SIGN-CHANGING RADIAL SOLUTIONS FOR A SUPERLINEAR DIRICHLET PROBLEM ON EXTERIOR DOMAINS

Boubker Azeroual and Abderrahim Zertiti

Communicated by Amjad Tufaha

MSC 2010 Classifications: Primary 35J66; Secondary 35B05, 35A24.

Keywords and phrases: Superlinear Dirichlet problem, Radial sign-changing solution, Exterior domain.

The authors express their debt of gratitude to the editors and the anonymous referee for accurate reading of the manuscript and beneficial comments.

Corresponding Author: B. Azeroual

Abstract In this paper we are interested in the existence and multiplicity of radial solutions to the elliptic equation $\Delta u(x) + K(|x|)f(u) = 0$ on the exterior of the unit ball centered at the origin in \mathbb{R}^N such that $u(x) \to 0$ as $|x| \to \infty$, with any given number of zeros using fairly straightforward tools of the theory of ordinary differential equations where the nonlinearity $f(u)$ is increasing and superlinear for u large enough. We assume $K(|x|) \sim |x|^{-\alpha}$ for large |x| with $\alpha > 2(N-1)$.

1 Introduction

This paper is concerned with the existence of sign-changing radial solutions for the nonlinear boundary-value problem

$$
\Delta u(x) + K(|x|)f(u) = 0 \quad \text{in } \Omega,
$$
\n(1.1)

$$
u = 0 \quad \text{in } \partial\Omega \,, \tag{1.2}
$$

and
$$
\lim_{|x| \to \infty} u(x) = 0.
$$
 (1.3)

Where $u : \mathbb{R} \to \mathbb{R}$ and Ω is the complement of the ball of the radius $R > 0$ centered at the origin with $|x|^2 = x_1^2 + \cdots + x_N^2$ is the standard norm of \mathbb{R}^N . We furthermore impose the following assumptions:

(H1) $f : \mathbb{R} \to \mathbb{R}$ is locally Lipschitzian such that

$$
f(0) = 0, \quad \text{and } \lim_{s \to 0} \sup \frac{f(s)}{s} < 0 \, .
$$

(H2) $u \rightarrow f(u)$ is increasing for |u| large enough and f is superlinear at infinity, i.e

$$
\lim_{|u| \to \infty} \frac{f(u)}{u} = \infty. \tag{1.4}
$$

From $(H1)$ and (1.4) we see that f has at least one positive and one negative zero.

(H3) Let β_0^+ (resp. β_1^-) be the least positive (resp. negative) zero of f and β_1^+ (resp. β_0^-) be the greatest positive (resp. negative) zero of f where

$$
\beta_1^- \le \beta_0^- < 0 < \beta_0^+ \le \beta_1^+ \, .
$$

(H4) $u \to F(u) = \int_0^u f(t)dt$ has exactly two zeros γ^- , γ^+ not both 0 such that $\gamma^ < 0 < \gamma^+$ and

$$
F<0 \quad \text{on all } (\gamma^-, \gamma^+) - \{0\}.
$$

(**H5**) Furthermore we assume that $r \to K(r)$ is C^1 on $[R, \infty)$ and there are three positive constants α , k_0 and k_1 such that,

$$
k_0 r^{-\alpha} \le K(r) \le k_1 r^{-\alpha} \quad \text{for any } r \ge R,
$$
 (1.5)

$$
2(N-1) + \frac{r K'}{K} < 0 \quad \text{for any } r \ge R \,, \tag{1.6}
$$

where $\alpha > 2(N - 1)$ and $N > 2$.

Remark 1.1.

- (i) From (H1)–(H3) we see that $f < 0$ on $(0, \beta_0^+) \cup (-\infty, \beta_1^-)$ and $f > 0$ on $(\beta_0^-, 0) \cup (\beta_1^+, \infty)$.
- (ii) From (**H1)–(H4)** $F > 0$ on $(-\infty, \gamma^-) \cup (\gamma^+, \infty)$ also, $\gamma^+ > \beta_1^+$ and $\gamma^- < \beta_1^-$.
- (iii) By (1.4) and Hospital's rule we assert that

$$
\lim_{|u| \to \infty} \frac{F(u)}{u^2} = \infty.
$$
\n(1.7)

(iv) Consequently, it follows that there is $F_0 > 0$ such that

$$
F(u) \ge -F_0 \quad \text{for all } u \in \mathbb{R} \,. \tag{1.8}
$$

(v) At first, we can assume that f is odd and $\beta_i^- = -\beta_i^+$ (for $i = 0, 1$), although we provide proofs for this in the general case.

Theorem 1.2. *If* (H1)–(H5) *are satisfied, then* [\(1.1\)](#page-0-1)*-*[\(1.3\)](#page-0-1) *has infinitely many radially symmetric solutions. In addition, for each integer* n *there exists a radially symmetric solution of problem* [\(1.1\)](#page-0-1)*-*[\(1.3\)](#page-0-1) *which has exactly* n *zeros.*

The existence of radial solutions to the superlinear Dirichlet problem (1.1) when $K(r) = 1$ on different domains (bounded domain or $\Omega = \mathbb{R}^N$) has been extensively studied. Most of these results are obtained through variational, sub-solutions and super-solutions, dynamical methods and the computation of the angular velocity in the phase plane, we see for example $[2]$, $[3]$, $[14]$, $[16]$, $[17]$, $[6]$, $[7]$, $[13]$ et $[9]$. Recently there has been an interest in studying these problems on exterior domains we see $[4]$, $[5]$, $[17]$ et $[15]$. In particular, when the nonlinearity is odd and has one positive zero and $f(u) \sim_{\infty} u|u|^{p-1}$, $p > 1$ the author Iaia in [\[11\]](#page-14-13) and [\[12\]](#page-14-14) proves the existence of infinitely many radial solutions of (1.1) - (1.3) by using a scaling argument.

Here we deal with the Dirichlet problem (1.1) - (1.3) in a more general case of superlinearity of $f(u)$ using fairly simple tools from the theory of ordinary differential equations and an approach more recent to prove the existence and multiplicity of radial solutions with change of sign in-spired by our paper [\[1\]](#page-14-15).

Our paper is organized as follows: In Section 2 we begin by establishing some preliminary results concerning the existence of radial solutions of (1.1) - (1.2) by making the change of variable $u(r) = v(t)$ with $t = r^{2-N}$ and transforming our problem to the compact set $[0, T]$ where $T = R^{2-N}$ and then we study the new initial-value problem by using the shooting argument with $v'(t) = -p < 0$. The rest of section two is devoted to showing that $v_p = v(t)$ stays positive if $p > 0$ stays sufficiently small and to assert that the energy function associated to [\(2.4\)](#page-2-0) is nonincreasing and positive on all $[0, T]$. In Section 3 we obtain the nature of zeros of solution v_p also, we show that v_p has a large number of zeros for p sufficiently large. In section 4 we prove the main theorem by choosing appropriate values of the parameter $p > 0$ such that v_p is a solution of [\(2.4\)](#page-2-0)- [\(2.5\)](#page-2-1) with exactly n zeros on $(0, T)$ for each nonnegative integer n and $v_p(0) = 0$. Hence by converting to the famous change of variable, we obtain a solution of our original problem [\(1.1\)](#page-0-1)- [\(1.3\)](#page-0-1) with exactly n zeros on (R, ∞) . Lastly in section 5 we do some simulations by using Mathlab for an example of the generalized Matukuma equation, see [\[8\]](#page-14-16).

