If I is a weakly prime ideal of 7', then J = I x S need not be a weakly prime ideal of
R =T x S;indeed J is weakly prime if and only if J (or equivalently, I) is actually prime [9,
Theorem 1.18]. However, J is ¢-prime for each ¢ with ¢, < ¢. If I is actually prime, then J is
prime and hence is ¢-prime for all ¢. Suppose that I is not prime. Then I> = 0. So J?> =0 x S
and hence ¢, (J) = 0 x S. Then if (z1,22)R(y1,y2) C J and (21, 22)R(y1,92) € ¢.,(J). Hence
(z1,22)R(y1,y2) C I x Sand (z1,22)R(y1,y2) £ 0x S = 21Ty; CIand x1Ty; € 0. Hence
z1€lory €1 = (z1,22) € Jor (y1,y2) € J. So J is ¢,,-prime and hence ¢-prime. O

Proposition 2.20. Let R = R; x Rp, where Ry, Ry are nonzero rings with identity elements.
Then every proper ideal of R is ¢-prime if and only if ¢;(J;) = J; for any proper ideal J; of R;
(i=1,2).

Proof. Suppose that every proper ideal of R is ¢-prime. Let I = J; x J, be a proper ideal of
R where J; is an ideal of R; (i = 1,2). If both J; and J, are proper, then ¢(J;) = J; and
@¢2(J2) = J» by Theorem 2.18(1). Assume that J; = R;. Then J, must be a ¢-prime ideal by
Theorem 2.18(2). Assume on the contrary that there exists b € J,\¢2(.J2) which implies that
(Rix <b>)(0x Ry) COx Jrand (Rix <b>)(0x Ry) Z $(0) x ¢(J2) = $(0 x .J). Since
0 x .J, is also ¢-prime from our assumption, we conclude that either R;x < b >C 0 x J, or
0 x Ry C 0 x J, which yields R, = {0} or J, = Ry, a contradiction. Thus ¢,(J,) = J,. In case
of J, = Rj, we conclude that ¢,(J;) = J; by a similar argument above. The converse part is
clear by Theorem 2.18. O

We end this section by showing how to construct some interesting examples of ¢-ideals using
the Method of Idealization. In what follows, R is a ring (associative, not necessarily commutative
and not necessarily with identity) and M is an R— R-bimodule. The idealization of M is the ring
REB M with (REBM,+) = (R,+) ® (M, +) and the multiplication is given by (r,m)(s,n) =
(rs,rn + ms). RB M itself is, in a canonical way, an R — R-bimodule and M ~ OB M is
a nilpotent ideal of RH M of index 2. We also have R ~ R H 0 and the latter is a subring of

M
RHBE M. Note also that R B M is a subring of the Morita ring [ 1; R ] via the mapping

(rym) — (7; " We will require some knowledge about the ideal structure of REB M. If I
r

is an ideal of R and N is an R — R-bi-submodule of M, then I B N is an ideal of R8 M if and
only if IM+MI C N. Let ¢y : L(R) — L(R)U{0} and 1, : LREBM) — L(RBM)U{0}
be two functions such that 1, (I B M) = ¢ (I) B M for a proper ideal I of R.

It follows from [13] that the prime ideals of R B M are exactly the ideals of the form I BB M
where I is a prime ideal of R.

Theorem 2.21. Let R be a ring, M an R — R—bimodule and I a proper ideal of R. Then I BB M
is a 1y prime ideal of RHB M if and only if I is a 1) prime ideal of R
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Proof. Suppose I B M is a v, prime ideal of R B M. Let aRb C I and aRb ¢ () where
a,b € R. Now (a,0)RE M(b,0) C I8 M and (a,0)RE M (b,0) ¢ 1(I B M) = (1) B M.
I 8 M a p,-prime ideal gives (a,0) € I B M or (a,0) € IEBM.Hencea € T orb e I. So I is
1| prime.

Suppose I is a ¢;-prime ideal of R. Let (a,n), (b,m) € REM such that (a, n) REEM (b, m) C
T8 M and (a,n)REB M (b,m) € ¢(IB M) = (I) B M) Hence aRb C I and aRb € 11 (I).
Since [ is a ¢;-prime, we have a € I or b € I. Hence (a,n) € IB M or (b,m) € I B M, we are
done. ]

3 ¢@-prime radical

Let ¢ : S(R) —8(R) be a function from the set of subsets of the ring R such that if A is an
ideal of R,then ¢(A) is an ideal.

Definition 3.1. A subset S of a ring R is a ¢-m-system if for A and B ideals of R such that
ANS#0and BNS #0and AB € ¢(R\S) then ABN S # 0.

Lemma 3.2. A proper ideal P of R is a ¢-prime ideal if and only if S = R\P is an ¢-m-system.

Proof. Suppose ANS # and BNS # Jand AB € ¢(R\S).If ABNS = () then AB C P and
since AB ¢ ¢(R\S) = ¢(R\(R\P)) = ¢(P) and P a ¢-prime ideal gives A C Por BC Pa
contradiction. Hence AB N S # () and we have S an ¢-m-system.

