
Palestine Journal of Mathematics

Vol 13(3)(2024) , 480–487 © Palestine Polytechnic University-PPU 2024

ON THE NUMBER OF FINITE GROUPOIDS WHICH
ADMIT REGULAR CAYLEY GRAPHS.

Melvin Varghese and G.Sheeja

Communicated by Kinkar Das

MSC 2010 Classifications: Primary 18B40, Secondary 05C30, Ternary 03E02.

Keywords and phrases: Groupoids, Semigroups, Cayley graphs, k-regular graphs, k-out-regular graphs, Set partitions,
Stirling numbers of the second kind.

The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that
improved the quality of our paper.

Corresponding Author: G. Sheeja

Abstract Let G be a finite groupoid, and we denote T as a subset of G. Then we can find a
Cayley graph Cay(G, T ) related to T . This paper investigates necessary and sufficient conditions
for Cay(G, T ) to be k-regular. This characterization helps us to count the number of groupoids of
cardinality n which has at least one subset T such that Cay(G, T ) is k-regular which is denoted
by Mk

n . Our investigation gives an upper bound for the number Mk
n .

1 Introduction

Suppose K is a semigroup and T is a nonempty subset of K. The Cayley graph Cay(K, T ) of
K related to T can be defined as a graph having a vertex set K and an edge set E(Cay(K, T ))
consisting of ordered pairs (x, y) such that tx = y for some t ∈ T . Graph constructions out
of algebraic structures are of great interest and play vital roles in building strong connections
between algebra and graph theory which can be found in [14, 15, 16, 18, 19]. The Cayley graphs
of semigroups are first introduced by Bohdan Zelinka[1]. They are of great interest among
algebraic graph theorists and combinatorialists all over the globe. In particular [2, 3, 4].
This paper defines Cayley graphs of groupoids and investigates the regularity criterion for such
graphs. Regularity in graphs is exciting and has a lot of applications in network theory and other
branches of graph theory[5]. This paper mainly focuses on the regularity of Cayley graphs of
groupoid G and the necessary and sufficient conditions for a Cay(G, T ) to be k-regular. An n
vertex graph is known to be k-regular if and only if nk is even[6]. We use the maximum of
Stirling numbers given by V.V Menon [7] and the maximum of binomial coefficients[8] to get
a more explicit upper bound. We introduce k-out-regularity for finding upper bounds on the
number of finite groupoids that admit k-regular Cayley graphs.

2 Preliminaries

Definition 2.1. [9, 10] The tuple (G, ∗) is said to be a groupoid if G is a nonempty set and ∗ is a
binary operation on G. If G is associative, then G is said to be a semigroup.

Definition 2.2. [9, 10, 6] Consider G a finite groupoid with n elements and T as a subset of G.
Then Cayley graph related to T is denoted by Cay(G, T ) as a graph with vertex set G and the
set of edges is E(Cay(G, T )) := {(x, y) : y = tx for some t ∈ T }. The subset T is called the
connection set associated with Cay(G, T ).

Definition 2.3. [6] A graph M with vertex set V and an edge set E is considered regular if for
each vertex v ∈ V , deg(v) = k for some k ∈ N. In this case, we call the graph to be k-regular.
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Figure 1. A 3-regular graph.

Definition 2.4. [6] A directed graph D is k-regular if, for each vertex v ∈ V , the number of
outgoing edges must equal the number of incoming edges, equal to k. Let in − deg(v) denote
the number of incoming edges to the vertex v, and out− deg(v) denote the number of outgoing
edges from the vertex v. Then in − deg(v) = out − deg(v) = k for a k-regular directed graph.
Note that the Cayley graph is a directed graph. Here we illustrate an example of a 2-regular
directed graph.
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3

Figure 2. A 2-regular directed graph.

Definition 2.5. [11] The Stirling numbers of the second kind S(n, k) count the number of ways
to partition a set of n elements into k non-empty, unlabeled subsets. A recursive formula for
S(n, k) id given by

S(n, k) = S(n− 1, k − 1) + k S(n− 1, k), k ≤ n. (2.1)

Notice that S(n, n) = S(n, 1) = 1 for any positive integer n.