2 Preliminaries

Since we are interested in radial solutions of [\(1.1\)](#page-0-1)- [\(1.3\)](#page-0-1) we denote $r = |x|$ and $u(x) = u(r)$ satisfies

$$
u''(r) + \frac{N-1}{r}u'(r) + K(r) f(u) = 0,
$$
\n(2.1)

$$
u(R) = 0 \quad \text{and} \quad \lim_{r \to \infty} u(r) = 0. \tag{2.2}
$$

Now, we employ the following transformation

$$
t = r^{2-N}
$$
 and $u(r) = v(t)$. (2.3)

It then follows that the initial value problem $(2.1)-(2.2)$ $(2.1)-(2.2)$ $(2.1)-(2.2)$ is converted to

$$
v''(t) + h(t) f(v) = 0 \quad \text{if } 0 < t < T,\tag{2.4}
$$

$$
v(T) = 0
$$
 and $\lim_{t \to 0} v(t) = 0$ (2.5)

where $T = R^{2-N}$ and

$$
h(t) = \left(\frac{1}{N-2}\right)^2 t^{-\frac{2(N-1)}{N-2}} K(t^{-\frac{1}{N-2}}).
$$

Furthermore from [\(1.5\)](#page-1-0) we get

$$
h_0 t^{\mu} \le h(t) \le h_1 t^{\mu} \quad \text{on } (0, T], \tag{2.6}
$$

where $\mu = \frac{2(N-1)-\alpha}{N-2}$ $\frac{(N-1)-\alpha}{N-2}$, $h_0 = \frac{k_0}{(N-2)^2} > 0$ and $h_1 = \frac{k_1}{(N-2)^2} > 0$. Notice that, since $\alpha > 2(N - 1)$ then $\mu > 0$ which implies that $\lim_{t\to 0^+} h(t) = 0$ and consequently h is continuous on [0, T]. In addition, from (H5) we have that h is C^1 on $(0,T]$ and also

$$
h'(t) = -\frac{t^{-\frac{3N-4}{N-2}} K(t^{-\frac{1}{N-2}})}{(N-2)^3} \left[2(N-1) + t^{-\frac{1}{N-2}} \frac{K'(t^{-\frac{1}{N-2}})}{\varphi(t^{-\frac{1}{N-2}})} \right] > 0,
$$

which means that h is strictly increasing.

To solve [\(2.4\)](#page-2-0)-[\(2.5\)](#page-2-1), we apply the shooting method, by considering the following initial value problem

$$
v''(t) + h(t) f(v) = 0 \quad \text{if} \quad 0 < t < T,\tag{2.7}
$$

$$
v(T) = 0
$$
 and $v'(T) = -p$. (2.8)

We will occasionally write $v = v_p(t)$ to emphasize the dependence of the solution on parameter $p > 0$. As this initial value problem is not singular so, the existence, uniqueness and continuous dependence with respect to p of the solution of $(2.7)-(2.8)$ $(2.7)-(2.8)$ $(2.7)-(2.8)$ on $[T - \epsilon, T]$ for some $0 < \epsilon < T$ follows by the standard existence-uniqueness and dependence theorem for ordinary differential equations [\[10\]](#page-14-17).

For v_p solution of [\(2.7\)](#page-2-4)-[\(2.8\)](#page-2-5) we define the energy function as follows

$$
\mathcal{E}_p(t) = \frac{v_p'^2}{2h(t)} + F(v_p).
$$
\n(2.9)

A simple calculation by using [\(2.4\)](#page-2-0) shows that

$$
\mathcal{E}'_p(t) = -\frac{h'(t) v_p'^2(t)}{2h^2(t)}.
$$
\n(2.10)

As h is strictly increasing it then follows the energy \mathcal{E}_p is strictly decreasing. From (2.10) we get

$$
(h(t)\,\mathcal{E}_p(t))' = h'(t)F(v_p).
$$

Integrating this from t to T and using $(2.9)-(2.8)$ $(2.9)-(2.8)$ $(2.9)-(2.8)$ gives

$$
\frac{v_p'^2(t)}{2} + h(t) F(v_p) = \frac{p^2}{2} - \int_t^T h'(x) F(V_p) dx.
$$

From (1.8) , since h' and h are positive we assert that

$$
v_p^2(t) \le p^2 + 2 F_0 h(T) .
$$

Thus, by using $\sqrt{a+b} \leq \sqrt{a}$ + √ b for all positive reals a and b we see that

$$
|v_p'(t)| \le c_{1,p} = p + \sqrt{2 F_0 h(T)}.
$$
\n(2.11)

Also we apply the mean value theorem with the initial conditions we get

$$
|v_p(t)| \le T c_{1,p} = c_{2,p}. \tag{2.12}
$$

Thus v_p and v'_p are bounded on wherever they are defined. For $p > 0$ fixed it then follows that there is a unique solution v_p of [\(2.7\)](#page-2-4)-[\(2.8\)](#page-2-5) defined on all [0, T]. Finally, by (2.7) it thus follows that v_p'' is bounded on all $[0, T]$ and consequently, the solution v_p is class C^1 on $[0, T]$.

Lemma 2.1. *Let* v_p *be a solution of* [\(2.7\)](#page-2-4)-[\(2.8\)](#page-2-5)*. Then* $v_p(t) > 0$ *on* (0, T *if* p *is sufficiently small. Proof.* As $v_p'(T) = -p < 0$ so either,

$$
\begin{cases}\n\text{Case (A)} & v_p'(t) < 0 \quad \text{on all} \quad t \in (0, T], \\
\text{Case (B)} & v_p \text{ has a local maximum at some } M_p \in (0, T).\n\end{cases}
$$

If (A) holds. Since v_p is strictly decreasing we get $v_p(t) > v_p(T) = 0$ on $(0, T]$ and so we are done in this case.

We then consider the case (B) and we will firstly claim that, if p is sufficiently small we have

$$
0 < v_p < \beta_0^+ \quad \text{on } (0, T].
$$

Indeed, if not we suppose that for any $p > 0$ sufficiently small there is $\tau_p \in (M_p, T)$ such that $v_p(\tau_p) = \beta_0^+$ and $v_p' < 0$ on (τ_p, T) .

Let
$$
t \in [\tau_p, T]
$$
. By integrating (2.7) from t to T with the initial conditions (2.8) yields

$$
v_p'(t) + p = \int_t^T h(x)f(v_p) dx.
$$
 (2.13)

By integrating again this from t to T we get

$$
v_p(t) = p(T - t) - \int_t^T \Big(\int_s^T h(x) f(v_p) \, dx \Big) ds. \tag{2.14}
$$

Notice that by condition (H1) there is $c_3 > 0$ such that

$$
f(u) \geq -c_3 u
$$
 for all $u \in \mathbb{R}^+$.

