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Abstract In this paper we are interested in the existence and multiplicity of radial solutions
to the elliptic equation ∆u(x) +K(|x|)f(u) = 0 on the exterior of the unit ball centered at the
origin in RN such that u(x) → 0 as |x| → ∞, with any given number of zeros using fairly
straightforward tools of the theory of ordinary differential equations where the nonlinearity f(u)
is increasing and superlinear for u large enough. We assume K(|x|) ∼ |x|−α for large |x| with
α > 2(N − 1).

1 Introduction

This paper is concerned with the existence of sign-changing radial solutions for the nonlinear
boundary-value problem

∆u(x) +K(|x|)f(u) = 0 in Ω, (1.1)

u = 0 in ∂Ω , (1.2)

and lim
|x|→∞

u(x) = 0. (1.3)

Where u : R → R and Ω is the complement of the ball of the radius R > 0 centered at the origin
with |x|2 = x2

1 + · · ·+ x2
N is the standard norm of RN .

We furthermore impose the following assumptions:
(H1) f : R → R is locally Lipschitzian such that

f(0) = 0, and lim
s→0

sup
f(s)

s
< 0 .

(H2) u→ f(u) is increasing for |u| large enough and f is superlinear at infinity, i.e

lim
|u|→∞

f(u)

u
= ∞ . (1.4)

From (H1) and (1.4) we see that f has at least one positive and one negative zero.
(H3) Let β+

0 (resp. β−
1 ) be the least positive (resp. negative) zero of f and β+

1 (resp. β−
0 ) be the

greatest positive (resp. negative) zero of f where

β−
1 ≤ β−

0 < 0 < β+
0 ≤ β+

1 .
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(H4) u → F (u) =
∫ u

0 f(t)dt has exactly two zeros γ− , γ+ not both 0 such that γ− < 0 < γ+

and
F < 0 on all (γ−, γ+)− {0} .

(H5) Furthermore we assume that r → K(r) is C1 on [R,∞) and there are three positive con-
stants α, k0 and k1 such that,

k0 r
−α ≤ K(r) ≤ k1 r

−α for any r ≥ R , (1.5)

2(N − 1) +
rK ′

K
< 0 for any r ≥ R , (1.6)

where α > 2(N − 1) and N > 2.

Remark 1.1.

(i) From (H1)–(H3) we see that f < 0 on (0, β+
0 )∪(−∞, β−

1 ) and f > 0 on (β−
0 , 0)∪(β

+
1 ,∞).

(ii) From (H1)–(H4) F > 0 on (−∞, γ−) ∪ (γ+,∞) also, γ+ > β+
1 and γ− < β−

1 .

(iii) By (1.4) and Hospital’s rule we assert that

lim
|u|→∞

F (u)

u2 = ∞ . (1.7)

(iv) Consequently, it follows that there is F0 > 0 such that

F (u) ≥ −F0 for all u ∈ R . (1.8)

(v) At first, we can assume that f is odd and β−
i = −β+

i (for i = 0, 1), although we provide
proofs for this in the general case.

Theorem 1.2. If (H1)–(H5) are satisfied, then (1.1)-(1.3) has infinitely many radially symmetric
solutions. In addition, for each integer n there exists a radially symmetric solution of problem
(1.1)-(1.3) which has exactly n zeros.

The existence of radial solutions to the superlinear Dirichlet problem (1.1) when K(r) = 1
on different domains (bounded domain or Ω = RN ) has been extensively studied. Most
of these results are obtained through variational, sub-solutions and super-solutions, dynamical
methods and the computation of the angular velocity in the phase plane, we see for example
[2],[3],[14],[16],[17],[6],[7],[13] et [9]. Recently there has been an interest in studying these
problems on exterior domains we see [4],[5],[17] et [15]. In particular, when the nonlinearity
is odd and has one positive zero and f(u) ∼∞ u|u|p−1 , p > 1 the author Iaia in [11] and [12]
proves the existence of infinitely many radial solutions of (1.1)- (1.3) by using a scaling argu-
ment.
Here we deal with the Dirichlet problem (1.1)- (1.3) in a more general case of superlinearity of
f(u) using fairly simple tools from the theory of ordinary differential equations and an approach
more recent to prove the existence and multiplicity of radial solutions with change of sign in-
spired by our paper [1].

Our paper is organized as follows: In Section 2 we begin by establishing some preliminary
results concerning the existence of radial solutions of (1.1)- (1.2) by making the change of vari-
able u(r) = v(t) with t = r2−N and transforming our problem to the compact set [0, T ] where
T = R2−N and then we study the new initial-value problem by using the shooting argument with
v′(t) = −p < 0. The rest of section two is devoted to showing that vp = v(t) stays positive if
p > 0 stays sufficiently small and to assert that the energy function associated to (2.4) is nonin-
creasing and positive on all [0, T ]. In Section 3 we obtain the nature of zeros of solution vp also,
we show that vp has a large number of zeros for p sufficiently large. In section 4 we prove the
main theorem by choosing appropriate values of the parameter p > 0 such that vp is a solution of
(2.4)- (2.5) with exactly n zeros on (0, T ) for each nonnegative integer n and vp(0) = 0. Hence
by converting to the famous change of variable, we obtain a solution of our original problem
(1.1)- (1.3) with exactly n zeros on (R,∞). Lastly in section 5 we do some simulations by using
Mathlab for an example of the generalized Matukuma equation, see [8].



