GENERALIZATIONS OF PRIME RADICAL IN NONCOMMUTATIVE RINGS

Nico J. Groenewald and Ece Yetkin Celikel

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 16N40; Secondary 16N80, 16L30.

Keywords and phrases: prime ideal, ϕ-prime ideal, ϕ-m-system, prime radical, ϕ-prime radical.

The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that improved the quality of our paper.

Abstract *Let* R *be a noncommutative ring with identity. Let* ϕ : $\mathcal{S}(R) \to \mathcal{S}(R) \cup \{\emptyset\}$ *be a function where* S(R) *denotes the set of all subsets of* R*. The aim of this paper is to generalize the concept of prime radical* [√] I *of an ideal* I *of* R *to* ϕ*-prime radical* Pϕ(I). *A proper ideal* Q *of* R is called ϕ -prime if whenever $a, b \in R$, $aRb \subseteq Q$ and $aRb \nsubseteq \phi(Q)$ implies that either $a \in Q$ $or b \in Q$. In this paper, first we study the properties of several generalizations of prime ideals *of* R. Then, we verify that $\mathcal{P}_{\phi}(I)$ is equal to the intersection of all minimal ϕ -prime ideals of R *containing* I*, and we show that this notion inherits many of the essential properties of the usual notion of prime radical of an ideal.*

1 Introduction

The first generalization of prime ideals in commutative rings is introduced in 2003 by Anderson's celebrated work [\[2\]](#page-8-1). A proper ideal I of a commutative ring R is weakly prime if $0 \neq ab \in I$ *for some* $a, b \in R$, *then* $a \in I$ *or* $b \in I$. *Afterwards, in 2008, Anderson and Bataineh introduced* ϕ -prime ideals in commutative rings. In [\[1\]](#page-8-2), they define a function $\phi : \mathcal{I}(R) \to \mathcal{I}(R) \cup \{\emptyset\}$ *which maps an ideal of* R *to an ideal of* R *or* ∅*. A proper ideal* I *of* R *is said to be a* ϕ*-prime ideal of* R whenever if $ab \in I - \phi(I)$ for some $a, b \in R$, then $a \in I$ or $b \in I$. They gave a *proof showing that* I *is* ϕ -prime if and only if whenever J, K are ideals of R with JK \subseteq I and $JK \nsubseteq \phi(I)$ *imply that* $J \subseteq I$ *or* $K \subseteq I$ *(that is, I is strongly* ϕ *-prime), [\[1,](#page-8-2) Theorem 13]. For some of the different generalizations of prime ideals refer to [\[3\]](#page-8-3)-[\[14\]](#page-9-0).*

Afterwards, in [\[9\]](#page-9-1), Groenewald studied weakly prime ideals in noncommutative rings and the notion of a weakly prime radical of an ideal is introduced. A proper ideal I *of* R *is said to be weakly prime if* $a, b \in R$ *such that* $0 \neq aRb \subseteq I$ *, then* $a \in I$ *or* $b \in I$ *.*

Motivated and inspired from the above structures in the literature, we give the following definition. Let ϕ : $S(R) \to S(R) \cup {\emptyset}$ *be a function. We call a proper ideal of* R *a* ϕ *-prime ideal if* $a, b \in R$ *such that* $aRb ⊆ P$ *and* $aRb ⊈ φ(P)$ *, then* $a ∈ P$ *or* $b ∈ P$ *. Several characterizations and properties of this concept are studied in Section 3. At the end of this section, we show how to construct some interesting examples of* ϕ*-ideals using the method of idealization (Theorem [2.21\)](#page-5-0). In Section 4, we introduce and study the notion of* ϕ*-*m*-system to generalize the concept of prime radical of an ideal to* ϕ*-prime radical. We call a subset* S *of a ring* R *a* ϕ*-*m*-system if for* A and B *ideals of* R *such that* $A \cap S \neq \emptyset$ *and* $B \cap S \neq \emptyset$ *and* $AB \nsubseteq \phi(R \setminus S)$ *then* AB ∩ S ̸= ∅. *In Theorem [3.4,](#page-6-0) we obtain a relationship between* ϕ*-prime ideals and* ϕ*-m-system that if* P *is an ideal of* R *maximal with respect to the property that* P *is disjoint from* S *where* $S \subseteq R$ *is a* ϕ -m-system, then P is a ϕ -prime ideal. Then, we introduce ϕ -prime radical of A, *denoted by* $\mathcal{P}_{\phi}(A)$, *by the set of* { $a \in R$ *: every* ϕ *-m-system containing* a *meets* A }*. We show that the intersection of all the minimal* ϕ*-prime ideals of* R *containing the ideal* A *of* R *is equal to the* ϕ -prime radical $\mathcal{P}_{\phi}(A)$. *(Theorem [3.6\)](#page-7-0)*

Furthermore, we call the set of all ϕ*-prime ideals of* R *the* ϕ*-prime spectrum of* R *and denoted*

by $Spec(R)$ *or simply* X*.* Also, we have: $X_{\phi_0} \subseteq X_{\phi_0} \subseteq X_{\phi_\omega} \subseteq \cdots \subseteq X_{\phi_{n+1}} \subseteq X_{\phi_n} \subseteq \cdots \subseteq X_{\phi_n}$ $X_{\phi_2} \subseteq X_{\phi_1} = \mathcal{S}^*(R)$. In particular, if $\phi = \phi_0$, then $Spec_{\phi}(R) = Spec(R)$ and if $\phi = \phi_1$, then $Spec(R) = \mathcal{S}^*(R).$

2 ϕ -prime ideals of a noncommutative ring

Definition 2.1. Let ϕ : $S(R) \rightarrow S(R) \cup {\emptyset}$ be a function. We call a proper ideal P of a ring R a ϕ -prime ideal if $a, b \in R$ such that $aRb \subseteq P$ and $aRb \nsubseteq \phi(P)$, then $a \in P$ or $b \in P$.

We shall denote the following notations which are used for the rest of the paper. Let R *be a ring (not necessarily commutative) and* ϕ_{α} : $\mathcal{S}(R) \to \mathcal{S}(R) \cup \{\emptyset\}$ *be a function where* $S(R)$ *denotes the set of subsets of* R and if $I \subseteq S(R)$ *is an ideal of* R, then $\phi(I)$ *is an ideal. Some generalized forms of prime ideals correspond to* ϕ_{α} *are presented as follows.*

For two functions ϕ , ψ : $\mathcal{S}(R) \to \mathcal{S}(R) \cup \{\emptyset\}$ *, we write an order* $\phi \leq \psi$ *when* $\phi(I) \subseteq \psi(I)$ *for all ideals* I *of* R. Note that $\phi_0 \leq \phi_0 \leq \phi_\omega \leq \cdots \leq \phi_{n+1} \leq \phi_n \leq \cdots \leq \phi_2 \leq \phi_1$ (*).

The several equivalent characterizations of ϕ*-prime ideals of rings are presented in the following.*

Theorem 2.2. *Let* P *be a proper ideal of a ring* R*. Then the following statements are equivalent.*

(i) P *is a* ϕ *-prime ideal of R.*

(ii) For all $x \in R \backslash P$ *,* $(P : Rx) = \{p \in R : pRx \subseteq P\} = P \cup (\phi(I) : Rx)$ *.*

(iii) For all $x \in R \backslash P$ *,* $(P : Rx) = P$ *or* $(P : Rx) = (\phi(I) : Rx)$.