Definition 2.6. [9, 12] An equivalence relation R on a set G is a relation satisfying the following
three conditions,
1. xRx for each x ∈ G.
2. xRy if and only if yRx for x, y ∈ G
3. xRy and yRz imply xRz for x, y and z ∈ G.
The collection of equivalence classes of G under R is denoted by G/R := {[x] : x ∈ G}. It is
clear that G/R forms a partition of G

Definition 2.7. [8] For any positive integer n and any positive integer k ≤ n,
(
n

k

)
denotes the

number of ways to choose a k element subset from an n element set.

Theorem 2.8. [8] For any positive integer n and any positive integer k ≤ n,

max{
(
n

k

)
: k ∈ {0, 1, 2, ..., n}} =

(
n

⌊n
2 ⌋

)
=

(
n

⌈n
2 ⌉

)
. (2.2)

Theorem 2.9. [8] For any positive integer n and any positive integer k ≤ n. Then(
n

k

)
≤

(
ne

k

)k

. (2.3)
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Theorem 2.10. [11, 13] Stirling’s approximation is an approximation for factorials. For any
positive integer n,

n! ∼
√

2πn
(
n

e

)n

(2.4)

Here the sign ∼ means the two functions are asymptotic; their ratio approaches 1 as n tends to
infinity.

Theorem 2.11. [7] The maximum of S(n, k), 1 ≤ k ≤ n is given by,

max{ 1
n
log(S(n, k)

√
2π)} = β − 1 + β−1 − β + 2

2n
+

β2

24n2(β + 1)
(12β2 + 22β + 13)

+
β2

24n3(β + 1)2 {(β + 1)2(16β4 + 80β3 + 147β2 + 100β + 19)

+ (β +
3
2
)(12β3 − 5β2 − 58β − 79

2
)}+O(

β6

n4 ).

(2.5)

where β is the solution of the equation βeβ = n.

3 Main results

Definition 3.1. A directed graph D is said to be k-out-regular if, for each vertex v in the vertex
set of D, out− deg(v) = k.

1 2

34

Figure 3. A 2-out-regular graph

Remark 3.2. k-regularity implies k-out-regularity. But from this example, it is clear that k-out-
regularity does not imply k-regularity.

Remark 3.3. A k-out-regular graph need not contain a k-regular spanning subgraph. For exam-
ple take the figure 3. Here in− deg(2) < out− deg(2).

Definition 3.4. A Cayley graph Cay(G, T ) related to a subset T of G is said to be k-out-regular
if, for each vertex v in G, out− deg(v) = k.

Definition 3.5. Let n be any positive integer and k be a positive integer such that k ≤ n. Let P T
k

denote the collection of all partitions of T into k blocks. Then it is known that the cardinality of
P T
k is S(n, k) if |T | = n.

Definition 3.6. A groupoid is said to admit a Cayley graph with a given property if a subset T of
G exists such that Cay(G, T ) is a graph with the given property.

Definition 3.7. Let n be any positive integer, and k be a positive integer such that k ≤ n and nk
is even. Let M denote the set of all groupoids of order n, which admits a k-regular Cayley graph
and H denote the set of all groupoids of order n, which admits a k-out-regular Cayley graph. Let
Mn

k denote the number of groupoids of order n, which admits a k-regular Cayley graph, and Hn
k

denote the number of groupoids, which admits a k-out-regular Cayley graph.
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Theorem 3.8. Let n and k be positive integers such that k ≤ n. Then

Mn
k ≤ Hn

k . (3.1)

Proof. Let M be the set of all groupoids of order n, which admits a k-regular Cayley graph
and H be the set of all groupoids of order n, which admits a k-out-regular Cayley graph. Take
G ∈ M . Then there exists a subset T of G such that Cay(G, T ) is k-regular. That is for each
v ∈ G, out − deg(v) = in − deg(v) = k. In particular, out − deg(v) = k. This implies
Cay(G, T ) is k-out-regular. That is, G admits a k-out-regular graph. This implies G ∈ H . Since
by the definition 3.7, |M | = Mn

k and |H|= Hn
k , We have Mn

k ≤ Hn
k .

Definition 3.9. Let G be a groupoid of order n, and T be a subset of G of order m. Then Bn
k (m)

denotes the set of all groupoids, which admits a k-out-regular Cayley graph with a connection
set of cardinality m. And let |Bn

k (m)| = Ln
k(m).

Theorem 3.10. Let n, m, and k be positive integers such that k ≤ m ≤ n. Then the following are
true.