528 Boubker Azeroual and Abderrahim Zertiti

2 Preliminaries

Since we are interested in radial solutions of (1.1)- (1.3) we denote r = |x| and u(x) = u(r)
satisfies

u′′(r) +
N − 1
r

u′(r) +K(r) f(u) = 0, (2.1)

u(R) = 0 and lim
r→∞

u(r) = 0. (2.2)

Now, we employ the following transformation

t = r2−N and u(r) = v(t) . (2.3)

It then follows that the initial value problem (2.1)-(2.2) is converted to

v′′(t) + h(t) f(v) = 0 if 0 < t < T, (2.4)

v(T ) = 0 and lim
t→0

v(t) = 0 (2.5)

where T = R2−N and
h(t) =

( 1
N − 2

)2
t−

2(N−1)
N−2 K(t−

1
N−2 ) .

Furthermore from (1.5) we get

h0 t
µ ≤ h(t) ≤ h1 t

µ on (0, T ] , (2.6)

where µ = 2(N−1)−α
N−2 , h0 =

k0
(N−2)2 > 0 and h1 =

k1
(N−2)2 > 0.

Notice that, since α > 2(N − 1) then µ > 0 which implies that limt→0+ h(t) = 0 and conse-
quently h is continuous on [0, T ]. In addition, from (H5) we have that h is C1 on (0, T ] and
also

h′(t) = − t
− 3N−4

N−2 K(t−
1

N−2 )

(N − 2)3

[
2(N − 1) + t−

1
N−2

K ′(t−
1

N−2 )

φ(t−
1

N−2 )

]
> 0 ,

which means that h is strictly increasing.

To solve (2.4)-(2.5), we apply the shooting method, by considering the following initial value
problem

v′′(t) + h(t) f(v) = 0 if 0 < t < T, (2.7)

v(T ) = 0 and v′(T ) = −p . (2.8)

We will occasionally write v = vp(t) to emphasize the dependence of the solution on parameter
p > 0. As this initial value problem is not singular so, the existence, uniqueness and continuous
dependence with respect to p of the solution of (2.7)-(2.8) on [T − ϵ, T ] for some 0 < ϵ < T
follows by the standard existence-uniqueness and dependence theorem for ordinary differential
equations [10].

For vp solution of (2.7)-(2.8) we define the energy function as follows

Ep(t) =
v′2p

2h(t)
+ F (vp) . (2.9)

A simple calculation by using (2.4) shows that

E ′
p(t) = −

h′(t) v′2p (t)

2h2(t)
. (2.10)

As h is strictly increasing it then follows the energy Ep is strictly decreasing.
From (2.10) we get (

h(t) Ep(t)
)′
= h′(t)F (vp).
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Integrating this from t to T and using (2.9)-(2.8) gives

v′2p (t)

2
+ h(t)F (vp) =

p 2

2
−
∫ T

t

h′(x)F (Vp) dx.

From (1.8), since h′ and h are positive we assert that

v′2p (t) ≤ p2 + 2F0h(T ) .

Thus, by using
√
a+ b ≤

√
a+

√
b for all positive reals a and b we see that

|v′p(t)| ≤ c1,p = p+
√

2F0h(T ) . (2.11)

Also we apply the mean value theorem with the initial conditions we get

|vp(t)| ≤ T c1,p = c2,p . (2.12)

Thus vp and v′p are bounded on wherever they are defined. For p > 0 fixed it then follows that
there is a unique solution vp of (2.7)-(2.8) defined on all [0, T ]. Finally, by (2.7) it thus follows
that v′′p is bounded on all [0, T ] and consequently, the solution vp is class C1 on [0, T ].

Lemma 2.1. Let vp be a solution of (2.7)-(2.8). Then vp(t) > 0 on (0, T ] if p is sufficiently small.

Proof. As v′p(T ) = −p < 0 so either,{
Case (A) v′p(t) < 0 on all t ∈ (0, T ] ,
Case (B) vp has a local maximum at some Mp ∈ (0, T ).

If (A) holds. Since vp is strictly decreasing we get vp(t) > vp(T ) = 0 on (0, T ] and so we are
done in this case.
We then consider the case (B) and we will firstly claim that, if p is sufficiently small we have

0 < vp < β+
0 on (0, T ].