Since $v_p > 0$ is strictly decreasing on $[\tau_p, T]$ and using [\(2.14\)](#page-3-0) it then follows that

$$
v_p(t) \leq pT + c_3 \int_t^T H(s) v_p(s) ds,
$$

where $H(t) = \int_t^T h(x) dx$ is a continuous and positive function on [0, T]. We can apply the Gronwall inequality [\[10\]](#page-14-17) it thus follows that

$$
v_p(t) \le pT \exp\left(c_3 \int_t^T H(x) \, dx\right). \tag{2.15}
$$

We observe that the function $t \to exp(c_3 \int_t^T H(x) dx) > 0$ is bounded above by some $c_4 > 0$ on [0, T]. Thus by taking $t = \tau_p$ in (2.15) we get

$$
0 < v_p(\tau_p) = \beta_0^+ \le c_4 p.
$$

By making $p \to 0^+$ in this we get $\beta_0^+ = 0$. This is a contradiction and consequently, we have $0 < v_p < \beta_0^+$ on $(0,T]$ for p sufficiently small. Which mean that $v_p(t) > 0$ on $(0,T]$ if p is sufficiently small. \Box

Lemma 2.2. Let v_p be a solution of [\(2.7\)](#page-2-4)-[\(2.8\)](#page-2-5). Then v_p has a local maximum M_p on $(0, T)$ if p *is sufficiently large. In addition,*

$$
M_p \to T \quad \text{as } p \to \infty \,, \tag{2.16}
$$

$$
and v_p(M_p) \to \infty \quad as \ p \to \infty. \tag{2.17}
$$

Proof. From the above discussion at the beginning to the proof of lemma [2.1,](#page-3-2) we will assert that the case (A) does not occurs, if $p > 0$ is large enough.

To the contrary we suppose that $v'_p < 0$ on $(0, T]$ for any $p > 0$ large enough, which implying that

$$
v_p > 0 \quad \text{on } (0, T) \text{ for all } p > 0 \text{ sufficiently large.} \tag{2.18}
$$

Let us $0 < T_1 < T$ is fixed. Firstly, we claim the following result

$$
v_p(T_1) \to \infty \quad \text{as } p \to \infty. \tag{2.19}
$$

Indeed, by contradiction we suppose that there exists $m > 0$ such that $0 < v_p(T_1) \le m$ for all $p > 0$ large enough. From continuity of f so, there is $M > 0$ such that $0 < f(v_p(t)) \leq M$ on $[T_1, T]$ for p large enough.

From $(2.13)-(2.6)$ $(2.13)-(2.6)$ $(2.13)-(2.6)$ it follows that

$$
v_p'(t) + p = \int_t^T h(x)f(v_p(x)) dx \le \frac{M h_1 T^{\mu+1}}{\mu + 1}.
$$

Integrating this on (T_1, T) with initial conditions [\(2.8\)](#page-2-5) gives

$$
p(T - T_1) - \frac{M h_1 T^{\mu + 2}}{\mu + 1} \le v_p(T_1).
$$
 (2.20)

Notice that the left-hand side of [\(2.20\)](#page-4-0) goes to infinity as $p \to \infty$ but the one on the right-hand side is bounded above. This is a contradiction and (2.19) is proven.

Secondly, by (2.19) for p sufficiently large we have

$$
v_p(T_1) > \beta_1^+.
$$
 (2.21)

Let us fixed $p > 0$ and $0 < T_0 < T_1$ we denote

$$
\Omega_p = \inf_{T_0 \le t \le T_1} \left\{ h(t) \, \frac{f(v_p)}{v_p} \right\}.
$$

From (2.21) by using (i) of the remark [1.1](#page-1-2) and the fact that v_p is strictly decreasing it follows then that $v_p > \beta_1^+$ and $f(v_p) > 0$ on $[T_0, T_1]$. As h is positive and is increasing we see that

$$
\Omega_p \ge h(T_0) \inf_{v_p(T_1) \le x \le v_p(T_0)} \left\{ \frac{f(x)}{x} \right\} \quad \text{for } p \text{ sufficiently large.} \tag{2.22}
$$

Combining (2.19) - (2.22) with the superlinearity of f we obtain

$$
\Omega_p \to \infty \quad \text{as } p \to \infty \,. \tag{2.23}
$$

It is well known the eigenvectors of the operator $-\frac{d^2}{dt^2}$ $\frac{d^2}{dt^2}$ in (T_0, T_1) with Dirichlet boundary conditions can be chosen as

$$
\psi_k(t) = \sqrt{\frac{2}{T_1 - T_0}} \sin\left(\frac{k\pi(t - T_0)}{T_1 - T_0}\right),
$$

of eigenvalues $\lambda_k = \left(\frac{k\pi}{T_1 - T_0}\right)^2$ where k is nonnegative integer. Also, $z = \frac{T_0 + T_1}{2}$ is a zero of the second eigenfunction ψ_2 on (T_0, T_1) . In addition, from [\(2.23\)](#page-4-4) therefore for suitable large $p > 0$ it follows that $\Omega_p > \lambda_2$. This allows us to apply the Sturm comparison theorem [\[10\]](#page-14-17) and consequently, v_p has at least one zero in (T_0, T_1) which contradicts to [\(2.18\)](#page-4-5). Hence, v_p has a local maximum at some $M_p \in (0, T)$ for p sufficiently large.

Next, we will to claim [\(2.16\)](#page-4-6). We argue by contradiction. We suppose that there is an $\epsilon > 0$ for all p sufficiently large we have that

$$
M_p \le T - \epsilon = T_{\epsilon}.\tag{2.24}
$$

Let us denote $T^* = \frac{T+T_{\epsilon}}{2}$. By a similar way in the previous proof with assuming that $T_1 = T^*$ and $T_0 = T_\epsilon$ and using the fact that $V_p > 0$ is nonincreasing on (T_ϵ, T^*) we can show that v_p has at least one zero on $[T_{\epsilon}, T^*]$. This is a contradiction. Hence, $M_p \to T$ as $p \to \infty$. Now, since \mathcal{E}_p is nonincreasing we see that

$$
\mathcal{E}_p(t) \ge \frac{p^2}{2h(T)} > 0 \quad \text{for all } t \in (0, T] \quad \text{and } \mathcal{L}_p = \lim_{t \to 0^+} \mathcal{E}_p(t) > 0. \tag{2.25}
$$

and consequently,

$$
\mathcal{L}_p = \inf_{t \in [0,T]} \mathcal{E}_p(t) \to \infty \quad \text{as } p \to \infty \,. \tag{2.26}
$$

In particular we have that $\mathcal{E}_p(M_p) = F(v_p(M_p)) \to \infty$ as $p \to \infty$. Using [\(1.7\)](#page-1-3) we see that $F(u) \to \infty$ as $u \to \infty$ which implies that, $v_p(M_p) \to \infty$ as $p \to \infty$. This completes the proof of Lemma [2.2.](#page-4-7) \Box

3 Solution with a prescribed number of zeros

In this section we show that the solution v_p of initial value problem [\(2.4\)](#page-2-0)-[\(2.5\)](#page-2-1) has a large number of zeros for p sufficiently large.

Lemma 3.1. *The solution* v_p *of* [\(2.4\)](#page-2-0)-[\(2.5\)](#page-2-1) *has,*

- *(i) only simple zero,*
- *(ii) a finite number of zeros.*

Proof. (i) Suppose there is some point $t_0 \in [0, T]$ such that $v_p(t_0) = v'_p(t_0) = 0$ which implies that $\mathcal{E}_p(t_0) = 0$. This is a contradiction to [\(2.25\)](#page-5-0). Thus v_p has only simple zero on [0, T].