H =
⋃

k≤ m≤n

Bn
k (m) (3.2)

Hn
k ≤

∑
k≤m≤n

Ln
k(m). (3.3)

Proof. Let h ∈ H , then h admits a k-out-regular Cayley graph. A subset T of G exists such
that Cay(G, T ) is k-out-regular and |T | = m. Since m ≤ n, we have h ∈ Bn

k (m) for some m.
That is h ∈

⋃
k≤m≤n

Bn
k (m) This implies H ⊆

⋃
k ≤m≤n

Bn
k (m). Now, Bn

k (m) is a collection of

groupoids admitting k-out-regular Cayley graphs; the other inclusion is immediate. From this, it

is evident that |H| =
∣∣∣∣ ⋃
k≤m≤n

Bn
k (m)

∣∣∣∣. That is Hn
k ≤

∑
k≤m≤n

Ln
k(m).

Corollary 3.11. Let n, m, and k be positive integers such that k ≤ m ≤ n. Then

Mn
k ≤

∑
k≤m≤n

Ln
k(m). (3.4)

Proof. This immediately follows from Theorem 3.8.

Definition 3.12. Let G be a groupoid and T be a subset of G. For each x ∈ G, define a binary
relation RT

x on T in such a way that t1R
T
x t2 if and only if t1x = t2x.

Lemma 3.13. The relation RT
x defined on T is an equivalence relation.

Proof. Let t, t1, t2, t3 ∈ T . We have tx = tx which implies tRT
x t. That is RT

x reflexive. If
t1x = t2x then t2x = t1x.RT

x is symmetric. Now if t1x = t2x and t2x = t3x then t1x = t3x. RT
x

is transitive. Then T /RT
x denote the set of all equivalence classes of RT

x .

Lemma 3.14. The number of distinct equivalence classes of RT
x equals the number of outgoing

edges from x in Cay(G, T ). Moreover, each equivalence class represents a distinct edge from x.

Proof. Let Ex = {(x, y1), (x, y2), (x, y3), ..., (x, yk)} be the set of all distinct outgoing edges
from x in Cay(G, T ). Then there exists t1, t2, t3, ..., tk where ti ̸= tj for i ̸= j such that y1 =
t1x, y2 = t2x, y3 = t3x, ..., yk = tkx. This implies t1, t2, t3, ..., tk are not RT

x related. That is
t1R

T
x , t2R

T
x , t3R

T
x , ..., tkR

T
x are distinct equivalence classes of RT

x . Now define a map τ from
T /RT

x to Ex such that the element tRT
x maps to (x, tx). This map is well-defined. For if t1R

T
x =

t2R
T
x then t1R

T
x t2. That is t1x = t2x implies (x, t1x) = (x, t2x).Now we have to prove that τ is

indeed a bijection. τ is injective, (x, t1x) = (x, t2x) ⇒ t1x = t2x ⇒ t1R
T
x t2 ⇒ t1R

T
x = t2R

T
x .

τ is surjective, let (x, y) ∈ Ex then y = tx for some t ∈ T . That is t ∈ tRT
x ⇒ τ maps tRT

x to
(x, y). This proves τ is bijection and each tRT

x corresponds to an edge (x, tx).
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Theorem 3.15. Let G be a groupoid and T be a subset of G. Then Cay(G, T ) is k-out-regular if
and only if for each x ∈ G, |T /RT

x | = k.

Proof. For the necessary part, let us assume that Cay(G, T ) is k-out-regular.
Enumerate G := {x1, x2, x3, ..., xn} and T := {y1, y2, y3, ..., ym}, m ≤ n.
For every x ∈ G, there exists g1, g2, g3, ..., gn ∈ G such that (x, gi) is an edge in Cay(G, T ) for
i = 1, 2, 3, ..., k. If k = 3, This situation can be illustrated in the following figure.

x

g1

g3

g2

Figure 4. Out going edges from x.

Thus for each x ∈ G, we have g1x, g2x, g3x, ..., gkx are all distinct and g1, g2, g3, ..., gk repre-
sent distinct equivalence classes of the relation RT

x . We have g1R
T
x , g2R

T
x , g3R

T
x , ..., gkR

T
x are

all distinct. That is |T /RT
x | = k.