Indeed, if not we suppose that for any p > 0 sufficiently small there is τp ∈ (Mp, T ) such that
vp(τp) = β+

0 and v′p < 0 on (τp, T ).
Let t ∈ [τp, T ]. By integrating (2.7) from t to T with the initial conditions (2.8) yields

v′p(t) + p =

∫ T

t

h(x)f(vp) dx . (2.13)

By integrating again this from t to T we get

vp(t) = p
(
T − t

)
−
∫ T

t

(∫ T

s

h(x)f(vp) dx
)
ds . (2.14)

Notice that by condition (H1) there is c3 > 0 such that

f(u) ≥ −c3 u for all u ∈ R+ .

Since vp > 0 is strictly decreasing on [τp, T ] and using (2.14) it then follows that

vp(t) ≤ pT + c3

∫ T

t

H(s) vp(s) ds ,

where H(t) =
∫ T

t
h(x) dx is a continuous and positive function on [0, T ]. We can apply the

Gronwall inequality [10] it thus follows that

vp(t) ≤ pT exp
(
c3

∫ T

t

H(x) dx
)
. (2.15)
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We observe that the function t → exp
(
c3

∫ T

t
H(x) dx

)
> 0 is bounded above by some c4 > 0

on [0, T ]. Thus by taking t = τp in (2.15) we get

0 < vp(τp) = β+
0 ≤ c4 p.

By making p → 0+ in this we get β+
0 = 0. This is a contradiction and consequently, we have

0 < vp < β+
0 on (0, T ] for p sufficiently small. Which mean that vp(t) > 0 on (0, T ] if p is

sufficiently small.

Lemma 2.2. Let vp be a solution of (2.7)-(2.8). Then vp has a local maximum Mp on (0, T ) if p
is sufficiently large. In addition,

Mp → T as p→ ∞ , (2.16)

and vp(Mp) → ∞ as p→ ∞ . (2.17)

Proof. From the above discussion at the beginning to the proof of lemma 2.1, we will assert that
the case (A) does not occurs, if p > 0 is large enough.
To the contrary we suppose that v′p < 0 on (0, T ] for any p > 0 large enough, which implying
that

vp > 0 on (0, T ) for all p > 0 sufficiently large. (2.18)

Let us 0 < T1 < T is fixed. Firstly, we claim the following result

vp(T1) → ∞ as p→ ∞. (2.19)

Indeed, by contradiction we suppose that there exists m > 0 such that 0 < vp(T1) ≤ m for all
p > 0 large enough. From continuity of f so, there is M > 0 such that 0 < f

(
vp(t)

)
≤ M on

[T1, T ] for p large enough.
From (2.13)-(2.6) it follows that

v′p(t) + p =

∫ T

t

h(x)f
(
vp(x)

)
dx ≤ M h1T

µ+1

µ+ 1
.

Integrating this on (T1, T ) with initial conditions (2.8) gives

p
(
T − T1

)
− M h1T

µ+2

µ+ 1
≤ vp(T1). (2.20)

Notice that the left-hand side of (2.20) goes to infinity as p → ∞ but the one on the right-hand
side is bounded above. This is a contradiction and (2.19) is proven .

Secondly, by (2.19) for p sufficiently large we have

vp(T1) > β+
1 . (2.21)

Let us fixed p > 0 and 0 < T0 < T1 we denote

Ωp = inf
T0≤t≤T1

{
h(t)

f(vp)

vp

}
.

From (2.21) by using (i) of the remark 1.1 and the fact that vp is strictly decreasing it follows
then that vp > β+

1 and f(vp) > 0 on [T0, T1]. As h is positive and is increasing we see that

Ωp ≥ h(T0) inf
vp(T1)≤x≤vp(T0)

{f(x)
x

}
for p sufficiently large. (2.22)

Combining (2.19)-(2.22) with the superlinearity of f we obtain

Ωp → ∞ as p→ ∞ . (2.23)



Sign-changing radial solutions 531

It is well known the eigenvectors of the operator − d2

dt2 in (T0, T1) with Dirichlet boundary con-
ditions can be chosen as

ψk(t) =

√
2

T1 − T0
sin

(kπ(t− T0)

T1 − T0

)
,

of eigenvalues λk =
(

k π
T1−T0

)2
where k is nonnegative integer. Also, z = T0+T1

2 is a zero of the
second eigenfunction ψ2 on (T0, T1). In addition, from (2.23) therefore for suitable large p > 0
it follows that Ωp > λ2. This allows us to apply the Sturm comparison theorem [10] and con-
sequently, vp has at least one zero in (T0, T1) which contradicts to (2.18). Hence, vp has a local
maximum at some Mp ∈ (0, T ) for p sufficiently large.