(ii) By contradiction, we suppose an infinite number of zeros of v_p denoted $z_n < z_{n+1}$ on $[0, T]$. So, there is a subsequence (again label z_n) of (z_n) such $z_n \to z \in [0, T]$ as $n \to \infty$. Then, by mean value theorem there is a local extrema $z_n < m_n < z_{n+1}$ and also $m_n \to z$ as $n \to \infty$. Therefore, taking $n \to \infty$ gives $v_p(z) = v'_p(z) = 0$ which contradicts (i). \Box

Now, by (i) and (ii) of remark [1.1](#page-1-2) it follows that $F(u) > 0$ for all $|u| > min(-\gamma^-, \gamma^+)$ and F is increasing on (γ^+, ∞) and is decreasing on $(-\infty, \gamma^-)$. Since $\mathcal{L}_p > 0$ for any $p > 0$ we assert that the equation $F(u) = \frac{\mathcal{L}_p}{2}$ has exactly two solutions $\sigma_p^- < \gamma^-$ and $\sigma_p^+ > \gamma^+$ such that

$$
F(\sigma_p^{\pm}) = \frac{1}{2} \inf_{t \in [0,T]} \mathcal{E}_p(t) > 0.
$$
 (3.1)

From [\(2.26\)](#page-5-1) and since $F(u) \to +\infty$ as $u \to \pm\infty$ we see that

$$
\lim_{p \to +\infty} \sigma_p^+ = +\infty \quad \text{and } \sigma_p^+ > \gamma^+, \tag{3.2}
$$

$$
\lim_{p \to +\infty} \sigma_p^- = -\infty \quad \text{and } \sigma_p^- < \gamma^-.
$$
\n(3.3)

By Lemma [2.2,](#page-4-7) we see that v_p has a local maximum M_p on $(0, T)$ if p is sufficiently large and $M_p \to T$ as $p \to \infty$.

Lemma 3.2. For p large enough there is $t_p \in (0, M_p)$ such that,

$$
v_p(t_p) = \sigma_p^+
$$
 and $\sigma_p^+ < v_p \le v_p(M_p)$ on $(t_p, M_p]$,

and

$$
t_p \to T \quad \text{as} \quad p \to \infty. \tag{3.4}
$$

Proof. By contradiction, we suppose that, for all p sufficiently large

$$
\sigma_p^+ < v_p(t) \quad \text{on } (0, M_p]. \tag{3.5}
$$

Integrating [\(2.4\)](#page-2-0) from t to M_p gives,

$$
v_p'(t) = \int_t^{M_p} h(x)f(v_p) dx.
$$
 (3.6)

Now let $s \in (0, M_p)$ is fixed. By integrating [\(3.6\)](#page-6-0) over $(M_p - s, M_p - \frac{s}{2})$ we obtain

$$
v_p(M_p - \frac{s}{2}) = v_p(M_p - s) + \int_{M_p - s}^{M_p - \frac{s}{2}} \left(\int_t^{M_p} h(x) f(v_p) dx \right) dt.
$$
 (3.7)

By [\(3.2\)](#page-5-2) and [\(3.5\)](#page-6-1) we see that $v_p(t) > \beta_1^+$ on $(0, M_p)$ if p is sufficiently large, which implies that $f(v_p(t)) > 0$ on $(0, M_p)$. From [\(3.6\)](#page-6-0) we deduce that v_p is increasing on all $(0, M_p)$ for p large enough. Since $u \to f(u)$ is increasing for |u| large enough and using [\(3.2\)](#page-5-2) it then follows that

$$
f(v_p(x)) \ge f(v_p(M_p - \frac{s}{2})) \quad \forall x \in (M_p - \frac{s}{2}, M_p) > 0.
$$

Multiplying this by $h > 0$ and integrating the resultant on (t, M_p) and using the fact that h is increasing gives

$$
\int_{t}^{M_{p}} h(x)f(v_{p}) dx \ge \int_{M_{p} - \frac{s}{2}}^{M_{p}} h(x)f(v_{p}) dx
$$

$$
\ge \frac{s}{2} h(M_{p} - \frac{s}{2}) f(v_{p}(M_{p} - \frac{s}{2})).
$$

By integrating this on $(M_p - s, M_p - \frac{s}{2})$ $\frac{6}{2}$) and using [\(3.7\)](#page-6-2) it then follows that

$$
v_p(M_p - \frac{s}{2}) \ge \frac{s^2}{4} h(M_p - \frac{s}{2}) f(v_p(M_p - \frac{s}{2})) \quad \forall s \in (0, M_p).
$$
 (3.8)

Taking $s = M_p$ and dividing by $f(v_p(\frac{M_p}{2}))$ $\binom{2n}{2}$) > 0 in [\(3.8\)](#page-6-3) it follows that

$$
\frac{v_p(\frac{M_p}{2})}{f(v_p(\frac{M_p}{2}))} \ge \frac{M_p^2}{4} h(\frac{M_p}{2}) \quad \text{if } p \text{ is sufficiently large.} \tag{3.9}
$$

Since $v_p(\frac{M_p}{2})$ $\frac{d_p}{2}$ $> \sigma_p^+$ and using [\(3.2\)](#page-5-2)-[\(1.4\)](#page-0-0) we deduce that the left-side hand of [\(3.9\)](#page-6-4) goes to 0 as $p \to \infty$. But from [\(2.16\)](#page-4-6) the right-side hand [\(3.9\)](#page-6-4) converges to $\frac{T^2}{4}$ $\frac{p}{4}h(T) \neq 0$ as $p \to \infty$. This is a contradiction. Hence, for p large enough there is $t_p \in (0, M_p)$ such that,

$$
v_p(t_p) = \sigma_p^+ \quad \text{and } \sigma_p < v_p \le v_p(M_p) \quad \text{on } (t_p, M_p].
$$

Next, we will show [\(3.4\)](#page-6-5). Since $(t_p)_p$ is bounded, so a subsequence (again label $(t_p)_p$) such that $t_p \to t_* \in [0, T]$ as $p \to \infty$. Firstly, we claim that $t_* \neq 0$. Otherwise, we suppose that $t_* = 0$. Since $M_p \to T$ as $p \to \infty$ so, for any p is sufficiently large we have $t_p < \frac{T}{4} < \frac{T}{2} < M_p$. Since v_p is increasing and $v_p > \sigma_p^+ > \gamma^+ > \beta_1^+$ on $(\frac{T}{4}, \frac{T}{2})$ for p sufficiently large then by integrating [\(3.6\)](#page-6-0) on $(\frac{T}{4}, \frac{T}{2})$ we get

$$
v_p(\frac{T}{2}) = v_p(\frac{T}{4}) + \int_{\frac{T}{4}}^{\frac{T}{2}} \left(\int_t^{M_p} h(x) f(v_p) dx \right) dt,
$$

\n
$$
\geq \int_{\frac{T}{4}}^{\frac{T}{2}} \left(\int_t^{M_p} h(x) f(v_p) dx \right) dt \quad (v_p(\frac{T}{2}) > 0),
$$

\n
$$
\geq \int_{\frac{T}{4}}^{\frac{T}{2}} \left(\int_{\frac{T}{2}}^{M_p} h(x) f(v_p) dx \right) dt \quad (f(v_p) > 0, h > 0),
$$

\n
$$
\geq \frac{T}{4} (M_p - \frac{T}{2}) h(\frac{T}{2}) f(v_p(\frac{T}{2})) \quad (h \text{ and } f \text{ are increasing}).
$$

Thus,

$$
\frac{v_p(\frac{T}{2})}{f(v_p(\frac{T}{2}))} \ge \frac{T}{4} \left(M_p - \frac{T}{2}\right) h(\frac{T}{2}) > 0 \quad \text{for } p \text{ large enough.}
$$
\n(3.10)

