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Abstract In this paper, we propose a new fixed point theorem in b-dislocated metric space
which extend, generalize and unify some important results in literature. Also, we present an
example to illustrate our main results.

1 Introduction and Preliminaries

P. Hitzler and A. K. Seda in [9] introduced an extension of metric space and generalized the
Banach contraction principle on this space which is called dislocated metric spaces, and proved
a more general Banach contraction principle in such space. Since then, many authors have been
interested in investigating fixed point theorems for single-valued and set valued mappings in
dislocated metric space (see [1], [12], [14], [15], [17] and [19] ). On the other hand, N. Hus-
sain et al. in [10] introduced the b-dislocated metric spaces associated with some topological
aspects and properties. Afterwards, many mathematicians obtained fixed point theorems in b-
dislocated metric spaces (see [16], [5], [13], [20]). Recently, Joonaghany et al. [11] introduced
simulation function in metric spaces and obtained some fixed point results. Subsequently, many
scholars were interested in fixed point theorems for simulation function (see [2], [4], [6] and [7]
). Throughout this paper, inspired and motivated by previous results in the existing literature,
we give fixed point results for simulation functions in b-dislocated metric spaces. Moreover, we
provide an example to support our main assertions.

For the sake of the completeness of the manuscript, we shall recall some basic results and
concepts here

Definition 1.1 (Partial b-metric space). [18] Let X be a non-empty set and Let s ∈ [1,∞) be
a real number. A function ρb : X × X → [0,+∞) is a partial b-metric on X if it satisfies the
conditions:

1) ∀v, w ∈ X : v = w if and only if ρb(v, v) = ρb(w, v) = ρb(w,w),

2) ∀v, w ∈ X : ρb(v, v) ≤ ρb(w, v),

3) ∀v, w ∈ X : ρb(v, w) = ρb(w, v),

4) ∀v, w, z ∈ X : ρb(v, w) ≤ s
(
ρb(v, z) + ρb(w, z)

)
− ρb(z, z).

The pair (X, ρb, s) is called is a partial b-metric space.

1.1 Dislocated b-metric spaces

Definition 1.2 (Dislocated b-metric space). [10] Let X be a non-empty. set and let s ∈ [1,+∞)
be a real number. A function ρb : X ×X → [0,+∞) is a dislocated b-metric on X if it satisfies
the conditions:
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(ρb1) ∀v, w ∈ X : ρb(v, w) = 0 ⇒ v = w,

(ρb2) ∀v, w ∈ X : ρb(v, w) = ρb(w, v),

(ρb3) ∀v, w, z ∈ X : ρb(v, w) ≤ s
(
ρb(v, z) + ρb(w, z)

)
.

The pair (X, ρb, s) is called dislocated b-metric space (shortly ρb−metric space).

Example 1.3.
Let X = [0,+∞) and ρb(v, w) = (v + w)2 then ρb is a a dislocated b-metric on X with

s = 2.
Indeed,

• ∀v, w ∈ [0,+∞) : ρb(v, w) = 0 ⇒ w + v = 0 ⇒ v = w = 0.
• ∀v, w ∈ [0,+∞) : ρb(v, w) = (v + w)2 = (w + v)2 = ρb(w, v).
• By the inequality (x+ y)2 ≤ 2(x2 + y2) which is holds for all x, y ≥ 0, we get

ρb(v, w) ≤ (w+z+z+v)2 ≤ 2
(
(v+z)2+(z+w)2

)
= 2(ρb(v, z)+ρb(z, w)),∀v, w, z ∈ X.

Remark 1.4. The dislocated b-metric space given in Example 1.3 is not a partial b-metric space.
Indeed, for any 0 < w < v we have ρb(v, v) = (v+ v)2 > (v+w)2 = ρb(v, w), so the condition
ρb(v, v) ≤ ρb(v, w),∀v, w ∈ X in the definition of partial b-metric space is not satisfied.