- *(iv) For ideals A and B of R,* $AB ⊆ P$ *and* $AB ∉ φ(P)$ *implies* $A ⊆ P$ *or* $B ⊆ P$ *.*
- *(v) If J, K* are right (left) ideals of R such that $JK ⊆ P$ and $JK ∉ φ(P)$ *, then* $J ⊆ P$ *or* $K \subseteq P$ *. (In this case, we call P a* ϕ *-prime right ideal)*
- *(vi)* $P/\phi(P)$ *is a weakly prime ideal of* $R/\phi(P)$ *.*

Proof. (1) \Rightarrow (2) Let $y \in (P : Rx)$ where $x \in R \backslash P$. Now $yRx \subseteq P$. If $yRx \nsubseteq \phi(P)$, then we have $y \in P$. If $yRx \subseteq \phi(P)$, then $y \in (\phi(P):Rx)$ as P is ϕ -prime. Hence, $(P:Rx) \subseteq$ $P \cup (\phi(P) : Rx)$. As the reverse containment always holds for any ideal P, we have the equality. $(2) \Rightarrow (3)$ Since P and $(\phi(P):Rx)$ are both ideals, $(P:Rx) = P \cup (\phi(P):Rx)$ implies

clearly $(P: Rx) = P$ or $(P: Rx) = (\phi(P): Rx)$.

 $(3) \Rightarrow (1)$ Let $x, y \in R$ such that $xRy \subseteq P$ and $yRx \nsubseteq \phi(P)$. Suppose $y \in R \backslash P$. Then, $(P: Ry) \neq (\phi(P): Ry)$ and from (3), we have $(P: Ry) = P$. Hence $x \in P$, as needed.

 $(1) \Rightarrow (4)$ Let A and B be ideals of R with $AB \subseteq P$. Suppose that $A \nsubseteq P$ and $B \nsubseteq P$. We show that $AB \subseteq \phi(P)$. Let $a \in A$. First, suppose that $a \notin P$. Then $aRB \subseteq P$ gives $B \subseteq (P : Ra)$. Now $B \nsubseteq P$; so $(P : Ra) = (\phi(P) : Ra)$. Hence $aB \subseteq \phi(P)$. Next, choose $a \in A \cap P$ and $a' \in A \backslash P$. Then $a + a' \notin A \backslash P$. So by the first case, $a' B$, $(a + a') B \subseteq \phi(P)$. Let $b \in B$. Then $ab = (a + a')b - a'b \in \phi(I)$ which means $aB \subseteq \phi(P)$. Thus $AB \subseteq \phi(P)$.

(4) \Rightarrow (1) Let $a, b \in R$ such that $aRb \subseteq P$ and $aRb \nsubseteq \phi(P)$. Now, since R is a ring with identity $aRb \subseteq (RaR)(RbR) \subseteq P$ and $(RaR)(RbR) \nsubseteq \phi(P)$. From (4), we have either $a \in RaR \subseteq P$ or $b \in RbR \subseteq P$.

 $(4) \Rightarrow (5)$ Assume (4) holds. Suppose that J, K are right (left) ideals of R such that JK $\subseteq P$ and $JK \nsubseteq \phi(P)$. Let $\langle J \rangle$, $\langle K \rangle$ be the ideals generated by J, K respectively. Then $\langle J \rangle$ $\langle K \rangle \subseteq P$ and $\langle J \rangle \langle K \rangle \nsubseteq \phi(P)$, whence $J \subseteq \langle J \rangle \subseteq P$ or $K \subseteq \langle K \rangle \subseteq P$.

 $(5) \Rightarrow (1)$ Assume (5) holds. Suppose $aRb \subseteq P$ and $aRb \nsubseteq \phi(P)$. Since R has an identity, $(aR)(bR) \subseteq P$ and $(aR)(bR) \nsubseteq \phi(P)$, we conclude $a \in aR \subseteq P$ or $b \in bR \subseteq P$.

 $(1) \Rightarrow (5)$ Suppose that $AB \subseteq P$, and $AB \nsubseteq \phi(P)$, for right ideals A and B of R. Since R has an identity, $AR = A$, and $(RA)(RB) = RAB \subseteq RP = P$ for ideals RA and RB. On the other hand, if $(RA)(RB) \subseteq \phi(P)$, then $AB \subseteq RAB = (RA)(RB) \subseteq \phi(P)$, a contradiction. Thus $(RA)(RB) \nsubseteq \phi(P)$, and by (2) we have either $A \subseteq RA \subseteq P$ or $B \subseteq RB \subseteq P$ and we are done.

 $(1) \Leftrightarrow (6)$ is straightforward.

Corollary 2.3. *Let* P *be an ideal of a ring* R*. Then the following are equivalent.*

- *(i)* P *is a* ϕ *-prime ideal of R.*
- *(ii) For any ideals* I, J of R with $P \subset I$ *and* $P \subset J$ *, we have either* $IJ \subseteq \phi(P)$ *or* $IJ \nsubseteq P$.
- *(iii) For any ideals* I, J of R with $I \nsubseteq P$ *and* $J \nsubseteq P$ *, we have either* $IJ \subseteq \phi(P)$ *or* $IJ \nsubseteq P$.

Proof. (1) \Rightarrow (2) and (3) \Rightarrow (1) are clear

 $(2) \Rightarrow (3)$ Let I, J be ideals of R with $I \nsubseteq P$ and $J \nsubseteq P$. Suppose that $i \in I$ and $j \in J$ such that $ij \notin \phi(P)$. Since $I \nsubseteq P$ and $J \nsubseteq P$, there exist $i_1 \in I$ and $j_1 \in J$ such that $i_1, j_1 \notin P$. Now $P \subset \langle i_1 \rangle + \langle i \rangle + P$ and $P \subset \langle j_1 \rangle + \langle j \rangle + P$. Furthermore, $(\langle i_1 \rangle + \langle i \rangle + P)(\langle j_1 \rangle + \langle j \rangle + P) \nsubseteq \phi(P)$. Hence from our assumption, we have $(\langle i_1 \rangle + \langle i \rangle + P)(\langle j_1 \rangle + \langle j \rangle + P) \nsubseteq P$ and it follows that $P + \langle i_1 \rangle (\langle j_1 \rangle + \langle j \rangle) + \langle i \rangle (\langle j_1 \rangle + \langle j \rangle) \nsubseteq P$. For this to be true, we must have $IJ \nsubseteq P$. \Box

We define a useful concept, namely "twin-zero", for a ϕ*-prime ideal in a noncommutative ring.*

Definition 2.4. Let I be a ϕ -prime ideal of R. We say (a, b) is a twin-zero of I if $aRb \subseteq \phi(I)$, $a \notin I$, and $b \notin I$.

Note that if I is a ϕ -prime ideal of R that is not a prime ideal, then I has a twin-zero (a, b) *for some* $a, b \in R$ *.*

Lemma 2.5. Let I be a ϕ -prime ideal of R and suppose that (a, b) is a twin-zero of I for some $a, b \in R$ *. Then* $aI, Ib \subseteq \phi(I)$ *.*

Proof. Suppose that $aI \nsubseteq \phi(I)$. Then there exists $i \in I$ such that $ai \notin \phi(I)$. Hence $aR(b+i) \subseteq I$ and $aR(b + i) \nsubseteq \phi(I)$. Since $a \notin I$ and I is ϕ -prime, we have $b + i \in I$, and hence $b \in I$, a contradiction. Thus $aI \subseteq \phi(I)$. Now, suppose $Ib \nsubseteq \phi(I)$. Then there exists $t \in I$ such that $tb \notin \phi(I)$. Hence $(a + t)Rb \subseteq I$ and $(a + t)Rb \nsubseteq \phi(I)$. Since $b \notin I$ and I is ϕ -prime, we have $a + t \in I$, and hence $a \in I$, a contradiction. Thus $Ib \subseteq \phi(I)$. \Box

Theorem 2.6. *Let* R *be a ring and* P *an ideal of* R. *If* P *is a* ϕ*-prime ideal but not prime, then* $P^2 \subseteq \phi(I)$.