Since $v_p(\frac{T}{2}) \to \infty$ as $p \to \infty$ and by [\(1.4\)](#page-0-0) (superlinearity of f) we have that the left-side hand of [\(3.10\)](#page-7-0) goes to 0 which implies that $M_p \to \frac{T}{2}$ as $p \to \infty$. This is a contradiction and consequently, $t_* \in (0, T].$

Secondly, we will prove that $t_* = T$. Denoting

$$
C_p = \frac{1}{2} \min_{t \in [t_p, M_p]} \{ h(t) \, \frac{f(v_p)}{v_p} \}.
$$

As $f(v_p(t)) > 0$ for p large enough on $[t_p, M_p]$ and h and v_p are increasing on $[t_p, M_p]$ it then follows

$$
C_p \ge h(t_p) \min_{u \in [\sigma_p, v_p(M_p)]} \frac{f(u)}{u}.
$$
\n(3.11)

By continuity of h and $t_p \to T$ as $p \to \infty$ we see that $h(t_p) \to h(T) > 0$ as $p \to \infty$. From [\(3.2\)](#page-5-2)- (1.4) it then follows that the right-side hand of (3.11) goes to infinity and consequently,

$$
\lim_{p \to +\infty} C_p = +\infty. \tag{3.12}
$$

We now compare the problem

$$
v_p''(t) + h(t) \left\{ \frac{f(v_p)}{v_p} \right\} v_p = 0, \qquad (3.13)
$$

with

$$
y''(t) + C_p y = 0,
$$
\n(3.14)

.

with the initial conditions

$$
v_p(M_p) = y(M_p)
$$
 and $v'_p(M_p) = y'(M_p) = 0.$ (3.15)

From [\(3.13\)](#page-7-2)-[\(3.15\)](#page-7-3) we have that $v_p''(M_p) = -(h(M_p) \frac{f(v_p(M_p))}{h(M_p)}$ $\frac{\left(\sqrt{v_p(x+p)}/v_p(M_p)\right)}{v_p(M_p)}$) $v_p(M_p) \leq -C_p y(M_p)$ $y''(M_p)$. And there is $\eta >$ such that $(v_p - y)'' < 0$ on $(M_p - \eta, M_p)$. Which implies that $(v_p - y)' > 0$ on $(M_p - \eta, M_p)$ and consequently, $v_p < y$ on all $(M_p - \eta, M_p)$. Denoting

$$
\tau = \inf \left\{ t \in (t_p, M_p) : v_p < y \quad \text{on } (t, M_p) \right\}
$$

Next, we will show that $\tau = t_p$ for p sufficiently large. Otherwise, we suppose that

$$
v_p < y
$$
 on $(\tau, M_p]$ and $v_p(\tau) = y(\tau)$.

From (3.2) and (2.17) if p is sufficiently large we see that

$$
C_p > 0 \quad \text{and } v_p(M_p) > 0 \,, \tag{3.16}
$$

and by using $(3.13)-(3.14)$ $(3.13)-(3.14)$ $(3.13)-(3.14)$ we get

$$
(v'_p y - v_p y')' = -v_p y \left(h(t) \frac{f(v_p)}{v_p} - C_p \right).
$$
 (3.17)

Integrating this on (t, M_p) and using the initial conditions, gives

$$
v_p'(t) y(t) - v_p(t) y'(t) = \int_t^{M_p} v_p y\Big(h(x) \frac{f(v_p)}{v_p} - C_p\Big) dx.
$$
 (3.18)

From (3.16) for p large enough it then follows that

$$
v_p y > 0
$$
, $h(x)\frac{f(v_p)}{v_p} - C_p \ge 2C_p - C_p > 0$ on $[\tau, M_p]$.

Consequently, $v'_p(t) y(t) - v_p(t) y'(t) > 0$ on $[\tau, M_p]$. In particular, for $t = \tau$ we obtain $v_p'(\tau) < y'(\tau)$ and since $v_p(t) - v_p(\tau) < y(t) - y(\tau)$ for all $t \in (\tau, M_p)$, it follows that

$$
v_p'(\tau) = \lim_{t \to \tau^+} \frac{v_p(t) - v_p(\tau)}{t - \tau} \le \lim_{t \to \tau^+} \frac{y(t) - y(\tau)}{t - \tau} = y'(\tau).
$$

Which contradicts to $v_p'(\tau) < y'(\tau)$. Hence, $\tau = t_p$ and $v_p < y$ on (t_p, M_p) for p large enough. Finally, we know that every interval of length $\frac{\pi}{\sqrt{C_p}}$ contains at least one zero of $y(t)$ and $y >$ $v_p > 0$ on $(t_p, M_p]$ it then follows that,

$$
M_p - \frac{\pi}{\sqrt{C_p}} < t_p < M_p \quad \text{if } p \text{ is sufficiently large.} \tag{3.19}
$$

Since $M_p \to T$ as $p \to \infty$ consequently, $t_p \to T$ as $p \to \infty$ which completes the proof of Lemma [3.2.](#page-5-3) \Box

Lemma 3.3. For p sufficiently large v_p has a first zero $z_{1,p}$ on $(0,T)$. In addition,

$$
\lim_{p \to \infty} z_{1,p} = T. \tag{3.20}
$$

Proof. We argue by contradiction. We suppose that $v_p > 0$ on $(0, T)$. Since $0 < v_p(t) <$ $v_p(t_p) = \sigma_p^+$ on $(0, t_p)$ it follows that $F(v_p) < F(\sigma_p^+) = \frac{1}{2} \inf_{t \in [0, T]} \mathcal{E}_p(t)$ which implies that $F(v_p) < \frac{v_p^{\prime 2}}{2h(t)}$. Thus

$$
\sqrt{2h(t) F(\sigma_p^+)} < |v'_p| = v'_p \quad (0, t_p). \tag{3.21}
$$

Integrating this on $(0, t_p)$ and using (2.6) it then follows that

$$
\frac{2\sqrt{2h_0}}{2+\mu}\big(t_p^{\frac{2+\mu}{2}}-t^{\frac{2+\mu}{2}}\big)\sqrt{F\big(\sigma_p^+\big)}<\sigma_p^+-v_p(t).
$$

Since $v_p(t) > 0$ we deduce that

$$
\frac{2\sqrt{2h_0}}{2+\mu}\left(t_p^{\frac{2+\mu}{2}} - t^{\frac{2+\mu}{2}}\right) < \frac{\sigma_p^+}{\sqrt{F\left(\sigma_p^+\right)}}.\tag{3.22}
$$

By making $t = 0$ in [\(3.22\)](#page-8-1) we get

$$
\frac{2\sqrt{2h_0}}{2+\mu}t_p^{\frac{2+\mu}{2}} \le \frac{\sigma_p^+}{\sqrt{F(\sigma_p^+)}}.
$$
\n(3.23)

Combining (3.2) - (1.7) we obtain

$$
\lim_{p \to +\infty} \frac{\sigma_p^+}{\sqrt{F(\sigma_p^+)}} = 0. \tag{3.24}
$$

Consequently, the left-side hand of [\(3.23\)](#page-8-2) goes to $\frac{2\sqrt{2h_0}}{2+\mu}T^{\frac{2+\mu}{2}} \neq 0$ as $p \to \infty$. This is a contradiction. Hence, there is $z_{1,p}$ the first zero of v_p on $(0,T)$. Now, making $t = z_{1,p}$ in [\(3.22\)](#page-8-1) we get

$$
0 < \frac{2\sqrt{2\,h_0}}{2+\mu} \left(t_p^{\frac{2+\mu}{2}} - z_{1,p}^{\frac{2+\mu}{2}} \right) < \frac{\sigma_p^+}{\sqrt{F\left(\sigma_p^+\right)}} \,. \tag{3.25}
$$

 \Box Since $t_p \to T$ as $p \to \infty$ and by using [\(3.24\)](#page-9-0)-[\(3.25\)](#page-9-1) it thus follows that $\lim_{p \to +\infty} z_{1,p} = T$.