Definition 1.5. [10] Let (X, ρb, s) a ρb−metric space, a sequence (vn) on a (X, ρb, s) is said to
be:

• ρb−convergent to v ∈ X if and only if lim
n→+∞

ρb(vn, v) = 0.

• ρb−Cauchy if and only if lim
n→+∞

ρb(vn, vp) exists and tends to be finite.

Definition 1.6. If every ρb−Cauchy sequence in a ρb−metric space (X, ρb, s) is ρb−convergent,
we say that the space (X, ρb, s) is a complete ρb−metric space .

The following Lemma is useful for us.

Lemma 1.7. Let (X, ρb, s) be a ρb−metric space, O : X → X a mapping and κ ∈]0, 1[. If (vm)
is a sequence in X , where vm = Ovm−1 and

ρb(vm, vm+1) ≤ κρb(vm−1, vm), for each m ∈ N, (1.1)

then (vm) is ρb-Cauchy sequence.

Proof. See for example [8, Lemma 10].

1.2 Similation function

We denote by Γ the set of all nondecreasing and continues functions ψ : [0,+∞[→ [0,+∞[ such
that ψ(0) = 0.

Definition 1.8 (Similation function). Let (X, ρb, s) be a ρb−metric space and ψ ∈ Γ. A b − ψ-
simulation function is a function ηb : [0,∞)× [0,∞) → R satisfying:

(ηb1) ∀t, r ∈ R+ : ηb(r, t) < ψ(t)− ψ(r) ,

(ηb2) if (rn), (tn) are two sequences in [0,+∞), such that for some p > 0

lim sup
n→∞

tn = sp lim
n→∞

rn > 0, (1.2)

then
lim sup
n→∞

ηb(s
prn, tn) < 0. (1.3)

Example 1.9 ([8]).

Let ψ ∈ Γ and ϕ : [0,+∞) → [0,+∞) such that lim sup
t→t0

ϕ(t) ≥ 0 for all t0 > 0 and ϕ(0) = 0

if and only if t = 0, then η(t, r) = ψ(t)− ϕ(t)− ψ(r) is b-ψ-simulation function.
We shall denote by Zψb

the family of all b-ψ-simulation functions.
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2 Main results

We start by the following notion of rationnal contraction.

Definition 2.1. Let (X, ρb, s) be a ρb−metric space. A mapping O : X → X is called ηb-rational
contraction of type A if there exists a function ηb ∈ Zψb

such that

1
2s

min
(
ρb(v,Ov), ρb(w,Ow)

)
≤ ρb(v, w) implies ηb(s

pρb(Ov,Ow),DA(v, w)) ≥ 0, (2.1)

where

DA(v, w) = max
(
ρb(v, w), ρb(v,Ov), ρb(w,Ow),

ρb(w,Ow)(1 + ρb(v,Ov))

1 + ρb(v, w)

)
. (2.2)

Theorem 2.2. Let (X, ρb, s) be a complete ρb−metric space and O : X → X be a ηb-rational
contraction of type A. Then O admits exactly one fixed point.

Proof. We fix v0 ∈ X (arbitrarily chosen), and define the sequence (vm) by the relation

vm+1 = Ovm,∀m ∈ N. (2.3)

If there exists m0 ∈ N such that vm0+1 = vm0 then by (2.3) we have Ovm0 = vm0 , that is vm0 is
a fixed point for O.
Assume that vm+1 ̸= vm,∀m ∈ N. We choose v = vm−1 and w = vm in (2.2) then

DA(vm−1, vm) =

max
(
ρb(vm−1, vm), ρb(vm−1, vm), ρb(vm, vm+1),

ρb(vm, vm+1)(1 + ρb(vm−1, vm))

1 + ρb(vm−1, vm)

)
=

max
(
ρb(vm−1, vm), ρb(vm, vm+1)

)
.