Proof. Let (a, b) be a twin-zero of P. Suppose that $p_1p_2 \notin \phi(P)$ for some $p_1, p_2 \in P$. Then by Lemma [2.5,](#page-2-0) we have $(a + p_1)(b + p_2) \in (a + p_1)R(b + p_2) \subseteq P$ and $(a + p_1)R(b + p_2) \nsubseteq \phi(P)$ Thus $(a + p_1) \in P$ or $(b + p_2) \in P$ and hence $a \in P$ or $b \in P$ which is a contradiction since (a, b) is a twin-zero of P. Therefore $P^2 \subseteq \phi(P)$. \Box

In view of Theorem [2.6,](#page-2-1) one can say in other words that if an ideal P *of a ring* R *with* $P^2 \nsubseteq \phi(P)$, then P is prime if and only if P is ϕ -prime.

Corollary 2.7. Let P be a ϕ -prime ideal of a ring R where $\phi \leq \phi_3$. Then P is ω -prime.

Proof. If P is prime, then P is ϕ -prime for each ϕ and there is nothing to prove. Suppose P is not prime. Then by Theorem [2.6,](#page-2-1) $P^2 \subseteq \phi(P) \subseteq P^3$. Hence $\phi(P) = P^n$ for each $n \ge 2$, and so *P* is almost prime for each $n \ge 2$. Thus *P* is ω -prime. \Box

It should be noted that a proper ideal P with a property that $\phi(P) = P^2$ *need not be* ϕ -prime. *Take an ideal* P = $\left[\begin{array}{cc} 0 & \mathbb{R} \\ 0 & 0 \end{array}\right]$ of $R =$ " Q R 0 Q 1 *and* $\phi(P) = \{0\}$ *. Clearly* $P^2 = \{0\} = \phi(P)$ *,*

 \Box

Lemma 2.8. Let I be a ϕ -prime ideal of a ring R and suppose that (a, b) is a twin-zero of I. If $aRr \subseteq I$ *for some* $r \in R$ *, then* $aRr \subseteq \phi(I)$ *.*

Proof. Suppose that $aRr \subseteq I$ and $aRr \nsubseteq \phi(I)$ for some $r \in R$. Then $r \in I$ as ϕ -prime and (a, b) is a twin-zero of *I*. Now, since $aRr \subseteq aI$, we have that $aRr \subseteq \phi(I)$ from Theorem [2.5,](#page-2-0) a contradiction. \Box

Theorem 2.9. Let I be a ϕ -prime ideal of R and suppose that $AB \subseteq I$ for some ideals A, B of *R.* If I has a twin-zero (a, b) for some $a \in A$ and $b \in B$, then $AB \subseteq \phi(I)$.

Proof. Suppose that I has a twin-zero (a, b) for some $a \in A$ and $b \in B$ and assume that $cd \notin \phi(I)$ for some $c \in A$ and $d \in B$. Since $cRd \subseteq AB \subseteq I$ and $cd \in cRd \nsubseteq \phi(I)$ and $I \phi$ -prime, we have $c \in I$ or $d \in I$. Without loss of generality, we may assume that $c \in I$. Since $I^2 \subseteq \phi(I)$ by Theorem [2.6](#page-2-1) and $cd \in I$ and $cd \notin \phi(I)$, we conclude that $d \notin I$. Since $aRd \subseteq AB \subseteq I$ it follows from Lemma [2.8](#page-3-0) that $aRd \subseteq \phi(I)$. Now, since $(a+c)Rd \subseteq AB \subseteq I$ and $cd \in cRd \nsubseteq \phi(I)$, we have $(a + c)Rd \subseteq I$ and $(a + c)Rd \nsubseteq \phi(I)$. Since I is ϕ -prime, we have $(a + c) \in I$ since $d \notin I$. Hence $a \in I$, a contradiction. Thus $AB \subseteq \phi(I)$. \Box

Proposition 2.10. *Any* ϕ*-prime ideal* P *in a ring* R *contains a minimal* ϕ*-prime ideal.*

Proof. Apply Zorn's Lemma to the family of ϕ -prime ideals of R contained in P. It suffices to check that for any chain of ϕ -prime ideals $\{P_i : i \in I\}$ in P, the intersection $P' = \bigcap P_i$ is ϕ -prime. Let A and B be ideals of R such that $AB \subseteq P'$ and $AB \nsubseteq \phi(P')$. Suppose that $A \nsubseteq P'$ and $B \nsubseteq P'$. Then there exist $a \in A \backslash P'$ and $b \in A \backslash P'$. Hence $a \notin P_i$ and $b \notin P_j$ for some i, $j \in I$. If, say $P_i \subseteq P_j$, then both a, b are outside P_i . Since P_i is ϕ -prime we have $aRb \subseteq \phi(P_i)$ or aRb $\nsubseteq P_i$. On the other hand, since aRb $\subseteq AB \subseteq P' \subseteq P_i$ we must have aRb $\subseteq \phi(P_i)$. Hence, (a, b) is a twin zero for P_i . Now, Theorem [2.9](#page-3-1) implies that $AB \subseteq \phi(P_i) \subseteq \phi(P)$ which contradicts to our assumption. Thus $A \subseteq P'$ or $B \subseteq P'$, and therefore P' is a ϕ -prime ideal.

Theorem 2.11. *Let* R *be a Noetherian ring and* I *a proper ideal of* R*. Then, the set of minimal* ϕ*-prime ideals containing* I *is finite.*

Proof. Assume on the contrary that the claim is false and choose an ideal $I \neq R$ maximal concerning the property that $I \neq R$ and that there are infinitely many ϕ -prime ideals containing I. This is possible as R is Noetherian. Then clearly I is not a ϕ -prime ideal, so there exist elements $a, b \in R$ such that $\langle a \rangle \langle b \rangle \subseteq I$ and $\langle a \rangle \langle b \rangle \nsubseteq \phi(I)$ but $a \notin I$ and $b \notin I$. Let $J = I + \langle a \rangle$ and $K = I$ $I+\langle b \rangle$. Now, J and K properly contain I. Furthermore, $\langle a \rangle \langle b \rangle \subseteq JK = (I + \langle a \rangle)(I + \langle b \rangle) \subseteq I$ and $JK = (I + \langle a \rangle) (I + \langle b \rangle) \nsubseteq \phi(I)$. Since I is ϕ -prime we must have $J \subseteq I$ or $K \subseteq I$. Note that any ϕ -prime ideal containing I must contain either J or K. In particular, any ϕ -prime minimal over I is minimal over either J or K. But each of J and K has only finitely many minimal ϕ -primes (by choice of *I*), a contradiction. \Box

Proposition 2.12. *For a ring* R*, the following statements are equivalent.*

- *(i) Every proper right ideal of* R *is* ϕ -prime.
- *(ii) For any right ideals J and K of R with* $JK \neq \phi(JK)$ *,* $JK = J$ *or* $JK = K$ *.*

Proof. (1) \Rightarrow (2). Let J, K be right ideals of R and JK $\neq \phi(JK)$. If JK is proper, then it is ϕ -prime by our assumption. Thus $JK \subseteq JK$ and $JK \nsubseteq \phi(JK)$ implies that $J \subseteq JK$ or $K \subseteq JK$. Thus $JK = J$ or $JK = K$.