Next, we will to claim (2.16). We argue by contradiction. We suppose that there is an ϵ > 0 for
all p sufficiently large we have that

Mp ≤ T − ϵ = Tϵ. (2.24)

Let us denote T ∗ = T+Tϵ

2 . By a similar way in the previous proof with assuming that T1 = T ∗

and T0 = Tϵ and using the fact that Vp > 0 is nonincreasing on (Tϵ, T ∗) we can show that vp has
at least one zero on [Tϵ, T ∗]. This is a contradiction. Hence, Mp → T as p→ ∞.
Now, since Ep is nonincreasing we see that

Ep(t) ≥
p 2

2h(T )
> 0 for all t ∈ (0, T ] and Lp = lim

t→0+
Ep(t) > 0. (2.25)

and consequently,
Lp = inf

t∈[0,T ]
Ep(t) → ∞ as p→ ∞ . (2.26)

In particular we have that Ep(Mp) = F
(
vp(Mp)

)
→ ∞ as p → ∞. Using (1.7) we see that

F (u) → ∞ as u→ ∞ which implies that, vp(Mp) → ∞ as p→ ∞. This completes the proof of
Lemma 2.2.

3 Solution with a prescribed number of zeros

In this section we show that the solution vp of initial value problem (2.4)-(2.5) has a large
number of zeros for p sufficiently large.

Lemma 3.1. The solution vp of (2.4)-(2.5) has,

(i) only simple zero,

(ii) a finite number of zeros.

Proof. (i) Suppose there is some point t0 ∈ [0, T ] such that vp(t0) = v′p(t0) = 0 which implies
that Ep(t0) = 0. This is a contradiction to (2.25). Thus vp has only simple zero on [0, T ].
(ii) By contradiction, we suppose an infinite number of zeros of vp denoted zn < zn+1 on [0, T ].
So, there is a subsequence (again label zn) of (zn) such zn → z ∈ [0, T ] as n → ∞. Then, by
mean value theorem there is a local extrema zn < mn < zn+1 and also mn → z as n → ∞.
Therefore, taking n→ ∞ gives vp(z) = v′p(z) = 0 which contradicts (i).

Now, by (i) and (ii) of remark 1.1 it follows that F (u) > 0 for all |u| > min(−γ− , γ+) and F
is increasing on (γ+,∞) and is decreasing on (−∞, γ−). Since Lp > 0 for any p > 0 we assert
that the equation F (u) = Lp

2 has exactly two solutions σ−
p < γ− and σ+p > γ+ such that

F (σ±
p ) =

1
2

inf
t∈[0,T ]

Ep(t) > 0 . (3.1)

From (2.26) and since F (u) → +∞ as u→ ±∞ we see that

lim
p→+∞

σ+p = +∞ and σ+p > γ+, (3.2)

lim
p→+∞

σ−
p = −∞ and σ−

p < γ−. (3.3)
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By Lemma 2.2, we see that vp has a local maximum Mp on (0, T ) if p is sufficiently large and
Mp → T as p→ ∞.

Lemma 3.2. For p large enough there is tp ∈ (0,Mp) such that,

vp(tp) = σ+p and σ+p < vp ≤ vp(Mp) on (tp,Mp],

and
tp → T as p→ ∞. (3.4)

Proof. By contradiction, we suppose that, for all p sufficiently large

σ+p < vp(t) on (0,Mp]. (3.5)

Integrating (2.4) from t to Mp gives,

v′p(t) =

∫ Mp

t

h(x)f(vp) dx . (3.6)

Now let s ∈ (0,Mp) is fixed. By integrating (3.6) over
(
Mp − s,Mp − s

2

)
we obtain

vp(Mp −
s

2
) = vp(Mp − s) +

∫ Mp− s
2

Mp−s

(∫ Mp

t

h(x) f(vp) dx
)

dt. (3.7)

By (3.2) and (3.5) we see that vp(t) > β+
1 on (0,Mp) if p is sufficiently large, which implies that

f
(
vp(t)

)
> 0 on (0,Mp). From (3.6) we deduce that vp is increasing on all (0,Mp) for p large

enough. Since u→ f(u) is increasing for |u| large enough and using (3.2) it then follows that

f
(
vp(x)

)
≥ f

(
vp(Mp −

s

2
)
)

∀x ∈
(
Mp −

s

2
,Mp

)
> 0.

Multiplying this by h > 0 and integrating the resultant on (t,Mp) and using the fact that h is
increasing gives∫ Mp

t

h(x)f(vp) dx ≥
∫ Mp

Mp− s
2

h(x)f(vp) dx

≥ s

2
h(Mp −

s

2
) f

(
vp(Mp −

s

2
)
)
.

By integrating this on
(
Mp − s,Mp −

s

2
)

and using (3.7) it then follows that

vp(Mp −
s

2
) ≥ s2

4
h(Mp −

s

2
) f

(
vp(Mp −

s

2
)
)

∀ s ∈ (0,Mp). (3.8)

Taking s =Mp and dividing by f
(
vp(

Mp

2 )
)
> 0 in (3.8) it follows that

vp(
Mp

2 )

f
(
vp(

Mp

2 )
) ≥

M2
p

4
h(
Mp

2
) if p is sufficiently large. (3.9)

Since vp(
Mp

2 ) > σ+p and using (3.2)-(1.4) we deduce that the left-side hand of (3.9) goes to 0 as
p → ∞. But from (2.16) the right-side hand (3.9) converges to T 2

4 h(T ) ̸= 0 as p → ∞. This is
a contradiction. Hence, for p large enough there is tp ∈ (0,Mp) such that,

vp(tp) = σ+p and σp < vp ≤ vp(Mp) on (tp,Mp] .