Conversely, let A, B be ideals such that AB C P and AB ¢ ¢(P) = ¢(R\S).If A Z P
and B ¢ P, then ANS # 0 and BN S # 0. Now, since AB € ¢(P) = ¢(R\S) and S an
¢ — m-system we get ABNS = AB N (R\P) # 0, a contradiction. ]

Proposition 3.3. Let R be a ring and P be a proper ideal of R and let S := R\P. Then the
following statements are equivalent.

(i) P is ¢-prime ideal of R.
(ii) S is a p-m-system.
(iii) For left ideals A,B of R, if ANS #0, BNS # 0 and AB € $(R\S) then ABN S # 0.
(iv) For right ideals A,Bof Rif ANS #0, BNS # 0 and AB ¢ ¢(R\S), then ABN S # 0.
(v) Foreacha,b€ R, ifa,be S and aRb ¢ ¢(R\S), then aRbN S # 0.

Proof. (1) < (2) follows from Lemma 3.2.
(2) = (3) = (4) = (5) = (1) follows from Theorem 2.2. i

Theorem 3.4. Let S C R be a ¢p-m-system, and let P an ideal of R maximal with respect to the
property that P is disjoint from S. Then P is a ¢-prime ideal.

Proof. Since PN S = (),we have P = R — S. Suppose AB C P and AB ¢ ¢(P) = ¢(R — S)
where A and B are ideals of R. If A ¢ P and B ¢ P, then by the maximal property of P, we
have, (P+ A)N S # 0 and (P + B) NS # (. Furthermore, AB C (P + A)(P + B) C P and
(P+A)(P+B) ¢ $(P) = ¢(R—S). Thus, since S is a g-m-system (P+ A)(P+B)NS # () and
it follows that (P + A)(P+ B) ¢ P. For this to happen, we must have AB ¢ P, a contradiction.
Thus, P must be a ¢-prime ideal. O

It is well-known that for an ideal I of a ring R, prime radical of I is P(I) = (\{P :I C P
and P a prime ideal of R} and P(R) = (\{P : P a prime ideal of R} where P(R) is the prime
radical of R.Now, we are ready to generalize the notion of prime radical P(I) for any ideal I of
R.

Definition 3.5. Let R be a ring. For an ideal A of R, if there is a ¢-prime ideal containing A,
then we define ¢-prime radical by the set of {a € R : every ¢-m-system containing a meets A}
.denoted by P, (A). If there is no ¢-prime ideal containing A, then we put P,(A4) = R.

Note that, for an ideal A of R, A and Py(A) are contained in precisely the same ¢-prime
ideals of R.
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Theorem 3.6. Let A be an ideal of the ring R Then either Py(A) = R or Py(A) equals the
intersection of all the ¢-prime ideals of R containing A.

Proof. Suppose that Py(A) # R. This means that { P | P is a ¢-prime ideal of R and A C P} #
(). We first prove that P, (A) C {P|P is a ¢-prime ideal of R and A C P}. Letm € Py(A) and P
be any ¢-prime ideal of R containing A. Consider the ¢-m-system R\ P. This ¢-m-system cannot
contain m, for otherwise it meets A and hence also P. Therefore, we have m € P. Conversely,
assume m ¢ P4 (A). Then, by Definition 3.5, there exists a ¢-m-system .S containing m which is
disjoint from A. By Zorn’s Lemma, there exists an ideal P O A which is maximal with respect
to being disjoint from S. By Proposition 3.4, P is a ¢-prime ideal of R and we have m ¢ P, as
desired. O

Theorem 3.7. Let A be an ideal of the ring R. Then Py(A) equals the intersection of all the
minimal ¢-prime ideals of R containing A.

Proof. This follows from Theorem 3.6 and Proposition 2.10. O

For the following examples, let ¢ : Z(R) — Z(R)U{0} be a function. Fot the ¢-prime radical
of the ideal Q of the ring R we take ¢(Q) = 0 i.e. a ¢-prime radical of an ideal is a weakly
prime radical of the ideal.

Example 3.8. Let R = {

b
g o] :a,beZ4,be{0,2}}.

Then, R has proper ideals

Al s ol

P = 00’20’
0 0 0 0

M= 00’02’20’22
00 0 0 00 0 0

where P2 = P} = M? = {0}. Now, P is a ¢o-prime ideal which is not a prime ideal
since Py = {0} C P, but P, ¢ Py. Also, observe that Py (P;) = P; and Py, (P) = R and
’P¢2(P1) =P NM= Pl,P¢2(P2) =PNM=PFP and73¢2(M) = M.