 $(2) \Rightarrow (1)$. Let I be a proper right ideal of R. Suppose that $JK \subseteq I$ and $JK \nsubseteq \phi(I)$. Since $\phi(JK) \subseteq \phi(I)$, we have $JK \neq \phi(JK)$ and (2) implies that $J = JK \subseteq I$ or $K = JK \subseteq I$.

In view of the proposition above, we have the following.

Corollary 2.13. Let R be a ring in which every ideal of R is a ϕ -prime right ideal. Then $I^2 = I$ *or* $I^2 = \phi(I)$ *for any right ideal I of R.*

Recall that a ring R *with unity is said to be a local ring if it contains a unique maximal right ideal* M*. We will denote it by* (R, M)*. Recall that* M *is the unique (two sided) maximal ideal of* R*.*

Proposition 2.14. Let (R, M) be a local ring, and let I be a right ideal of R such that $M^2 \subset$ $\phi(I)$. Then I is a ϕ -prime right ideal. In particular, if (R, M) is a local ring such that $M^2 = 0$, *then every proper ideal of* R *is a* ϕ*-prime right ideal.*

Proof. Suppose that J, K are two right ideals of R. Since $JK \subseteq M^2 \subseteq \phi(I)$, I is a ϕ -prime right ideal. The "in particular" case is straightforward.

Example 2.15. Let (R, M) be a local ring and P be a right ideal of R such that $P \cap M^2 \subseteq \phi(P)$ $(P \cap M^2 = 0)$. Then, P is a ϕ -prime right ideal of R. Observe that if A and B are right ideals of R such that $AB \subseteq P$, then $AB \subseteq P \cap M^2 \subseteq \phi(P)$ $(AB = 0 \subseteq \phi(P))$.

Next, we discuss the behavior of φ-prime right ideals of a ring under an epimorphism.

Proposition 2.16. Let $f : R \to S$ be a ring epimorphism, $\phi : S(R) \to S(R)$ a function such that $\phi(f(I)) = f(\phi(I)).$

- *(i)* If *I* is a ϕ -prime right ideal of S where ker $f \subseteq I$, then $f^{-1}(I)$ is a ϕ -prime right ideal of R*.*
- *(ii) If I is a be a* ϕ *-prime right ideal of R and* ker $f \subseteq \phi(I)$ *, then* $f(I)$ *is a* ϕ *-prime right ideal of* S*.*

Proof. (1) Let J, K be two right ideals of S and $JK \subseteq f^{-1}(I)$ and $JK \nsubseteq \phi(f^{-1}(I))$. Then $f(J)f(K) = f(JK) \subseteq I$. Since $\phi(f(I)) = f(\phi(I))$, we have $f(J)f(K) \not\subseteq \phi(I)$. It follows either $f(J) \subseteq f(I)$ or $f(K) \subseteq f(I)$ and since as ker $f \subseteq I$, we conclude that either $J \subseteq f^{-1}(I)$ or $K \subseteq f^{-1}(I)$, as needed.

(2) Let $J := f(J_1), K := f(K_1)$ be two right ideals of S and $JK = f(J_1K_1) \subseteq f(I)$ and $JK \nsubseteq \phi(f(I))$. Then $J_1K_1 = f^{-1}(JK) \subseteq I$. Since $\phi(f(I)) = f(\phi(I))$ and ker $f \subseteq \phi(I)$, we have $J_1K_1 = f^{-1}(J)f^{-1}(K) \nsubseteq \phi(I)$. Hence, $J_1 \subseteq I$ or $K_1 \subseteq I$, and thus $J \subseteq f(I)$ or $K \subseteq f(I)$, as needed. \Box

Corollary 2.17. Let I and J be two right ideals of R with $I \subseteq J$. If I is a ϕ -prime right ideal *ideal of* R , *then* I/J *is a* ϕ *-prime right ideal of* R/J .

Let R and S be noncommutative rings. It is well known that the prime ideals of $R \times S$ have *the form* P × S *or* R × Q *where* P *is a prime ideal of* R *and* Q *is a prime ideal of* S*. We next generalize this result to* ϕ*-prime ideals.*

Theorem 2.18. Let R_1 and R_2 be noncommutative rings and let $\phi_i S(R_i) \to S(R_i) \cup \{\emptyset\}$ be *functions. Let* $\phi = \phi_1 \times \phi_2$ *. Then a* ϕ *-prime ideal of* $R_1 \times R_2$ *has exactly one of the following three forms:*

- *(i)* $I_1 \times I_2$ *where* I_i *is a proper ideal of* R_i *with* $\phi_i(I_i) = I_i$ $(i = 1, 2)$ *.*
- *(ii)* $I_1 \times R_2$ *where* I_1 *is a* ϕ_1 *-prime of* R_1 *which must be prime if* $\phi_2(R_2) \neq R_2$ *.*

(iii) $R_1 \times I_2$ *where* I_2 *is a* ϕ_2 *-prime of* R_2 *which must be prime if* $\phi_1(R_1) \neq R_1$ *.*

Proof. We first note that an ideal of $R_1 \times R_2$ having one of these three types is ϕ -prime. Case (1) is clear since $I_1 \times I_2 = \phi_1(I_1) \times \phi_2(I_2)$. If I_1 is prime, certainly $I_1 \times R_2$ is prime and hence ϕ -prime. So suppose that I_1 is ϕ_1 -prime and $\phi_2(R_2) = R_2$. Suppose $(a_1, b_1)R(a_2, b_2) \subseteq I_1 \times R_2$ and $(a_1, b_1)R(a_2, b_2) \nsubseteq \phi(I_1 \times R_2) = \phi_1(I_1) \times \phi_2(R_2) = \phi_1(I_1) \times R_2$ for $a_1, a_2 \in R_1$ and $b_1, b_2 \in R_2$. Hence $a_1R_1a_2 \subseteq I_1$ and $a_1R_1a_2 \nsubseteq \phi(I_1)$. Since I_1 is ϕ_1 -prime $a_1 \in I_1$ or $a_2 \in I_1$. Hence $(a_1, b_1) \in I_1 \times R_2$ or $(a_2, b_2) \in I_1 \times R_2$. Hence $I_1 \times R_2$ is ϕ -prime. The proof for Case (3) is similar. Next, suppose that $I_1 \times I_2$ is ϕ -prime. Let $aR_1b \subseteq I_1$ and $aR_1b \nsubseteq \phi_1(I_1)$ for $a, b \in R_1$. Then $(a, 0)R(b, 0) = (aR_1b, 0R_20) \subseteq I_1 \times I_2$ and $(a, 0)R(b, 0) = (aR_1b, 0R_20) \nsubseteq I_1$