Next, we will show (3.4). Since (tp)p is bounded, so a subsequence (again label (tp)p) such that
tp → t∗ ∈ [0, T ] as p→ ∞. Firstly, we claim that t∗ ̸= 0.
Otherwise, we suppose that t∗ = 0. Since Mp → T as p → ∞ so, for any p is sufficiently large
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we have tp < T
4 < T

2 < Mp. Since vp is increasing and vp > σ+p > γ+ > β+
1 on (T4 ,

T
2 ) for p

sufficiently large then by integrating (3.6) on (T4 ,
T
2 ) we get

vp(
T

2
) = vp(

T

4
) +

∫ T
2

T
4

(∫ Mp

t

h(x) f(vp) dx
)

dt ,

≥
∫ T

2

T
4

(∫ Mp

t

h(x) f(vp) dx
)

dt (vp(
T

2
) > 0) ,

≥
∫ T

2

T
4

(∫ Mp

T
2

h(x) f(vp) dx
)

dt (f
(
vp
)
> 0 , h > 0) ,

≥ T

4
(
Mp −

T

2
)
h(
T

2
) f

(
vp(

T

2
)
)

(h and f are increasing) .

Thus,
vp(

T
2 )

f
(
vp(

T
2 )
) ≥ T

4
(
Mp −

T

2
)
h(
T

2
) > 0 for p large enough. (3.10)

Since vp(T2 ) → ∞ as p→ ∞ and by (1.4) (superlinearity of f ) we have that the left-side hand of
(3.10) goes to 0 which implies thatMp → T

2 as p→ ∞. This is a contradiction and consequently,
t∗ ∈ (0, T ].
Secondly, we will prove that t∗ = T . Denoting

Cp =
1
2

min
t∈[tp,Mp]

{
h(t)

f(vp)

vp

}
.

As f
(
vp(t)

)
> 0 for p large enough on [tp,Mp] and h and vp are increasing on [tp,Mp] it then

follows

Cp ≥ h(tp) min
u∈[σp,vp(Mp)]

f(u)

u
. (3.11)

By continuity of h and tp → T as p→ ∞ we see that h(tp) → h(T ) > 0 as p→ ∞. From (3.2)-
(1.4) it then follows that the right-side hand of (3.11) goes to infinity and consequently,

lim
p→+∞

Cp = +∞. (3.12)

We now compare the problem

v′′p (t) + h(t)
{f(vp)

vp

}
vp = 0 , (3.13)

with
y′′(t) + Cp y = 0 , (3.14)

with the initial conditions

vp(Mp) = y(Mp) and v′p(Mp) = y′(Mp) = 0. (3.15)

From (3.13)-(3.15) we have that v′′p (Mp) = −
(
h(Mp)

f
(
vp(Mp)

)
vp(Mp)

)
vp(Mp) ≤ −Cp y(Mp) =

y′′(Mp). And there is η > such that
(
vp − y

)′′
< 0 on (Mp − η,Mp). Which implies that(

vp − y
)′
> 0 on (Mp − η,Mp) and consequently, vp < y on all (Mp − η,Mp). Denoting

τ = inf
{
t ∈ (tp,Mp) : vp < y on (t,Mp)

}
.

Next, we will show that τ = tp for p sufficiently large. Otherwise, we suppose that

vp < y on (τ,Mp] and vp(τ) = y(τ) .
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From (3.2) and (2.17) if p is sufficiently large we see that

Cp > 0 and vp(Mp) > 0 , (3.16)

and by using (3.13)-(3.14) we get

(
v′p y − vp y

′)′ = −vp y
(
h(t)

f(vp)

vp
− Cp

)
. (3.17)

Integrating this on (t,Mp) and using the initial conditions, gives

v′p(t) y(t)− vp(t) y
′(t) =

∫ Mp

t

vp y
(
h(x)

f(vp)

vp
− Cp

)
dx. (3.18)

From (3.16) for p large enough it then follows that

vp y > 0, h(x)
f(vp)

vp
− Cp ≥ 2Cp − Cp > 0 on [τ,Mp].

Consequently, v′p(t) y(t)− vp(t) y′(t) > 0 on [τ,Mp].
In particular, for t = τ we obtain v′p(τ) < y′(τ) and since vp(t) − vp(τ) < y(t) − y(τ) for all
t ∈ (τ,Mp), it follows that

v′p(τ) = lim
t→τ+

vp(t)− vp(τ)

t− τ
≤ lim

t→τ+

y(t)− y(τ)

t− τ
= y′(τ) .