For sufficient part, assume that for every x ∈ G, |T /RT
x | = k. We will show that Cay(G, T ) is

k-out-regular. Let x ∈ G × G and T /RT
x := {g1R

T
x , g2R

T
x , g3R

T
x , ..., gkR

T
x }, giRT

x ̸= gjR
T
x for

i ̸= j. By lemmas 3.13 and 3.14 each giR
T
x is an edge going from x. That is, x has distinct

neighbors. This proves that Cay(G, T ) is k-out-regular.

Theorem 3.16. Let G be a finite set with n elements, and T be a subset of G with m elements.
Then a binary operation exists on G such that Cay(G, T ) is k-out-regular for k ≤ m ≤ n.

Proof. Assume that G be the set of n elements x1, x2, x3, ..., xn. Theorem 3.15 enables us to
construct the desired binary operation. We have shown that Cay(G, T ) is k-out-regular if and
only if for each x ∈ G, |T /RT

x | = k. We must construct a Cayley graph of G with connection set
T . Since RT

x is an equivalence relation on T , T /RT
x forms a partition of T into k blocks. Now

choose P1, P2, P3, ..., Pn from P T
k = set of all partitions of T into k blocks. Here Pis need not be

distinct. Assign Pi to xi in such a way that T /RT
xi

= Pi = {ti1RT
xi
, ti2R

T
xi
, ti3R

T
xi
, ..., tikR

T
xi
}.

Then |T /RT
xi
| = k. Now note that for any element t ∈ ti1R

T
xi

, we have txi = ti1 = ri1 (say).
Similarly, for any t ∈ tijR

T
xi

, 1 ≤ j ≤ k, we have txi = tijxi = rij . It is clear that to define
a binary operation on G, we have to assign values to n2 elements of G × G from G. By this
construction, we can assign values to nm elements out of n2 elements of G × G.

For each i, 1 ≤ i ≤ n,
k∑

j=1

|tijRT
xi
| = m. Note that rij1 ̸= rij2 for j1 ̸= j2. So a proper assignment

of values from G to these nm elements followed by any possible assignment to the rest of the
n2 − nm elements of G × G from G constructs a binary operation on G in which Cay(G, T ) is
k-out-regular.

Example 3.17. Consider the set A = {1, 2, 3, 4} Let us construct a binary operation so that
A becomes a groupoid that could admit a 2-out-regular groupoid with the connection set T =
{1, 2, 3}. Here we have k = 2. Then we have to select P1, P2, P3 ∈ PT

2 .
Take P1 = {{1}, {2, 3}}, P2 = {{2}, {1, 3}}, P3 = {{3}, {1, 2}}.
Now for each element in A we have to assign one Pi, i = 1, 2, 3.
Let us view such an assignment by the following diagram.
1 → P1 = {{1}, {2, 3}} → {1, 2}
2 → P2 = {{2}, {1, 3}} → {1, 2}
3 → P3 = {{3}, {1, 2}} → {1, 2}
4 → P2 = {{2}, {1, 3}} → {1, 2}
This diagram indicates the following fixed mappings of elements of A×A → A.
(1, 1) → 1, (2, 1) → 2, (3, 1) → 2
(2, 2) → 1, (1, 2) → 2, (3, 2) → 2
(3, 3) → 1, (1, 3) → 1, (2, 3) → 2
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(2, 4) → 1, (1, 4) → 1, (3, 4) → 2
Here we have completed the 12 mappings fixed by the above diagram. Now we must assign
values for the remaining four elements of A×A. It can be done by any choice of elements from
T . Here we assign 1 to each of the four elements remaining in A × A. (4, 4) → 1, (4, 2) → 1,
(4, 1) → 1 and (4, 3) → 1. These 16 mappings together give us a binary operation on A × A.
Now let us consider Cay(A, T ).

1 2

4 3

Figure 5. Cay(A, T )

Here the graph is 2-out-regular. We have constructed a binary operation on A such that A is
groupoid where Cay(A, T ) is 2-out-regular.

Theorem 3.18. The following is true for k ≤ m ≤ n.

Ln
k(m) =

(
n

m

)(
S(m, k)

(
n− 1
k

)
k!
)n

nn2−nm (3.5)

Mn
k ≤ (n− 1)nk

(√
8πk

n− 2

)n

2
nn2−nk(n− k + 1)enµ (3.6)

Where µ is a constant that depends on n.