 $\phi_1(I_1) \times \phi_2(I_2) = \phi(I_1 \times I_2)$. Hence $(a, 0) \in I_1 \times I_2$ or $(b, 0) \in I_1 \times I_2$ since $I_1 \times I_2$ is ϕ -prime. Therefore $a \in I_1$ or $b \in I_1$ and we have I_1 is ϕ_1 -prime. Likewise, I_2 is ϕ_2 -prime. Suppose that $I_1 \times I_2 \neq \phi_1(I_1) \times \phi_2(R_2)$. Say $I_1 \neq \phi_1(I_1)$. Let $p \in I_1 - \phi_1(I_1)$ and $q \in I_2$. Then $(p, 1)R(1, q) = (pR_11, 1R_2q) \subseteq I_1 \times I_2$ and $(p, 1)R(1, q) = (pR_11, 1R_2q) \nsubseteq \phi_1(I_1) \times \phi_2(I_2) =$ $\phi(I_1 \times I_2)$. Hence $(p, 1) \in I_1 \times I_2$ or $(1, q) \in I_1 \times I_2$ since $I_1 \times I_2$ is ϕ -prime. So $I_2 = R_2$ or $I_1 = R_1$. Suppose that $I_2 = R_2$. So $I_1 \times R_2$ is ϕ -prime where I_1 is ϕ_1 -prime. It remains to show that if $\phi_2(R_2) \neq R_2$, then I_1 is prime. Let $aR_1b \subseteq I_1$ for $a, b \in R_1$. Now $1 \notin \phi_2(R_2)$. Then $(a, 1)R(b, 1) = (aR_1b, 1R_21) \subseteq I_1 \times R_2$ and $(a, 1)R(b, 1) = (aR_1b, 1R_21) \nsubseteq \phi_1(I_1) \times \phi_2(R_2) =$ $\phi(I_1 \times R_2)$. Hence $(a, 1) \in I_1 \times R_2$ or $(b, 1) \in I_1 \times R_2$. Thus, $a \in I_1$ or $b \in I_1$. Hence I_1 is a prime ideal and we are done. \Box

We next give a way to construct ϕ -prime ideals *J where* $\phi_{\omega} < \phi$.

Theorem 2.19. *Let* T *and* S *be noncommutative rings and* I *be a weakly prime ideal of* T*. Then* $J = I \times S$ *is a* ϕ *-prime ideal of* $R = T \times S$ *for each* ϕ *with* $\phi_{\omega} \leq \phi \leq \phi_1$ *.*

Proof. If I is a weakly prime ideal of T, then $J = I \times S$ need not be a weakly prime ideal of $R = T \times S$; indeed J is weakly prime if and only if J (or equivalently, I) is actually prime [\[9,](#page-9-1) Theorem 1.18]. However, J is ϕ -prime for each ϕ with $\phi_\omega \leq \phi$. If I is actually prime, then J is prime and hence is ϕ -prime for all ϕ . Suppose that *I* is not prime. Then $I^2 = 0$. So $J^2 = 0 \times S$ and hence $\phi_\omega(J) = 0 \times S$. Then if $(x_1, x_2)R(y_1, y_2) \subseteq J$ and $(x_1, x_2)R(y_1, y_2) \nsubseteq \phi_\omega(J)$. Hence $(x_1, x_2)R(y_1, y_2) \subseteq I \times S$ and $(x_1, x_2)R(y_1, y_2) \nsubseteq \emptyset \times S \Rightarrow x_1Ty_1 \subseteq I$ and $x_1Ty_1 \nsubseteq \emptyset$. Hence $x_1 \in I$ or $y_1 \in I \Rightarrow (x_1, x_2) \in J$ or $(y_1, y_2) \in J$. So J is ϕ_ω -prime and hence ϕ -prime. \Box

Proposition 2.20. Let $R = R_1 \times R_2$, where R_1, R_2 are nonzero rings with identity elements. *Then every proper ideal of* R is ϕ -prime if and only if $\phi_i(J_i) = J_i$ for any proper ideal J_i of R_i $(i = 1, 2)$.

Proof. Suppose that every proper ideal of R is ϕ -prime. Let $I = J_1 \times J_2$ be a proper ideal of R where J_i is an ideal of R_i $(i = 1, 2)$. If both J_1 and J_2 are proper, then $\phi_1(J_1) = J_1$ and $\phi_2(J_2) = J_2$ by Theorem [2.18\(](#page-4-0)1). Assume that $J_1 = R_1$. Then J_2 must be a ϕ -prime ideal by Theorem [2.18\(](#page-4-0)2). Assume on the contrary that there exists $b \in J_2 \setminus \phi_2(J_2)$ which implies that $(R_1 \times \langle b \rangle)(0 \times R_2) \subseteq 0 \times J_2$ and $(R_1 \times \langle b \rangle)(0 \times R_2) \nsubseteq \phi(0) \times \phi(J_2) = \phi(0 \times J_2)$. Since $0 \times J_2$ is also ϕ -prime from our assumption, we conclude that either $R_1 \times \{b\} \subseteq 0 \times J_2$ or $0 \times R_2 \subseteq 0 \times J_2$ which yields $R_1 = \{0\}$ or $J_2 = R_2$, a contradiction. Thus $\phi_2(J_2) = J_2$. In case of $J_2 = R_1$, we conclude that $\phi_1(J_1) = J_1$ by a similar argument above. The converse part is clear by Theorem [2.18.](#page-4-0) \Box

We end this section by showing how to construct some interesting examples of ϕ -ideals using *the Method of Idealization. In what follows,* R *is a ring (associative, not necessarily commutative and not necessarily with identity) and* M *is an* R−R*-bimodule. The idealization of* M *is the ring* $R \boxplus M$ with $(R \boxplus M, +) = (R, +) \oplus (M, +)$ and the multiplication is given by $(r, m)(s, n) =$ $(rs, rn + ms)$. $R \boxplus M$ *itself is, in a canonical way, an* $R - R$ *-bimodule and* $M \simeq 0 \boxplus M$ *is a nilpotent ideal of* R ⊞ M *of index* 2. *We also have* R ≃ R ⊞ 0 *and the latter is a subring of* 1

 $R \boxplus M$ *. Note also that* $R \boxplus M$ *is a subring of the Morita ring* $\begin{bmatrix} R & M \end{bmatrix}$ 0 R *via the mapping*

 $(r, m) \mapsto$ $\lceil r \rceil$ $0 \rceil$ # *. We will require some knowledge about the ideal structure of* R ⊞ M*. If* I

is an ideal of R and N *is an* $R - R$ *-bi-submodule of* M, then $I \boxplus N$ *is an ideal of* $R \boxplus M$ *if and only if* $IM + MI \subseteq N$ *. Let* $\psi_1 : \mathcal{L}(R) \longrightarrow \mathcal{L}(R) \cup {\emptyset}$ *and* $\psi_2 : \mathcal{L}(R \boxplus M) \longrightarrow \mathcal{L}(R \boxplus M) \cup {\emptyset}$ *be two functions such that* $\psi_2(I \boxplus M) = \psi_1(I) \boxplus M$ *for a proper ideal* I *of R.*

It follows from [\[13\]](#page-9-2) that the prime ideals of R ⊞ M *are exactly the ideals of the form* I ⊞ M *where* I *is a prime ideal of* R*.*

Theorem 2.21. Let R be a ring, M an $R - R$ -bimodule and I a proper ideal of R. Then I $\boxplus M$ *is a* ψ_2 *prime ideal of* $R \boxplus M$ *if and only if* I *is a* ψ_1 *prime ideal of* R

Proof. Suppose $I \boxplus M$ is a ψ_2 prime ideal of $R \boxplus M$. Let $aRb \subseteq I$ and $aRb \nsubseteq \psi_1(I)$ where $a, b \in R$. Now $(a, 0)R \boxplus M(b, 0) \subseteq I \boxplus M$ and $(a, 0)R \boxplus M(b, 0) \nsubseteq \psi_2(I \boxplus M) = \psi_1(I) \boxplus M$. I $\boxplus M$ a ψ_2 -prime ideal gives $(a, 0) \in I \boxplus M$ or $(a, 0) \in I \boxplus M$. Hence $a \in I$ or $b \in I$. So I is ψ_1 prime.