Which contradicts to v′p(τ) < y′(τ). Hence, τ = tp and vp < y on (tp,Mp) for p large enough.
Finally, we know that every interval of length π√

Cp

contains at least one zero of y(t) and y >

vp > 0 on (tp,Mp] it then follows that,

Mp −
π√
Cp

< tp < Mp if p is sufficiently large. (3.19)

SinceMp → T as p→ ∞ consequently, tp → T as p→ ∞ which completes the proof of Lemma
3.2.

Lemma 3.3. For p sufficiently large vp has a first zero z1,p on (0, T ). In addition,

lim
p→∞

z1,p = T. (3.20)

Proof. We argue by contradiction. We suppose that vp > 0 on (0, T ). Since 0 < vp(t) <
vp(tp) = σ+p on (0, tp) it follows that F

(
vp
)
< F (σ+p ) = 1

2 inft∈[0,T ] Ep(t) which implies that

F
(
vp
)
<

v′2
p

2 h(t) . Thus √
2h(t)F

(
σ+p

)
< |v′p| = v′p (0, tp). (3.21)

Integrating this on (0, tp) and using (2.6) it then follows that

2
√

2h0

2 + µ

(
t

2+µ
2

p − t
2+µ

2
)√

F
(
σ+p

)
< σ+p − vp(t).

Since vp(t) > 0 we deduce that

2
√

2h0

2 + µ

(
t

2+µ
2

p − t
2+µ

2
)
<

σ+p√
F
(
σ+p

) . (3.22)

By making t = 0 in (3.22) we get

2
√

2h0

2 + µ
t

2+µ
2

p ≤
σ+p√
F
(
σ+p

) . (3.23)
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Combining (3.2)-(1.7) we obtain

lim
p→+∞

σ+p√
F (σ+p )

= 0 . (3.24)

Consequently, the left-side hand of (3.23) goes to 2
√

2 h0
2+µ T

2+µ
2 ̸= 0 as p → ∞. This is a contra-

diction. Hence, there is z1,p the first zero of vp on (0, T ).
Now, making t = z1,p in (3.22) we get

0 <
2
√

2h0

2 + µ

(
t

2+µ
2

p − z
2+µ

2
1,p

)
<

σ+p√
F
(
σ+p

) . (3.25)

Since tp → T as p→ ∞ and by using (3.24)-(3.25) it thus follows that lim
p→+∞

z1,p = T .

Lemma 3.4. For p sufficiently large, the solution vp has a local minimum at mp ∈ (0, tp) and
moreover mp → T as p→ ∞.

Proof. We begin by establishing the following claim.
Claim: vp attains the value σ−

p at some sp ∈ (0, z1,p) if p is sufficiently large. In addition,

lim
p→∞

sp = T . (3.26)

Indeed, if not we suppose that vp(t) > σ−
p on (0, z1,p) for all p large enough. Since vp has

only simple zeros therefore v′p(z1,p) > 0 and v′p > 0 on a maximum interval (m∗, z1,p) for

p sufficiently large. Consequently, we have 2F
(
vp
)
<

v′2
p

2 h(t) + F (vp) and F
(
vp
)
<

v′2
p

2 h(t) on
(m∗, z1,p). Thus, √

2h(t)F
(
σ−
p

)
< |v′p| = v′p (m∗, z1,p). (3.27)

Letting t = m∗ in (3.27) we get
√

2h(m∗)F
(
σ−
p

)
≤ 0 = v′p(m

∗). Which implies that m∗ = 0
and vp is strictly increasing on (0, z1,p) for p large enough.
By integrating (3.27) on (t, z1,p) and using (2.6) gives

0 <
2
√

2h0

2 + µ

(
z

2+µ
2

1,p − t
2+µ

2
)
<

σ−
p√

F
(
σ−
p

) . (3.28)

Letting t = 0 in (3.28) and using (3.20) we assert that the left-side hand of (3.28) goes to
2
√

2 h0
2+µ T

2+µ
2 as p → ∞. Similarly as in (3.24) by using (3.3) and (1.7) we see that the right-side

hand of (3.28) converges to 0 as p → ∞ which is a contradiction. Finally by taking t = sp in
(3.28) and using (3.20)-(3.24) it follows that sp → T as p→ ∞ and the claim is proven.

Next, we will prove the Lemma 3.4. Again by contradiction, we suppose that vp is strictly
increasing on (0, z1,p) for all p large enough. Therefore we get vp < σ−

p < 0 on (0, sp).
Since sp → T as p→ ∞ then for p large enough we have that T

2 < sp. Denoting

Cp =
1
2

min
t∈[T2 ,sp]

{
h(t)

f(vp)

vp

}
.

Since h and vp are increasing on [T2 , sp] it then follows

Cp ≥ 1
2
h(
T

2
) min

u≤σ−
p

{f(u)
u

}
, (3.29)

for p large enough. Consequently by using (1.4) and (3.3) the right-side hand of (3.29) goes to
infinity which implies that

lim
p→+∞

Cp = +∞. (3.30)
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We compare the problem

v′′p (t) + h(t)
{f(vp)

vp

}
vp = 0 , (3.31)

with
y′′(t) + Cp y = 0 , (3.32)

where t ∈ (T2 , sp) and the initial conditions

vp(sp) = y(sp) and v′p(sp) = y′(sp). (3.33)

From (3.31)-(3.33) and since vp(sp) < 0 we have

v′′p (sp) = −h(sp) f
(
vp(sp)

)
≥ −Cp y(sp) = y′′(sp).