Moreover, we have

1
2s

min
(
ρb(vm−1, Ovm−1), ρb(vm, Ovm)

)
=

1
2s

min
(
ρb(vm−1, vm), ρb(vm, wm+1)

)
≤ ρb(vm−1, vm),

then, by (2.1)
ηb(s

pρb(Ovm−1, Ovm),DA(vm−1, vm)) ≥ 0,

which implies by (ηb1)

0 ≤ ηb(s
pρb(vm, vm+1),DA(vm−1, vm))

< ψ(DA(vm−1, vm))− ψ(spρb(vm, vm+1)),

i.e.
ψ(spρb(vm, vm+1)) < ψ(max

(
ρb(vm−1, vm), ρb(vm, vm+1)). (2.4)

Since ψ is nondecreasing, we get

spρb(vm, vm+1) < max
(
ρb(vm−1, vm), ρb(vm, vm+1)

)
,∀m ∈ N.

Now, assume that there exists m1 ∈ N such that

max
(
ρb(vm1−1, vm), ρb(vm1 , vm1+1)

)
= ρb(vm1 , vm1+1),

Thus, by (2.4) it holds

spρb(vm1 , vm1+1) < ρb(vm1 , vm1+1), (contraduction with s ≥ 1).



514 M. Saadi and T. Hamaizia

Then, again by (2.4) we have

ρb(vm, vm+1)) <
1
sp
ρb(vm−1, vm),∀m ∈ N. (2.5)

Thus, by Lemma 1.7 we see that the sequence (vm) is a ρb-Cauchy sequence on the complete
ρb-.metric space (X, ρb, s). Then, there exits u ∈ X such that

lim
p,q→∞

ρb(vp, vq) = lim
n→∞

ρb(vn, u) = 0. (2.6)

Now, we have

∀m ∈ N :
1
2s
ρb(vm, vm+1) ≤ ρb(vm, u) or

1
2s
ρb(vm+1, vm+2) ≤ ρb(vm+1, u), (2.7)

indeed, if we assume the contrary then there exists m0 ∈ N such that

ρb(vm0 , u) <
1
2s
ρb(vm0 , vm0+1) and ρb(vm0+1, u) <

1
2s
ρb(vm0+1, vm0+2), (2.8)

then, by (2.8) and (2.5) we get

ρb(vm0 , vm0+1) ≤ s
(
ρb(vm0 , u) + ρb(u, vm0+1)

)
< s

( 1
2s
ρb(vm0 , vm0+1) +

1
2s
ρb(vm0+1, vm0+2)

)
=

1
2

(
ρb(vm0 , vm0+1) + ρb(vm0+1, vm0+2)

)
< ρb(vm0 , vm0+1),

contradiction.
The relation (2.7) allows to extract a subsequence (vm(ℓ)) of (vm) verifying

1
2s

min
(
ρb(vm(ℓ), Ovm(l)), ρb(u,Ou)),

)
≤ 1

2s
ρb(vm(ℓ), vm(l)+1) ≤ ρb(vm(ℓ), u),

which implies by (2.1)

ηb

(
spρb(Ovm(ℓ), Ou),DA(m(ℓ), u))

)
≥ 0, (2.9)

where

ρb(u,Ou) ≤ DA(vm(ℓ), u) =

max
(
ρb(vm(ℓ), u), ρb(vm(ℓ), Ovm(ℓ)), ρb(u,Ou),

ρb(u,Ou)(1+ρb(vm(ℓ),Ovm(ℓ)))

1+ρb(vm(ℓ),u)

)
=

max
(
ρb(vm(ℓ), u), ρb(vm(ℓ), vm(ℓ)+1), ρb(u,Ou),

ρb(u,Ou)(1+ρb(vm(ℓ),vm(ℓ)+1))

1+ρb(vm(ℓ),u)

)
.