Suppose I is a ψ_1 -prime ideal of R. Let $(a, n), (b, m) \in R \boxplus M$ such that $(a, n)R \boxplus M(b, m) \subseteq$ $I \boxplus M$ and $(a, n)R \boxplus M(b, m) \nsubseteq \psi_2(I \boxplus M) = \psi_1(I) \boxplus M$ Hence $aRb \subseteq I$ and $aRb \nsubseteq \psi_1(I)$. Since I is a ψ_1 -prime, we have $a \in I$ or $b \in I$. Hence $(a, n) \in I \boxplus M$ or $(b, m) \in I \boxplus M$, we are done. \Box

3 ϕ -prime radical

Let ϕ : $S(R) \longrightarrow S(R)$ *be a function from the set of subsets of the ring* R *such that if* A *is an ideal of R,then* $\phi(A)$ *is an ideal.*

Definition 3.1. A subset S of a ring R is a ϕ -m-system if for A and B ideals of R such that $A \cap S \neq \emptyset$ and $B \cap S \neq \emptyset$ and $AB \nsubseteq \phi(R \backslash S)$ then $AB \cap S \neq \emptyset$.

Lemma 3.2. A proper ideal P of R is a ϕ -prime ideal if and only if $S = R \backslash P$ is an ϕ -m-system.

Proof. Suppose $A \cap S \neq \emptyset$ and $B \cap S \neq \emptyset$ and $AB \nsubseteq \phi(R \setminus S)$. If $AB \cap S = \emptyset$ then $AB \subseteq P$ and since $AB \nsubseteq \phi(R\setminus S) = \phi(R\setminus (R\setminus P)) = \phi(P)$ and P a ϕ -prime ideal gives $A \subseteq P$ or $B \subseteq P$ a contradiction. Hence $AB \cap S \neq \emptyset$ and we have S an ϕ -m-system.

Conversely, let A, B be ideals such that $AB \subseteq P$ and $AB \nsubseteq \phi(P) = \phi(R \backslash S)$. If $A \nsubseteq P$ and $B \nsubseteq P$, then $A \cap S \neq \emptyset$ and $B \cap S \neq \emptyset$. Now, since $AB \nsubseteq \phi(P) = \phi(R \setminus S)$ and S an $\phi - m$ -system we get $AB \cap S = AB \cap (R \backslash P) \neq \emptyset$, a contradiction. \Box

Proposition 3.3. Let R be a ring and P be a proper ideal of R and let $S := R \backslash P$. Then the *following statements are equivalent.*

- *(i)* P *is* ϕ *-prime ideal of* R *.*
- (iii) *S* is a ϕ -m-system.
- *(iii)* For left ideals A, B of R , if $A \cap S \neq \emptyset$, $B \cap S \neq \emptyset$ and $AB \nsubseteq \phi(R \setminus S)$ then $AB \cap S \neq \emptyset$.
- *(iv) For right ideals* A, B *of* R *if* $A \cap S \neq \emptyset$, $B \cap S \neq \emptyset$ and $AB \nsubseteq \phi(R \setminus S)$, then $AB \cap S \neq \emptyset$.
- *(v) For each* $a, b \in R$ *, if* $a, b \in S$ *and* $aRb \nsubseteq \phi(R\setminus S)$ *, then* $aRb \ncap S \neq \emptyset$ *.*

Proof. (1) \Leftrightarrow (2) follows from Lemma [3.2.](#page-6-1) $(2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (1)$ follows from Theorem [2.2.](#page-1-0)

Theorem 3.4. Let $S \subseteq R$ be a ϕ -m-system, and let P an ideal of R maximal with respect to the *property that* P *is disjoint from* S*. Then* P *is a* ϕ*-prime ideal.*

Proof. Since $P \cap S = \emptyset$, we have $P = R - S$. Suppose $AB \subseteq P$ and $AB \nsubseteq \phi(P) = \phi(R - S)$ where A and B are ideals of R. If $A \nsubseteq P$ and $B \nsubseteq P$, then by the maximal property of P, we have, $(P + A) \cap S \neq \emptyset$ and $(P + B) \cap S \neq \emptyset$. Furthermore, $AB \subseteq (P + A)(P + B) \subseteq P$ and $(P+A)(P+B) \nsubseteq \phi(P) = \phi(R-S)$. Thus, since S is a ϕ -m-system $(P+A)(P+B) \cap S \neq \emptyset$ and it follows that $(P+A)(P+B) \nsubseteq P$. For this to happen, we must have $AB \nsubseteq P$, a contradiction. Thus, P must be a ϕ -prime ideal. \Box

It is well-known that for an ideal I *<i>of a ring R, prime radical of* I *is* $\mathcal{P}(I) = \bigcap \{P : I \subseteq P\}$ and P a prime ideal of R} and $\mathcal{P}(R) = \bigcap \{P : P \text{ a prime ideal of } R\}$ where $\mathcal{P}(R)$ is the prime *radical of R.Now, we are ready to generalize the notion of prime radical* $P(I)$ *for any ideal* I of R*.*

Definition 3.5. Let R be a ring. For an ideal A of R, if there is a ϕ -prime ideal containing A, then we define ϕ -prime radical by the set of $\{a \in R : \text{every } \phi$ -m-system containing a meets A $\}$,denoted by $\mathcal{P}_{\phi}(A)$. If there is no ϕ -prime ideal containing A, then we put $\mathcal{P}_{\phi}(A) = R$.

Note that, for an ideal A of R, A and $P_{\phi}(A)$ *are contained in precisely the same* ϕ *-prime ideals of* R.

 \Box

Theorem 3.6. Let A be an ideal of the ring R Then either $\mathcal{P}_{\phi}(A) = R$ or $\mathcal{P}_{\phi}(A)$ equals the *intersection of all the* ϕ -prime ideals of R containing A.

Proof. Suppose that $\mathcal{P}_{\phi}(A) \neq R$. This means that $\{P \mid P \text{ is a } \phi\text{-prime ideal of } R \text{ and } A \subseteq P\} \neq$ \emptyset . We first prove that $\mathcal{P}_{\phi}(A) \subseteq \{P|P \text{ is a } \phi\text{-prime ideal of } R \text{ and } A \subseteq P\}$. Let $m \in \mathcal{P}_{\phi}(A)$ and P be any ϕ -prime ideal of R containing A. Consider the ϕ -m-system $R\backslash P$. This ϕ -m-system cannot contain m, for otherwise it meets A and hence also P. Therefore, we have $m \in P$. Conversely, assume $m \notin \mathcal{P}_{\phi}(A)$. Then, by Definition [3.5,](#page-6-2) there exists a ϕ -m-system S containing m which is disjoint from A. By Zorn's Lemma, there exists an ideal $P \supseteq A$ which is maximal with respect to being disjoint from S. By Proposition [3.4,](#page-6-0) P is a ϕ -prime ideal of R and we have $m \notin P$, as desired. \Box

Theorem 3.7. Let A be an ideal of the ring R. Then $\mathcal{P}_{\phi}(A)$ equals the intersection of all the *minimal* ϕ*-prime ideals of* R *containing* A*.*

 \Box

Proof. This follows from Theorem [3.6](#page-7-0) and Proposition [2.10.](#page-3-2)

For the following examples, let $\phi : \mathcal{I}(R) \to \mathcal{I}(R) \cup \{\emptyset\}$ *be a function. Fot the* ϕ *-prime radical of the ideal* Q *of the ring* R *we take* $\phi(Q) = 0$ *i.e.* a ϕ -prime radical of an ideal is a weakly *prime radical of the ideal.*