Lemma 3.4. For p sufficiently large, the solution v_p has a local minimum at $m_p \in (0, t_p)$ and *moreover* $m_p \to T$ *as* $p \to \infty$ *.*

Proof. We begin by establishing the following claim.

Claim: v_p attains the value σ_p^- at some $s_p \in (0, z_{1,p})$ if p is sufficiently large. In addition,

$$
\lim_{p \to \infty} s_p = T. \tag{3.26}
$$

Indeed, if not we suppose that $v_p(t) > \sigma_p^-$ on $(0, z_{1,p})$ for all p large enough. Since v_p has only simple zeros therefore $v_p'(z_{1,p}) > 0$ and $v_p' > 0$ on a maximum interval $(m^*, z_{1,p})$ for p sufficiently large. Consequently, we have $2 F(v_p) < \frac{v_p'^2}{2h(t)} + F(v_p)$ and $F(v_p) < \frac{v_p'^2}{2h(t)}$ on $(m^*, z_{1,p})$. Thus,

$$
\sqrt{2h(t) F(\sigma_p)} < |v'_p| = v'_p \quad (m^*, z_{1,p}).
$$
\n(3.27)

Letting $t = m^*$ in [\(3.27\)](#page-9-2) we get $\sqrt{2h(m^*)F(\sigma_p^-)} \leq 0 = v_p'(m^*)$. Which implies that $m^* = 0$ and v_p is strictly increasing on $(0, z_{1,p})$ for p large enough. By integrating (3.27) on $(t, z_{1,p})$ and using (2.6) gives

$$
0 < \frac{2\sqrt{2\,h_0}}{2+\mu} \left(z_{1,p}^{\frac{2+\mu}{2}} - t^{\frac{2+\mu}{2}} \right) < \frac{\sigma_p^-}{\sqrt{F(\sigma_p^-)}} \,. \tag{3.28}
$$

Letting $t = 0$ in [\(3.28\)](#page-9-3) and using [\(3.20\)](#page-8-3) we assert that the left-side hand of (3.28) goes to $\frac{2\sqrt{2h_0}}{2+\mu} T^{\frac{2+\mu}{2}}$ as $p \to \infty$. Similarly as in [\(3.24\)](#page-9-0) by using [\(3.3\)](#page-5-4) and [\(1.7\)](#page-1-3) we see that the right-side hand of [\(3.28\)](#page-9-3) converges to 0 as $p \to \infty$ which is a contradiction. Finally by taking $t = s_p$ in [\(3.28\)](#page-9-3) and using [\(3.20\)](#page-8-3)-[\(3.24\)](#page-9-0) it follows that $s_p \to T$ as $p \to \infty$ and the claim is proven.

Next, we will prove the Lemma [3.4.](#page-9-4) Again by contradiction, we suppose that v_p is strictly increasing on $(0, z_{1,p})$ for all p large enough. Therefore we get $v_p < \sigma_p^- < 0$ on $(0, s_p)$. Since $s_p \to T$ as $p \to \infty$ then for p large enough we have that $\frac{T}{2} < s_p$. Denoting

$$
C_p = \frac{1}{2} \min_{t \in [\frac{T}{2}, s_p]} \{ h(t) \frac{f(v_p)}{v_p} \}.
$$

Since h and v_p are increasing on $\left[\frac{T}{2}, s_p\right]$ it then follows

$$
C_p \ge \frac{1}{2}h(\frac{T}{2}) \min_{u \le \sigma_p^-} \left\{ \frac{f(u)}{u} \right\},\tag{3.29}
$$

for p large enough. Consequently by using (1.4) and (3.3) the right-side hand of (3.29) goes to infinity which implies that

$$
\lim_{p \to +\infty} C_p = +\infty. \tag{3.30}
$$

We compare the problem

$$
v_p''(t) + h(t) \left\{ \frac{f(v_p)}{v_p} \right\} v_p = 0, \tag{3.31}
$$

with

$$
y''(t) + C_p y = 0, \t\t(3.32)
$$

where $t \in (\frac{T}{2}, s_p)$ and the initial conditions

$$
v_p(s_p) = y(s_p)
$$
 and $v'_p(s_p) = y'(s_p)$. (3.33)

From [\(3.31\)](#page-10-0)-[\(3.33\)](#page-10-1) and since $v_p(s_p) < 0$ we have

$$
v_p''(s_p) = -h(s_p) f(v_p(s_p)) \ge -C_p y(s_p) = y''(s_p).
$$

And by continuity there is $\epsilon >$ such that $(v_p - y)'' > 0$ on $(\frac{T}{2} - \epsilon, s_p)$. Which implies that $(v_p - y)' < 0$ on $(\frac{T}{2} - \epsilon, s_p)$ and consequently, $v_p > y$ on all $(\frac{T}{2} - \epsilon, s_p)$. Denoting

$$
\zeta = \inf \left\{ t \in \left(\frac{T}{2} - \epsilon, s_p \right) : v_p > y \quad \text{on } (t, s_p) \right\}.
$$

We will show that $\zeta = \frac{T}{2}$. If not, suppose that

$$
v_p(\zeta) = y(\zeta)
$$
 and $v_p(t) > y(t)$ for any $t \in (\zeta, s_p)$.

For $\zeta < t < s_p$ we have $\frac{v_p(t) - v_p(\zeta)}{t - \zeta} > \frac{y(t) - y(\zeta)}{t - \zeta}$ $\frac{f(y)-y(\zeta)}{t-\zeta}$ and making $t \to \zeta^+$ it follows that $v'_p(\zeta) \geq y'(\zeta)$. On other hand, Since $v_p < 0$ on $(\frac{T}{2}, s_p)$ we see that $y < v_p < 0$ on $[\zeta, s_p]$ and also

$$
C_p - h(t) \frac{f(v_p)}{v_p} \le -C_p < 0. \tag{3.34}
$$

Integrating [\(3.17\)](#page-8-4) on (ζ, s_p) and using the initial conditions [\(3.33\)](#page-10-1), gives

$$
v_p'(\zeta) y(\zeta) - v_p(\zeta) y'(\zeta) = \int_{\zeta}^{s_p} v_p(x) y(x) \Big(h(x) \frac{f(v_p)}{v_p} - C_p \Big) dx < 0.
$$

Combining this with [\(3.33\)](#page-10-1), for p large enough it then follows that $v_p'(\zeta) < y'(\zeta)$ which contradicts to $v_p'(\zeta) \ge y'(\zeta)$. Consequently, $y < v_p$ on all $(\frac{T}{2}, s_p)$ for p large enough. From [\(3.30\)](#page-9-6) and since $s_p \to T$ as $p \to \infty$ we have that

$$
s_p - \frac{\pi}{\sqrt{C_p}} > \frac{T}{2}
$$
 if *p* is sufficiently large.