Example 3.9. Let R be the noncommutative ring of endomorphisms of a countably infinite di-
mensional vector space. R is a prime ring with exactly one nonzero proper ideal P. Every ideal
of S| = RH P is ¢p-prime: the maximum ideal P, = P H P is idempotent and the nonzero
minimal ideal P, = OH P is nilpotent, both of which are prime. Let S, = S| H P,. Every ideal of
S is ¢p-prime: The maximum ideal QQ; = P, H P; is idempotent and the three nonzero nilpotent
ideals are ) = P, B P», Q3 = OH P5, and Q4 = P, B 0. Q3 and Q4 are not prime ideals since
0= Q% C@zand 0 = Q% C Q4. For the ¢p-prime and prime radicals of the ideal ()3 we have

Ppo(Q3) = Q3N Q2N Q1 =Q3and P(Q3) = Q2N Q1 = Qa.
The ¢-prime radical satisfies the following properties analogous to prime radical of an ideal.
Proposition 3.10. Let R be a ring, : S(R) — S(R) U {0} be a function.

(i) If I, J are ideals of R with I C J, then Py(I) C Py(J).
(ii) Py(LiLr---1,) C (LiNLN---N1,) C Pu(l)NPy(L)N---NPy(1y,) for all ideals I, ..., I,
of R.
(iii) Py(Py (1)) = Po(1).
(iv) If P4(I) = R, then I = R
Proof. (1) Let @ be a ¢-prime ideal containing J. Since I C J, @ also contains I. Thus
Ps(DC ] Qa=7Ps(J).

Qa ¢-prime
JCEQu
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(2)Since 1 [---I, CLiNnLN---N1I,, wehave Py(l1L---1,) C Po(lhNnLN---N1L,)
by (1). Also, since I; C Py(I;) for each i = 1,2,...,n, we have clearly (I; N L, N---N1I,) C
P¢(Il) N 73(25(]2) NN P¢(In).

(3) If Q is a ¢-prime ideal containing I, then it contains also ﬂ Qo = Py(I). Thus

Qq ¢-prime
ICQa
Py(Py(I)) C Py(I). The inverse inclusion follows from (2) as I C Py(I).
(4) Since P4(I) C P(I), we have P(I) = R which implies I = R. o

Proposition 3.11. Let I be an ideal of a ring R and ¢, : S(R) — S(R) U {0} be two functions
with 1 < ¢.

(i) 7)43([) - ’Pw([). In particular, 'P¢1(1) - P¢2(I) c ... C P¢n(1) - P¢n+l<1) - P¢(I) -
P¢0(I)'

(ii) Py(Py(I)) = Py(Py(I)) = Py(I). In particular, Py(P(I)) = P(Py(I)) = P(I).

Proof. (1) As ¢ < ¢, any ¢-prime ideal is a ¢-prime ideal. Hence, Py(I) C Py(J). The "in
particular" statement follows from the order ¢y < ¢p < ¢ < -+ < Ppy1 < O < - < Py <
é1.

(2) From (1), we have Py,(I) € Py(Py (1)) € PyPy(I) and we have Py Py (I) = Py (I) by
3.10(3). Thus Py(Py(I)) = Py(I). Similarly, as Py (Py (1)) C Py(Py(I)) € Py(I) C and we
have 731/,731/, (I) = 77¢ (I) O

Theorem 3.12. Let ¢ : S(R) — S(R)U{0} and ¢» : S(REBM) — S(RE M) U {0} be two
Sunctions such that 4, (I B M) = ¢, (I) B M for a proper ideal I of R. For the ring R we have
Py, (IB M) =Py, (I)B M.

Proof. Let @ be a 1,-prime ideal of R B M containing / B M. Since @) contains 0 H M,
Q = P B M where P is a ¢;-prime ideal of R containing I by Theorem 2.21. Hence Py, (I) B
M C Py, (I B M). Also, if P is a ¢;-prime ideal of R containing I, then P B M is a v;-prime
ideal containing 1 B M. Thus Py, (I B M) C Py, (I) B M and we are done. i

Proposition 3.13. Let R be a ring and I € S*(R). Then either Py(I) = P(I) or (73(25(1))2 C
@ (P) for some ¢-prime ideal P of R containing I. In particular, if I is an n-almost prime ideal,

then Py, (I) = P(I) or (Py, (I))* C P", and Py, (I) = P(I) or (Py,(I))* = {0} .

Proof. If every ¢-prime ideal of R containing [ is prime, then clearly Py(I) = P(I). Now let
P be a ¢-prime ideal of R containing I which is not prime and let z,y € Py(I). Then z,y € P

and hence zy € P? C ¢(P), by Proposition 2.6. Thus (P, (I ))2 C ¢(P). The "in particular" part
follows by considering ¢ = ¢g. O

Proposition 3.14. Let R be a ring, I € S*(R) and ¢ : S(R) — S(R) U {0} be a function such
that ¢, < ¢ < ¢3. Then Py(I) = Py, (I).

Proof. Since ¢, < ¢, Py, (I) € Py(I). Let P be a ¢-prime ideal of R containing I. Since
¢ < ¢3 by Corollary 2.7, P is a ¢,,-prime ideal and so Py (I) C Py(I). o
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