Example 3.8. Let $R = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} : a, b \in \mathbb{Z}_4, b \in \{0, 2\} \right\}$. Then, R has proper ideal $P_1 = \left\{ \left[\begin{array}{cc} 0 & 0 \ 0 & 0 \end{array} \right],$ $\left[\begin{array}{cc} 0 & 2 \\ 0 & 0 \end{array}\right]$ $P_2 = \left\{ \left[\begin{array}{cc} 0 & 0 \ 0 & 0 \end{array} \right],$ $\left[\begin{array}{cc} 2 & 0 \\ 0 & 0 \end{array}\right]$ $M = \left\{ \left[\begin{array}{cc} 0 & 0 \ 0 & 0 \end{array} \right],$ $\left[\begin{array}{cc} 0 & 2 \\ 0 & 0 \end{array}\right],$ $\left[\begin{array}{cc} 2 & 0 \\ 0 & 0 \end{array}\right],$ $\left[\begin{array}{cc} 2 & 2 \\ 0 & 0 \end{array}\right]$

where $P_1^2 = P_2^2 = M^2 = \{0\}$. Now, P_1 is a ϕ_0 -prime ideal which is not a prime ideal since $P_2^2 = \{0\} \subseteq P_1$ but $P_2 \nsubseteq P_1$. Also, observe that $\mathcal{P}_{\phi_0}(P_1) = P_1$ and $\mathcal{P}_{\phi_0}(P_2) = R$ and $\mathcal{P}_{\phi_2}(P_1) = P_1 \cap M = P_1, \mathcal{P}_{\phi_2}(P_2) = P_2 \cap M = P_2$ and $\mathcal{P}_{\phi_2}(M) = M$.

Example 3.9. Let R be the noncommutative ring of endomorphisms of a countably infinite dimensional vector space. R is a prime ring with exactly one nonzero proper ideal P . Every ideal of $S_1 = R \boxplus P$ is ϕ_0 -prime: the maximum ideal $P_1 = P \boxplus P$ is idempotent and the nonzero minimal ideal $P_2 = 0 \oplus P$ is nilpotent, both of which are prime. Let $S_2 = S_1 \oplus P_2$. Every ideal of S₂ is ϕ_0 -prime: The maximum ideal $Q_1 = P_1 \boxplus P_2$ is idempotent and the three nonzero nilpotent ideals are $Q_2 = P_2 \boxplus P_2$, $Q_3 = 0 \boxplus P_2$, and $Q_4 = P_2 \boxplus 0$. Q_3 and Q_4 are not prime ideals since $0 = Q_2^2 \subseteq Q_3$ and $0 = Q_2^2 \subseteq Q_4$. For the ϕ_0 -prime and prime radicals of the ideal Q_3 we have $\mathcal{P}_{\phi_0}(Q_3) = Q_3 \cap Q_2 \cap Q_1 = Q_3$ and $\mathcal{P}(Q_3) = Q_2 \cap Q_1 = Q_2$.

The ϕ*-prime radical satisfies the following properties analogous to prime radical of an ideal.*

Proposition 3.10. *Let* R *be a ring,* : $S(R) \rightarrow S(R) \cup \{\emptyset\}$ *be a function.*

- *(i) If I, J are ideals of R with* $I \subseteq J$ *, then* $\mathcal{P}_{\phi}(I) \subseteq \mathcal{P}_{\phi}(J)$ *.*
- *(ii)* $\mathcal{P}_{\phi}(I_1I_2\cdots I_n) \subseteq (I_1 \cap I_2 \cap \cdots \cap I_n) \subseteq \mathcal{P}_{\phi}(I_1) \cap \mathcal{P}_{\phi}(I_2) \cap \cdots \cap \mathcal{P}_{\phi}(I_n)$ *for all ideals* $I_1, ..., I_n$ *of* R.
- *(iii)* $\mathcal{P}_{\phi}(\mathcal{P}_{\phi}(I)) = \mathcal{P}_{\phi}(I)$.
- *(iv) If* $\mathcal{P}_{\phi}(I) = R$ *, then* $I = R$

Proof. (1) Let Q be a ϕ -prime ideal containing J. Since $I \subseteq J$, Q also contains I. Thus $\mathcal{P}_{\phi}(I) \subseteq \bigcap$ $Q_{\alpha\beta} \phi$ -prime
 $J \subseteq Q_{\alpha}$ $Q_{\alpha} = \mathcal{P}_{\phi}(J).$

(2) Since $I_1I_2\cdots I_n\subseteq I_1\cap I_2\cap\cdots\cap I_n$, we have $\mathcal{P}_{\phi}(I_1I_2\cdots I_n)\subseteq \mathcal{P}_{\phi}(I_1\cap I_2\cap\cdots\cap I_n)$ by (1). Also, since $I_i \subseteq \mathcal{P}_{\phi}(I_i)$ for each $i = 1, 2, ..., n$, we have clearly $(I_1 \cap I_2 \cap \cdots \cap I_n) \subseteq$ $\mathcal{P}_{\phi}(I_1) \cap \mathcal{P}_{\phi}(I_2) \cap \cdots \cap \mathcal{P}_{\phi}(I_n).$

(3) If Q is a ϕ -prime ideal containing I, then it contains also $Q_{\alpha\beta}$ ϕ -prime
 $I \subseteq Q_{\alpha}$ $Q_{\alpha} = \mathcal{P}_{\phi}(I)$. Thus

 $\mathcal{P}_{\phi}(\mathcal{P}_{\phi}(I)) \subseteq \mathcal{P}_{\phi}(I)$. The inverse inclusion follows from (2) as $I \subseteq \mathcal{P}_{\phi}(I)$. (4) Since $\mathcal{P}_{\phi}(I) \subseteq \mathcal{P}(I)$, we have $\mathcal{P}(I) = R$ which implies $I = R$.

Proposition 3.11. *Let* I *be an ideal of a ring* R and $\phi, \psi : \mathcal{S}(R) \to \mathcal{S}(R) \cup \{\emptyset\}$ *be two functions with* $\psi \leq \phi$ *.*

- (i) $\mathcal{P}_{\phi}(I) \subseteq \mathcal{P}_{\psi}(I)$ *. In particular,* $\mathcal{P}_{\phi_1}(I) \subseteq \mathcal{P}_{\phi_2}(I) \subseteq \cdots \subseteq \mathcal{P}_{\phi_n}(I) \subseteq \mathcal{P}_{\phi_{n+1}}(I) \subseteq \mathcal{P}_{\phi}(I) \subseteq$ $\mathcal{P}_{\phi_0}(I)$.
- *(ii)* $\mathcal{P}_{\phi}(\mathcal{P}_{\psi}(I)) = \mathcal{P}_{\psi}(\mathcal{P}_{\phi}(I)) = \mathcal{P}_{\psi}(I)$. *In particular,* $\mathcal{P}_{\phi}(\mathcal{P}(I)) = \mathcal{P}(\mathcal{P}_{\phi}(I)) = \mathcal{P}(I)$.

Proof. (1) As $\psi \leq \phi$, any ψ -prime ideal is a ϕ -prime ideal. Hence, $\mathcal{P}_{\phi}(I) \subseteq \mathcal{P}_{\psi}(J)$. The "in particular" statement follows from the order $\phi_{\emptyset} \leq \phi_0 \leq \phi_{\omega} \leq \cdots \leq \phi_{n+1} \leq \phi_n \leq \cdots \leq \phi_2 \leq$ ϕ_1 .