And by continuity there is ϵ > such that
(
vp − y

)′′
> 0 on (T2 − ϵ, sp). Which implies that(

vp − y
)′
< 0 on (T2 − ϵ, sp) and consequently, vp > y on all (T2 − ϵ, sp). Denoting

ζ = inf
{
t ∈ (

T

2
− ϵ, sp) : vp > y on (t, sp)

}
.

We will show that ζ = T
2 . If not, suppose that

vp(ζ) = y(ζ) and vp(t) > y(t) for any t ∈ (ζ, sp).

For ζ < t < sp we have vp(t)−vp(ζ)
t−ζ > y(t)−y(ζ)

t−ζ and making t→ ζ+ it follows that v′p(ζ) ≥ y′(ζ).
On other hand, Since vp < 0 on (T2 , sp) we see that y < vp < 0 on [ζ, sp] and also

Cp − h(t)
f(vp)

vp
≤ −Cp < 0 . (3.34)

Integrating (3.17) on (ζ, sp) and using the initial conditions (3.33), gives

v′p(ζ) y(ζ)− vp(ζ) y
′(ζ) =

∫ sp

ζ

vp(x) y(x)
(
h(x)

f(vp)

vp
− Cp

)
dx < 0 .

Combining this with (3.33), for p large enough it then follows that v′p(ζ) < y′(ζ) which contra-
dicts to v′p(ζ) ≥ y′(ζ). Consequently, y < vp on all (T2 , sp) for p large enough.
From (3.30) and since sp → T as p→ ∞ we have that

sp −
π√
Cp

>
T

2
if p is sufficiently large.

We know that every interval of length π√
Cp

contains at least one zero of y(t) and y < vp < 0

on (T2 , sp) we assert that vp would has one least zero on (T2 , sp). This is a contradiction and
consequently, vp has a local minimum mp on (0, sp) and also, if p is sufficiently large

sp −
π√
Cp

< mp < sp . (3.35)

Hence, mp → T as p→ ∞ which completes the proof of Lemma 3.4.

Now, since F
(
vp(mp)

)
= Ep(mp) → ∞ as p→ ∞ it follows that vp(mp) → −∞ as p→ ∞.

Proceeding in the same way as the proof of Lemma 3.3, we can show that for p sufficiently large,
vp has a second zero at z2,p ∈ (0, sp) and z2,p → T as p→ ∞.

Continuing in the same way we can obtain as many zeros of vp as desired on (0, T ) and we
deduce the following result

Lemma 3.5. If p is sufficiently large, vp has an arbitrary large number of zeros on (0, T ).
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Lastly, we end this section with a technical lemma 3.6 in the proof of our main result.

Lemma 3.6. Let us suppose that vp∗ has exactly k zeros on (0, T ) and vp∗(0) = 0. If p is
sufficiently close to p∗ then vp has at most k + 1 zeros on (0, T ).

Proof. Since vp and vp∗ have a finite number of zeros by Lemma 3.1 then this result will follow
if we can prove that vp → vp∗ and v′p → v′p∗

uniformly on [0, T ] if p is sufficiently close to p∗.
Indeed, if pj → p∗ as j → ∞ we denote vpj (t) = vj . By using (2.11)-(2.12) it follows that

∀j ≥ 0 |v′j | ≤ pj +
√

2F0 h(T ) = c1,pj

and |vj | ≤ T c1,pj
= c2,pj

,

and the sequences (c1,pj
)j and (c2,pj

)j are bounded. Thus (vj) are uniformly bounded and
equicontinuous. Thus, by Arzela-Ascoli’s theorem, we have a subsequence (still denoted by vj)
of (vj) such that vj → vp∗ uniformly on [0, T ] as j → ∞. Consequently, by using (2.13) we get

p∗ + lim
j→+∞

v′j(t) = lim
j→+∞

∫ T

t

h(x)f(vj) dx =

∫ T

t

h(x)f(vp∗) dx .

Therefore v′j → w converges uniformly on [0, T ] as j → ∞.
We now show that w′ = v′p∗

. By (2.8) we have

−vj(t) =
∫ T

t

v′j dx ,

and making j → ∞ in this gives

−vp∗(t) =

∫ T

t

w dx .

By differentiating this we obtain v′p∗
= w and v′j → v′p∗

uniformly on [0, T ] as j → ∞.

4 Proof of the main result

In what follows, let vp is the solution of (2.7)-(2.8) and for any integer k ≥ 1 we construct the
following sets

Sk = {p > 0 : vp has at least k zeros on (0, T )} .
By Lemma 3.5 the set S1 is not empty also from Lemma 2.1 we see that S1 is bounded from
below by some positive constant. Thus, let

p0 = infS1 > 0 .