Proof. Given a subset T of G with m elements, using Theorem 3.16, we will count the number
of groupoids that can be formed, which admits a k-out-regular Cayley graph. Corresponding to
each m-element subset, we find a groupoid that admits a k-out-regular Cayley graph. We have(
n

m

)
possibilities to select an m-element subset from G. After selecting one such subset, we can

assign P1, P2, P3, ..., Pn ∈ P T
k to each x1, x2, x3, ..., xn ∈ G. This can be done in S(m, k)n ways

by the product rule. Since |P T
k | = S(m, k). The following tabular diagram illustrates the above

procedure. Here we must assign values to rij such that rij1 ̸= rij2 for j1 ̸= j2. This means every

x1 → r11 r12 r13 ... r1(k−1) r1k → P1

x2 → r21 r22 r23 ... r2(k−1) r2k → P2

x3 → r31 r32 r33 ... r3(k−1) r3k → P3

. . . . . ... . . . .

. . . . . ... . . . .

. . . . . ... . . . .
xn → rn1 rn2 rn3 ... rn(k−1) rnk → Pn

Figure 6. Value assignment table.

row must contain different entries, but rows need not be distinct. To avoid loops, we assume

that rij ̸= xi. So each row has
(
n− 1
k

)
k! possibilities. And there are

((
n− 1
k

)
k!
)n

to fill

the entire two-dimensional array given in the Figure 6. This procedure assigns values to nm

elements of G ×G. Now there are nn2−nm ways to fill the rest of the n2 −nm elements of G ×G.
Then applying the product rule, we have

Ln
k(m) =

(
n

m

)(
S(m, k)

(
n− 1
k

)
k!
)n

nn2−nm. (3.7)
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Hence we proved 3.5.
Now by corollary 3.11

Mn
k ≤

∑
k≤m≤n

Ln
k(m) ≤

∑
k≤m≤n

((
n

m

)(
S(m, k)

(
n− 1
k

)
k!
)n

nn2−nm

)
(3.8)

Here m ≥ k ⇒ nm ≥ nk ⇒ nn2−nm ≤ nn2−nk. Then

Mn
k ≤

((
n− 1
k

)
k!
)n

nn2−nk
∑

k≤m≤n

(
n

m

)
S(m, k)n. (3.9)

Now by Theorem 2.8, we have

Mn
k ≤

((
n− 1
k

)
k!
)n

nn2−nk

(
n

⌊n
2 ⌋

) ∑
k≤m≤n

S(m, k)n. (3.10)

For large n and k, by Stirlings approximation k! ∼
√

2πk
(
k

e

)k

.

By Theorem 2.9
(

n

⌊n
2 ⌋

)
≤

(
ne

⌊n
2 ⌋

)⌊n
2 ⌋

. Also
(
n− 1
k

)
≤

(
(n− 1)e

k

)k

and
⌊
n

2

⌋
≥ n

2
− 1.

Then
(

ne

⌊n
2 ⌋

)⌊n
2 ⌋

≤
(

2
n− 2

)n
2

. By Theorem 2.11, we have a maximum of S(m, k) for k ≤ m.

Let µm = max{ 1
m log(S(n, k)

√
2π) : 1 ≤ k ≤ m}. Then

1
m
log(S(m, k)

√
2π) ≤ µm ⇒ log(S(m, k)

√
2π) ≤ mµm

⇒ S(m, k)
√

2π ≤ emµm

⇒ S(m, k) ≤ emµm

√
2π

(3.11)

Let µ = max{mµm : k ≤ m ≤ n}. Then

∑
k≤m≤n

S(m, k)n ≤
∑

k≤m≤n

(
enmµm

√
2π

n

)
≤ (n− k + 1)enµ

(2π)n
2

. (3.12)

Combining these results, we have

Mn
k ≤ (n− 1)nk

(√
8πk

n− 2

)n
2

nn2−nk(n− k + 1)enµ.

This justifies the truth of the inequality 3.6.

4 Conclusion remarks

This paper investigated and obtained results regarding the weak upper bounds for the number of
finite groupoids that admit regular Cayley graphs. These bounds play vital roles in networks as-
sociated with algebraic structures. Therefore, the results of this work are variant, and significant.
Obtaining stronger bounds will be an interesting problem for further study.
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