(2) From (1), we have $\mathcal{P}_{\psi}(I) \subseteq \mathcal{P}_{\psi}(\mathcal{P}_{\psi}(I)) \subseteq \mathcal{P}_{\psi}(\mathcal{P}_{\psi}(I))$ and we have $\mathcal{P}_{\psi}(\mathcal{P}_{\psi}(I)) = \mathcal{P}_{\psi}(I)$ by [3.10\(](#page-7-1)3). Thus $P_{\phi}(\mathcal{P}_{\psi}(I)) = \mathcal{P}_{\psi}(I)$. Similarly, as $\mathcal{P}_{\phi}(\mathcal{P}_{\psi}(I)) \subseteq \mathcal{P}_{\psi}(\mathcal{P}_{\psi}(I)) \subseteq \mathcal{P}_{\psi}(I) \subseteq$ and we have $\mathcal{P}_{\psi} \mathcal{P}_{\psi}(I) = \mathcal{P}_{\psi}(I)$ \Box

Theorem 3.12. *Let* $\psi_1 : S(R) \longrightarrow S(R) \cup {\emptyset}$ *and* $\psi_2 : S(R \boxplus M) \longrightarrow S(R \boxplus M) \cup {\emptyset}$ *be two functions such that* $\psi_2(I \boxplus M) = \psi_1(I) \boxplus M$ *for a proper ideal* I of R. For the ring R we have $\mathcal{P}_{\psi_2}(I \boxplus M) = \mathcal{P}_{\psi_1}(I) \boxplus M.$

Proof. Let Q be a ψ_2 -prime ideal of $R \boxplus M$ containing $I \boxplus M$. Since Q contains $0 \boxplus M$, $Q = P \boxplus M$ where P is a ψ_1 -prime ideal of R containing I by Theorem [2.21.](#page-5-0) Hence $\mathcal{P}_{\psi_1}(I) \boxplus$ $M \subseteq \mathcal{P}_{\psi_2}(I \boxplus M)$. Also, if P is a ψ_1 -prime ideal of R containing I, then $P \boxplus M$ is a ψ_1 -prime ideal containing $I \boxplus M$. Thus $\mathcal{P}_{\psi_2}(I \boxplus M) \subseteq \mathcal{P}_{\psi_1}(I) \boxplus M$ and we are done. \Box

Proposition 3.13. Let R be a ring and $I \in S^*(R)$. Then either $\mathcal{P}_{\phi}(I) = \mathcal{P}(I)$ or $(\mathcal{P}_{\phi}(I))^2 \subseteq$ ϕ(P) *for some* ϕ*-prime ideal* P *of* R *containing* I*. In particular, if* I *is an* n*-almost prime ideal,* then $\mathcal{P}_{\phi_n}(I)=\mathcal{P}(I)$ or $\left(\mathcal{P}_{\phi_n}(I)\right)^2\subseteq P^n$, and $\mathcal{P}_{\phi_0}(I)=\mathcal{P}(I)$ or $\left(\mathcal{P}_{\phi_0}(I)\right)^2=\{0\}$.

Proof. If every ϕ -prime ideal of R containing I is prime, then clearly $\mathcal{P}_{\phi}(I) = \mathcal{P}(I)$. Now let P be a ϕ -prime ideal of R containing I which is not prime and let $x, y \in \mathcal{P}_{\phi}(I)$. Then $x, y \in P$ and hence $xy \in P^2 \subseteq \phi(P)$, by Proposition [2.6.](#page-2-1) Thus $(\mathcal{P}_{\phi}(I))^2 \subseteq \phi(P)$. The "in particular" part follows by considering $\phi = \phi_0$. \Box

Proposition 3.14. Let R be a ring, $I \in S^*(R)$ and $\phi : S(R) \to S(R) \cup \{\emptyset\}$ be a function such *that* $\phi_{\omega} \leq \phi \leq \phi_3$ *. Then* $\mathcal{P}_{\phi}(I) = \mathcal{P}_{\phi_{\omega}}(I)$ *.*

Proof. Since $\phi_\omega \leq \phi$, $\mathcal{P}_{\phi_\omega}(I) \subseteq \mathcal{P}_{\phi}(I)$. Let P be a ϕ -prime ideal of R containing I. Since $\phi \leq \phi_3$ by Corollary [2.7,](#page-2-2) P is a ϕ_ω -prime ideal and so $\mathcal{P}_{\phi_\omega}(I) \subseteq \mathcal{P}_{\phi}(I)$. \Box

References

- *[1] D. D. Anderson, M. Bataineh,* Generalizations of prime ideals*, Commun. Algebra.,* 36(2) *, 686–696, (2008).*
- *[2] D. D. Anderson, E. Smith,* Weakly prime ideals*, Houston J. Math.,*29(4)*, 831–840, (2003).*
- *[3] A. Badawi,* On 2-Absorbing Ideals of Commutative Rings*, Bull. Austral. Math. Soc.,* 75*, 417–429, (2007).*
- *[4] A. Badawi, E. Yetkin Celikel,* On 1-absorbing primary ideals of commutative rings*, J. Algebra its Appl.,* 19(06)*, 2050111, (2020).*
- *[5] A. Badawi, U. Tekir, E.Yetkin,* On weakly 2-absorbing primary ideals of commutative rings*, J. Korean Soc. Math.,* 52(1)*, 97–111, (2015).*
- *[6] A. Badawi, Ü. Tekir, E. A. U˘gurlu, G. Ulucak, E. Yetkin Celikel,* Generalizations of 2-absorbing primary ideals of commutative rings*, Turk. J. Math.,* 40(3)*, 703–717, (2016).*

 \Box

- *[7] F. Çallialp, C. Jayaram, U. Tekir,* Weakly prime elements in multiplicative lattices*, Commun. Algebra.,* 40(8)*, 2825-2840, (2012).*
- *[8] N. Groenewald,* On Weakly right primary ideals*, Palest. J. Math.,* 11(4)*, 282–292, (2022).*
- *[9] N. Groenewald,*Weakly prime and weakly completely prime ideals of noncommutative rings*, Int. Electron. J. Algebra,* 28*, 43–60, (2020).*
- *[10] M. Hamoda,* On (m, n)-closed δ- primary ideals of commutative rings*, Palest. J. Math.* 12(2)*, 280–290, (2023).*
- *[11] A. E. Khalf,* Generalization of (m, n)-closed ideals*, Palest. J. Math.,* 11(3)*, 161-166, (2022).*
- *[12] S. Koc, U. Tekir, G. Ulucak,* On strongly quasi primary ideals*, Bull. Korean Math. Soc.,* 56(3)*, 729–743, (2019).*
- *[13] S. Veldsman,* A Note on the Radicals of Idealizations*, Southeast Asian Bull. Math.,* 32*, 545–551, (2008).*
- *[14] A. Yassine, M. J. Nikmehr, R. Nikandish,* On 1-absorbing prime ideals of commutative rings*, J. Algebra its Appl.,* 20(10)*, 2150175, (2021).*

Author information

Nico J. Groenewald, Department of Mathematics and Applied Mathematics, Nelson Mandela University, South Africa.

E-mail: Nico.Groenewald@nmmu.ac.za

Ece Yetkin Celikel, Department of Basic Sciences, Faculty of Engineering, Hasan Kalyoncu University, Turkey. E-mail: ece.celikel@hku.edu.tr, yetkinece@gmail.com

Received: 2023-04-28
Accepted: 2023-10-25 $Accepted:$