We know that every interval of length $\frac{\pi}{\sqrt{C_p}}$ contains at least one zero of $y(t)$ and $y < v_p < 0$ on $(\frac{T}{2}, s_p)$ we assert that v_p would has one least zero on $(\frac{T}{2}, s_p)$. This is a contradiction and consequently, v_p has a local minimum m_p on $(0, s_p)$ and also, if p is sufficiently large

$$
s_p - \frac{\pi}{\sqrt{C_p}} < m_p < s_p. \tag{3.35}
$$

 \Box

Hence, $m_p \to T$ as $p \to \infty$ which completes the proof of Lemma [3.4.](#page-9-4)

Now, since $F(v_p(m_p)) = \mathcal{E}_p(m_p) \to \infty$ as $p \to \infty$ it follows that $v_p(m_p) \to -\infty$ as $p \to \infty$. Proceeding in the same way as the proof of Lemma 3.3 , we can show that for p sufficiently large, v_p has a second zero at $z_{2,p} \in (0, s_p)$ and $z_{2,p} \to T$ as $p \to \infty$.

Continuing in the same way we can obtain as many zeros of v_p as desired on $(0, T)$ and we deduce the following result

Lemma 3.5. *If* p *is sufficiently large,* v_p *has an arbitrary large number of zeros on* $(0, T)$ *.*

Lastly, we end this section with a technical lemma [3.6](#page-11-0) in the proof of our main result.

Lemma 3.6. Let us suppose that v_{p_*} has exactly k zeros on $(0,T)$ and $v_{p_*}(0) = 0$. If p is *sufficiently close to* p_* *then* v_p *has at most* $k + 1$ *zeros on* $(0, T)$ *.*

Proof. Since v_p and v_{p*} have a finite number of zeros by Lemma [3.1](#page-5-5) then this result will follow if we can prove that $v_p \to v_{p_*}$ and $v'_p \to v'_{p_*}$ uniformly on $[0, T]$ if p is sufficiently close to p_* . Indeed, if $p_j \to p_*$ as $j \to \infty$ we denote $v_{p_j}(t) = v_j$. By using [\(2.11\)](#page-3-4)-[\(2.12\)](#page-3-5) it follows that

$$
\forall j \ge 0 \quad |v'_j| \le p_j + \sqrt{2F_0 h(T)} = c_{1,p_j}
$$

and
$$
|v_j| \le T c_{1,p_j} = c_{2,p_j}
$$
,

and the sequences $(c_{1,p_j})_j$ and $(c_{2,p_j})_j$ are bounded. Thus (v_j) are uniformly bounded and equicontinuous. Thus, by Arzela-Ascoli's theorem, we have a subsequence (still denoted by v_i) of (v_j) such that $v_j \to v_{p_{\ast}}$ uniformly on $[0, T]$ as $j \to \infty$. Consequently, by using [\(2.13\)](#page-3-3) we get

$$
p_{*} + \lim_{j \to +\infty} v'_{j}(t) = \lim_{j \to +\infty} \int_{t}^{T} h(x)f(v_{j}) dx = \int_{t}^{T} h(x)f(v_{p_{*}}) dx.
$$

Therefore $v'_j \to w$ converges uniformly on $[0, T]$ as $j \to \infty$. We now show that $w' = v'_{p_*}$. By [\(2.8\)](#page-2-5) we have

$$
-v_j(t) = \int_t^T v'_j dx,
$$

and making $j \to \infty$ in this gives

$$
-v_{p_*}(t) = \int_t^T w \, dx \, .
$$

By differentiating this we obtain $v'_{p*} = w$ and $v'_{j} \to v'_{p*}$ uniformly on $[0, T]$ as $j \to \infty$.

4 Proof of the main result

In what follows, let v_p is the solution of [\(2.7\)](#page-2-4)-[\(2.8\)](#page-2-5) and for any integer $k \ge 1$ we construct the following sets

 $S_k = \{p > 0: v_p \text{ has at least } k \text{ zeros on } (0, T)\}.$

By Lemma [3.5](#page-10-2) the set S_1 is not empty also from Lemma [2.1](#page-3-2) we see that S_1 is bounded from below by some positive constant. Thus, let

$$
p_0=\inf S_1>0.
$$

Lemma 4.1.

$$
v_{p_0}>0 \quad on\ (0,T).
$$

Proof. To the contrary, we suppose that $v_{p_0}(z) = 0$ for some point $z \in (0, T)$. Since $v_p > 0$ for any $p > p_0$ and by continuous dependence of solutions on initial conditions it follows that $v_{p_0} \ge 0$ on $(0, T)$. Thus $v_{p_0}(z) = v'_{p_0}(z) = 0$. Which contradicts that z is a simple zero and consequently, $v_{p_0} > 0$ on $(0, T)$. \Box

Lemma 4.2.
$$
v_{p_0}(0) = 0.
$$

Proof. By the definition of p_0 it follows that v_p must have a zero z_p on $(0, T)$ for $p > p_0$. In the first we will claim the following result

$$
z_p \to 0 \quad \text{as } p \to p_0^+, \tag{4.1}
$$

Otherwise, so a subsequence of (z_p) would converge to a $z \in (0, T]$ (still denoted (z_p)). By continuous dependence of solutions on initial conditions we get $v_{p_0}(z) = 0$.

Since $v'_{p_0}(T) = -p_0^* < 0$ then it follows that $z \in (0, T)$ which contradicts the fact that $v_{p_0} > 0$ on $(0, T)$. Thus (4.1) is proven and also $v_{p_0}(0) = 0$.

 \Box

By referring to the change variables [\(2.3\)](#page-2-9) and using the Lemma [4.1](#page-11-2) there is a positive solution u_{p_0} of $(2.1)-(2.2)$ $(2.1)-(2.2)$ $(2.1)-(2.2)$ such that $u_{p_0}(r) \to 0$ as $r \to \infty$.

Next, from Lemmas [3.5](#page-10-2) and [2.1](#page-3-2) the set S_2 is non empty and is bounded from below by some positive constant. Therefore we let

 $p_1 = \inf S_2$.

From lemma [3.6](#page-11-0) it follows that v_p has at most one zero on $(0, T)$ as $p \rightarrow p_0$. Thus $p_1 > p_0$ and by the same argument in the proof of Lemma [4.2](#page-11-3) we assert that $v_{p_1}(0) = 0$. Hence there is a solution u_{p_1} of [\(2.1\)](#page-2-2)-[\(2.2\)](#page-2-3) which has exactly one zero on (R, ∞) and $u_{p_1}(r) \to 0$ as $r \to \infty$.

Proceeding inductively, we can show that for every nonnegative integer n there is a solution of [\(2.1\)](#page-2-2)-[\(2.2\)](#page-2-3) which has exactly n zeros on (R, ∞) . Finally, the proof of Theorem [1.2](#page-1-4) is complete as well.

5 Simulations

In this section we are interested in doing some simulations to the problem $(2.1)-(2.2)$ $(2.1)-(2.2)$ $(2.1)-(2.2)$ satisfying (H1)–(H5) using MATLAB, with the aim of validating our results.