By passing to the limit when ℓ→ +∞ we get ρb(u,Ou) ≤ lim
ℓ→∞

DA(vm(ℓ), u) ≤ ρb(u,Ou), then

lim
ℓ→∞

DA(vm(ℓ), u) = ρb(u,Ou). (2.10)

In the rest of the proof, we assume that vm ̸= u, for infinitely manym ∈ N, because if we assume
the contrary, then there exists m0 ∈ N such that vm = u for all m ≥ m0 then vm0 = vm0+1 =
Ovm0 = Ou and u is a fixed point of O.
By (ηb1) and (2.9) we get

0 ≤ ψ
(
spρb(Ovm, Ou),DA(vm, u)

)
< ψ

(
DA(vm, u)

)
− ψ

(
spρb(Ovm, Ou)

)
,

then
ψ
(
spρb(Ovm, Ou)

)
< ψ

(
DA(vm, u)

)
,
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which implies

spρb(Ovm, Ou) < DA(vm, u) (because ψ is nondecreasing.) (2.11)

Then, we have
ρb(u,Ou) ≤ s

(
ρb(u,Ovm) + ρb(Ovm, Ou)

)
≤ sρb(u,Ovm) + spρb(Ovm, Ou),

letting m→ +∞ and using (2.6), (2.10) and (2.11) we get

ρb(u,Ou) ≤ lim
m→∞

spρb(Ovm, Ou)

≤ lim
m→∞

DA(vm, u) = ρb(u,Ou),

that is
lim
m→∞

spρb(Ovm, Ou) = ρb(u,Ou).

Now, assume that ρb(u,Ou) > 0 then by (ηb2) (with tm = DA(vm, u) and rm = ρb(Ovm, Ou)
it holds

lim
m→∞

ηb(s
pρb(Ovm, Ou),DA(vm, u)) < 0

which is contradiction with (2.9) then ρb(u,Ou) = 0 and u is a fixed point of O.
Now, we proof the uniqueness of fixed point ofO, if there exists A ∋ z ̸= u verifyingOz = z

then
0 =

1
2s

min
(
ρb(z,Oz), ρb(u,Ou)

)
≤ ρb(z, u),

which implies

0 ≤ ηb

(
spρp(Ou,Oz),DA(z, u)

)
< ψ(DA(z, u))− ψ(sbρb(Ou,Oz))

= ψ(ρb(Ou,Oz))− ψ(spρb(Ou,Oz)),

which is contradiction with the fact that ψ is nondecreasing, then u = z and the fixed point of O
is unique.

Example 2.3.

Let X = [0, 1] and ρb(v, w) = (v + w)2, then (X, ρb, 2) is a complete dislocated b-metric
space, but not a partial b-metric space (see Example 1.3 and Remark 1.4), then [8, thm 3] does
not work.

Let us proof that O : X → X defined by Ov =

{
v2, v ∈ [0, 1/4]
1/16, v ∈ (1/4, 1]

, is ηb-rational contrac-

tion of type A, where
ηb(r, t) = ψ(t)− ϕ(t)− ψ(r) =

√
t− 2

√
r,

(see Example 1.9, with ψ, ϕ : [0,+∞) → [0,+∞) given by ψ(t) = 2
√
t and ϕ(t) =

√
t).

We will distinguish several cases with respect to v and w.

Case 1: 0 ≤ v, w ≤ 1/4. Then
ρb(v, w) = (v + w)2, ρb(v,Ov) = (v + v2)2, ρb(w,Ow) = (w + w2)2, and

ρb(Ou,Ow) = (v2 + w2)2.

If v ≤ w, then min(ρb(v,Ov), ρp(w,Ow)) = ρb(v,Ov) = (v + v2)2 and

1
4

min(ρb(v,Ov), ρp(w,Ow)) =
1
4
(v + v2)2

≤ (v + w)2 = ρb(v, w)
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which implies

ηb(4ρb(Ov,Ow),DA(v, w)) ≥ ηb

(
4(v2 + w2)2, (w + v)2

)
≥ 0.