Lemma 4.1.
vp0 > 0 on (0, T ).

Proof. To the contrary, we suppose that vp0(z) = 0 for some point z ∈ (0, T ).
Since vp > 0 for any p > p0 and by continuous dependence of solutions on initial conditions it
follows that vp0 ≥ 0 on (0, T ). Thus vp0(z) = v′p0

(z) = 0. Which contradicts that z is a simple
zero and consequently, vp0 > 0 on (0, T ).

Lemma 4.2. vp0(0) = 0.

Proof. By the definition of p0 it follows that vp must have a zero zp on (0, T ) for p > p0. In the
first we will claim the following result

zp → 0 as p→ p+0 , (4.1)

Otherwise, so a subsequence of (zp) would converge to a z ∈ (0, T ] (still denoted (zp)). By
continuous dependence of solutions on initial conditions we get vp0(z) = 0.
Since v′p0

(T ) = −p∗0 < 0 then it follows that z ∈ (0, T ) which contradicts the fact that vp0 > 0
on (0, T ). Thus (4.1) is proven and also vp0(0) = 0.
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By referring to the change variables (2.3) and using the Lemma 4.1 there is a positive solu-
tion up0 of (2.1)-(2.2) such that up0(r) → 0 as r → ∞.

Next, from Lemmas 3.5 and 2.1 the set S2 is non empty and is bounded from below by some
positive constant. Therefore we let

p1 = infS2 .

From lemma 3.6 it follows that vp has at most one zero on (0, T ) as p → p0. Thus p1 > p0 and
by the same argument in the proof of Lemma 4.2 we assert that vp1(0) = 0. Hence there is a
solution up1 of (2.1)-(2.2) which has exactly one zero on (R,∞) and up1(r) → 0 as r → ∞.

Proceeding inductively, we can show that for every nonnegative integer n there is a solution of
(2.1)-(2.2) which has exactly n zeros on (R,∞). Finally, the proof of Theorem 1.2 is complete
as well.

5 Simulations

In this section we are interested in doing some simulations to the problem (2.1)-(2.2) satisfying
(H1)–(H5) using MATLAB, with the aim of validating our results.

We consider the generalized Matukuma equation in exterior ball:

∆u(x) +
1

1 + |x|α
f(u) = 0 if |x| > R,

N ≥ 2 and 2(N − 1) < α .

Taking N = 3, α = 5 , R = 1 and K(r) =
1

1 + r5 satisfies (H5) and let vp the solution of the

problem,

v′′p (t) +
t

1 + t5
f(vp) = 0 if 0 < t < 1, (5.1)

vp(1) = 0 and v′p(1) = −p , (5.2)

for the two following cases of nonlinearity f :

(i) f(u) = u(u2 − 1)(u2 − 2)(u2 − 3) , we see the Figure 1: the nonlinearity is odd, satisfies
(H1)–(H4) superlinear, increasing for |u| > 2 and f has three positive zeros with β+

0 = 1
and β+

1 =
√

3. Also, F is even and has exactly one positive zero γ+ = 2. For different
value of parameter p > 0 we give Np the number of zeros of solution vp of (5.1)-(5.2)
on interval (0, 1) and satisfies lim

t→0
vp(t) = 0 ( we see the Figures 2, 3 and 4) are graphs

generated numerically using Mathlab.

In particular, the solution remains positive when p = 5.6 with vp(0) = 0 and vp has exactly
five zeros when p = 56 with vp(0) = 0.

(ii) f(u) = u3 − 2u + eu − 1, we see the Figure 5: the nonlinearity satisfies (H1)–(H4),
f(0) = 0, f ′(0) = −1 and f is superlinear, increasing for |u| > 2 and f has one positive
zero β+

0 ≈ 0.73 and one negative zero β−
0 ≈ −1.19. Also, F has exactly two zeros not both

0, γ+ ≈ 1.04 and γ− ≈ −1.66. For different value of parameter p > 0 we give Np the
number of zeros of solution vp of (5.1)-(5.2) on interval (0, 1) and satisfies lim

t→0
vp(t) = 0,

(we see the Figures 6, 7 and 8) are graphs generated numerically using Mathlab.

In particular, the solution has exactly one zero when p = 47.7 with vp(0) = 0 and vp has
exactly seven zeros when p = 484.5 with vp(0) = 0.
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Figure 1. f(u) = u(u2 − 1)(u2 − 2)(u2 − 3)
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Figure 2. vp > 0 on (0, 1) for p = 5.6
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Figure 3. p = 56, Np = 5
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Figure 4. p = 154.8, Np = 12
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Figure 5. f(u) = u3 − 2u+ eu − 1
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Figure 6. vp > 0 on (0, 1) for p = 11.75
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Figure 7. p = 47.7, Np = 1
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Figure 8. p = 484.5, Np = 7
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