We consider the generalized Matukuma equation in exterior ball:

$$
\Delta u(x) + \frac{1}{1+|x|^{\alpha}} f(u) = 0 \quad \text{if } |x| > R,
$$

$$
N \ge 2 \quad \text{and} \quad 2(N-1) < \alpha.
$$

Taking $N = 3$, $\alpha = 5$, $R = 1$ and $K(r) = \frac{1}{1+r^5}$ satisfies (H5) and let v_p the solution of the problem,

$$
v_p''(t) + \frac{t}{1+t^5} f(v_p) = 0 \quad \text{if } 0 < t < 1,\tag{5.1}
$$

$$
v_p(1) = 0
$$
 and $v'_p(1) = -p$, (5.2)

for the two following cases of nonlinearity f :

(i) $f(u) = u(u^2 - 1)(u^2 - 2)(u^2 - 3)$, we see the Figure [1:](#page-13-0) the nonlinearity is odd, satisfies (H1)–(H4) superlinear, increasing for $|u| > 2$ and f has three positive zeros with $\beta_0^+ = 1$ and $\beta_1^+ = \sqrt{3}$. Also, F is even and has exactly one positive zero $\gamma^+ = 2$. For different value of parameter $p > 0$ we give \mathcal{N}_p the number of zeros of solution v_p of [\(5.1\)](#page-12-0)-[\(5.2\)](#page-12-1) on interval $(0, 1)$ and satisfies $\lim_{t\to 0} v_p(t) = 0$ (we see the Figures [2,](#page-13-1) [3](#page-13-2) and [4\)](#page-13-3) are graphs generated numerically using Mathlab.

In particular, the solution remains positive when $p = 5.6$ with $v_p(0) = 0$ and v_p has exactly five zeros when $p = 56$ with $v_p(0) = 0$.

(ii) $f(u) = u^3 - 2u + e^u - 1$, we see the Figure [5:](#page-13-4) the nonlinearity satisfies (H1)–(H4), $f(0) = 0, f'(0) = -1$ and f is superlinear, increasing for $|u| > 2$ and f has one positive zero $\beta_0^+ \approx 0.73$ and one negative zero $\beta_0^- \approx -1.19$. Also, F has exactly two zeros not both 0, $\gamma^+ \approx 1.04$ and $\gamma^- \approx -1.66$. For different value of parameter $p > 0$ we give \mathcal{N}_p the number of zeros of solution v_p of [\(5.1\)](#page-12-0)-[\(5.2\)](#page-12-1) on interval $(0, 1)$ and satisfies $\lim_{t\to 0} v_p(t) = 0$, (we see the Figures [6,](#page-13-5) [7](#page-13-6) and [8\)](#page-13-7) are graphs generated numerically using Mathlab.

In particular, the solution has exactly one zero when $p = 47.7$ with $v_p(0) = 0$ and v_p has exactly seven zeros when $p = 484.5$ with $v_p(0) = 0$.

Figure 1. $f(u) = u(u^2 - 1)(u^2 - 2)(u^2 - 3)$

Figure 3. $p = 56, \mathcal{N}_p = 5$

Figure 7. $p = 47.7, \mathcal{N}_p = 1$

Figure 2. $v_p > 0$ on $(0, 1)$ for $p = 5.6$

Figure 4. $p = 154.8, \mathcal{N}_p = 12$

Figure 6. $v_p > 0$ on $(0, 1)$ for $p = 11.75$

Figure 8. $p = 484.5, \, \mathcal{N}_p = 7$

References

- [1] B. Azeroual, A. Zertiti; *Localized radial solutions to a superlinear Dirichlet problem in annular domain*, Commun.Fac.Sci.Univ.Ank.Series A1, Volume 67, Number 1(2018), pp. 129-140.
- [2] H. Berestycki, P. L. Lions, and L.A. Peletier; *An ODE Approach to the Existence of Positive Solutions for Semilinear Problems in* R^N *, Ind. Univ. Math. J., 30(1) (1981), pp 141-157.*
- [3] H. Berestycki, P. L. Lions; *Non-linear scalar field equations II. Existence of infinitely many solutions*, Arch. Rational Mech. Anal. 82(1983), pp 347-375.
- [4] A. Castro, L. Sankar and R. Shivaji; *Uniqueness of nonnegative solutions for semipositone problems on exterior domains*, J. Math. Anal. Appl, 394(2012), pp. 432-437.
- [5] M. Chhetri, L. Sankar and R. Shivaji; *Positive solutions for a class of superlinear semipositone systems on exterior domains*, Bound. Value Probl, (2014), pp. 198-207.
- [6] C. Cortázar, M. Garcia-Huidobro, and C. S. Yarur; *On the uniqueness of sign changing bound state on exterior domains*, Bound. Value Probl, (2014), pp. 198-207.
C. Cortázar, M. Garcia-Huidobro, and C. S. Yarur; *On the uniqueness of sign changing bound solutions of a semilinear equation*, Ann. Inst. H. Poincar´e Ana
- [7] C. Cortázar, J. Dolbeault, M. Garcia-Huidobro, and R. Manàsevich; *On the existence of sign changing bound state solutions of a quasilinear equation*, J. Differential Equations, 254 (2013), pp. 2603-2625.
- [8] C. Cortázar, J. Dolbeault, M. Garcia-Huidobro, and R. Manàsevich; *Existence of sign changing solutions for an equation with a weighted -Laplace operator*, J. Nonlinear analysis, vol 110 (2014), pp. 1-22.
- [9] C. Dharuman, N. Prabaharan, E. Thandapani and E. Tunç; *Oscillatory behavior of even-order functional differential equations with a superlinear neutral term*, Palestine Journal of Mathematics, Vol. 12(1)(2023), 722-731.
- [10] P. Hartman; *Ordinary Differential Equation, second edition* , Society for Industrial and Applied Mathematics, Philadelphia (2002).
- [11] J. Iaia; *Existence of infinitely many solutions for semilinear problems on exterior domains*, Communications on Pure and Applied Analysis, Vol. 19, N. 9(2020), pp. 4269-4284.
- [12] J. Iaia; *Existence of solutions for semilinear problems on exterior domains*, Electronic journal of differential equations, 34(2020), 1-10.
- [13] F. Jaafri, A. Ayoujil and M. Berrajaa; *Multiple solutions for a bi-nonlocal elliptic problem involving p(x) biharmonic operator*, Palestine Journal of Mathematics, Vol. 12(1)(2023), 197-203.
- [14] C.K.R.T. Jones and T. Kupper; *On the infinitely many solutions of a semilinear elliptic equation*, SIAM J. Math. Anal. 17 (1986), pp 803-835.
- [15] E. K. Lee, R. Shivaji and B. Son; *Positive solutions for infinite semipositone problems on exterior domains*, Differ. Integral Equ., 24(2011), 861-875.
- [16] K. Mcleod, W. C. Troy, F. B. Weissler; *Radial solution of* ∆u + f(u) = 0 *with prescribed numbers of zeros*, Journal of Differential Equation, Volume 83,(1990), pp. 368-378.
- [17] L. Sankar, S. Sasi and R. Shivaji; *Semipositone problems with falling zeros on exterior domains*, J. Math. Anal. Appl., 401(2013), 146-153.

Author information

Boubker Azeroual, Mathematics computer science and decision making(Lab), National school of applied sciences, Abdelmalek Essaadi University, BP 2222, Tetouan, Morocco. E-mail: bazeroual@uae.ac.ma

Abderrahim Zertiti, Mathematics Department, Faculty of Science, Abdelmalek Essaadi University, BP 2121, Tetouan, Morocco.

E-mail: abdzertiti@hotmail.fr

Received: 2023-10-24 Accepted: 2024-02-22