If w ≤ v, then min(ρb(v,Ov), ρp(w,Ow)) = ρb(w,Ow) = (v + v2)2 and

1
4

min(ρb(v,Ov), ρp(w,Ow)) =
1
4
(w + w2)2

≤ (v + w)2 = ρb(v, w)

which implies

ηb(4ρb(Ov,Ow),DA(v, w)) ≥ ηb

(
4(v2 + w2)2, (w + v)2

)
≥ 0.

Case 2: 1/4 < v,w ≤ 1. Then
ρb(v, w) = (v + w)2, ρb(v,Ov) = (v + 1/16)2, ρb(w,Ow) = (w + 1/16)2, and

ρb(Ou,Ow) = (1/8)2.

If v ≤ w, then min(ρb(v,Ov), ρp(w,Ow)) = ρb(v,Ov) = (v + v2)2 and

1
4

min(ρb(v,Ov), ρp(w,Ow)) =
1
4
(v + 1/16)2

≤ (v + w)2 = ρb(v, w)

which implies

ηb(4ρb(Ov,Ow),DA(v, w)) ≥ ηb

(
4(1/8)2, (w + v)2

)
≥ 0.

If w ≤ v, then min(ρb(v,Ov), ρp(w,Ow)) = ρb(w,Ow) = (w + 1/16)2 and

1
4

min(ρb(v,Ov), ρp(w,Ow)) =
1
4
(w + 1/4)2

≤ (v + w)2 = ρb(v, w)

which implies

ηb(4ρb(Ov,Ow),DA(v, w)) ≥ ηb

(
4(1/8)2, (w + v)2

)
≥ 0.

Case 3: v ≤ 1/4 < w ≤ 1. Then
ρb(v, w) = (v + w)2, ρb(v,Ov) = (v + v2)2, ρb(w,Ow) = (w + 1/16)2, and

ρb(Ou,Ow) = (v2 + 1/16)2.

Then min(ρb(v,Ov), ρp(w,Ow)) = ρb(v,Ov) = (v + v2)2 and

1
4

min(ρb(v,Ov), ρp(w,Ow)) =
1
4
(v2 + v)2

≤ (v + w)2 = ρb(v, w)

which implies

ηb(4ρb(Ov,Ow),DA(v, w)) ≥ ηb

(
4(v2 + 1/16)2, (w + v)2

)
≥ 0.

Case 4: w ≤ 1/4 < v ≤ 1. Then
ρb(v, w) = (v + w)2, ρb(v,Ov) = (v + 1/16)2, ρb(w,Ow) = (w + w2)2, and

ρb(Ou,Ow) = (w2 + 1/16)2.
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Then min(ρb(v,Ov), ρp(w,Ow)) = ρb(w,Ow) = (w + w2)2 and

1
4

min(ρb(v,Ov), ρp(w,Ow)) =
1
4
(w2 + w)2

≤ (v + w)2 = ρb(v, w)

which implies

ηb(4ρb(Ov,Ow),DA(v, w)) ≥ ηb

(
4(w2 + 1/16)2, (w + v)2

)
≥ 0.

The conditions of Theorem 2.2 are satisfied then O have a unique fixed pint which is v = 0.
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[20] K. Zoto, B. E. Rhoades and S. Radenović, Some generalizations for ( α-ψ, φ) -contractions in b-metric-
like spaces and an application. Fixed Point Theory Appl. 2017, 2017, 26, doi:10.1186/s13663-017-0620-
1.



518 M. Saadi and T. Hamaizia

Author information
M. Saadi, System Dynamics and Control Laboratory, Department of Mathematics and Informatics, Oum El
Bouaghi University, Oum El Bouaghi 04000., Algeria.
E-mail: mohamed.saadi@univ-oeb.dz

T. Hamaizia, System Dynamics and Control Laboratory, Department of Mathematics and Informatics, Oum El
Bouaghi University, Oum El Bouaghi 04000., Algeria.
E-mail: hamaizia.taieb@univ-oeb.dz

Received: 2023-07-14

Accepted: 2024-01-24


	1 Introduction and Preliminaries
	1.1 Dislocated b-metric spaces
	1.2 Similation function

	2 Main results

