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Abstract This work proposes a numerical solution for the Volterra integro-differential equa-
tion (VIDE). The method proposed in this study combines the cubic B-spline method with the
finite element method to effectively solve this type of equation. To handle the integral part of
the equation. Gauss rules are employed to approximate the integral of the differential equations.
These rules ensure the accuracy employed to approximate the integral of differential equations.
These rules ensure the accuracy and precision of the results obtained. In addition, the study
investigates the coercivity and continuity of the the suggested problems to address challenges in
deriving a priori error estimates. Through this analysis, the convergence of the method is proven.
To demonstrate the effectiveness of the proposed method, several examples are presented. These
examples serve to illustrate the applicability of the method and also allow for a comparison
between the approximate results and analytical solutions.

1 Introduction

Initial- and boundary-value problems with integro-differential equations (IEDs) are abundant
in physical and biological modeling as well as in respective (bio-)engineering applications. In
recent years, the finite element method (FEM) has gained significant attention as a numerical
technique for approximating solutions to ordinary and partial differential equations that do not
involve memory effects [1, 2, 3, 3, 5].

However, the implementation of FEM with cubic B-spline functions for solving VIDE has
seen slower progress compared to other methods. As a result, researchers have dedicated con-
siderable effort to developing efficient numerical schemes for approximating solutions to these
problems. Numerical solutions for such equations have been explored using various techniques,
Galerkin finite element method [6, 7, 8, 9]. Various methods have been applied to solve IEDs.
For more details see [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25].

The aim of this study is to explore the use of modified cubic B-spline finite element methods
to approximate solutions for VIDE. However, there are challenges involved in constructing a
linear system that can yield highly accurate results. One of the challenges is integrating the
integro parts of the equation. To address this, a quadrature rule can be employed to obtain exact
approximations for the integral parts. Another challenge is dealing with Dirichlet boundary
conditions using B-spline functions. This requires finding appropriate techniques to incorporate
these boundary conditions into the framework of the B-spline finite element method

The present study is prepared as follows: In Section 2, the numerical method of the presented
problem was given. Convergence analysis of suggested schemes is proved in Section 3. Some
numerical experiments are shown in Section 4. Finally, conclusions are given in Section 5.
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2 Second-order linear VIDE

Consider the model problem as

−z′′(s) + b(s)z′(s) + c(s)z(s) = f(s) +

∫ s

0
k(s, t)z(t)dt, (2.1)

with boundary conditions
z(a) = z(b) = 0, s, t ∈ (0, 1), (2.2)

where b(s), c(s), f(s) and k(s, t) are continuous real-valued functions on the interval [0, 1]. The
weak form of (2.1) can be done multiplying both sides of the (2.1) by a test function z ∈ H1

0 (0, 1)
and integrating by parts of (2.1), we obtain∫ 1

0
z′(x)v′(x)ds+

∫ 1

0
b(s)z′(s)v(s)ds+

∫ 1

0
c(s)z(s)v(s)ds

=

∫ 1

0
f(s)v(s)ds+

∫ 1

0
v(s)

∫ 1

0
k(s, t)z(t)dtds,

such that
a(z, v) = F (v), v ∈ H1

0 (0, 1), (2.3)

where a(z, v) is a symmetric bilinear form and F (v) is a linear functional given by:

a(z, v) =

∫ 1

0
z′(s)v′(s)ds+

∫ 1

0
b(s)z′(s)v(s)ds+

∫ 1

0
c(s)z(s)v(s)ds

−
∫ 1

0
v(s)

∫ s

0
k(s, t)z(t)dtds

F (v) =

∫ 1

0
f(s)v(s)ds.

2.1 Finite element approximation

To process with finite element approximation, let Sh be a finite dimensional space such that
Sh ⊂ H1

0 (Ω). To develop the numerical method for approximating the solution of a boundary
value problem (2.1), the interval [0, 1] is partitioned into N + 1 uniformly spaced points xi such
that 0 < x0 < x1 < · · · < xN−1 < xN = 1 and h = 1

N+1 . Setting

Sh =
{
v ∈ S3 ∈ C2[0, 1] : v(0) = v(1) = 0

}
, (2.4)

where S3 is the space of all polynomials of degree ≤ 3. We seek to find an approximation
Zh ∈ Sh such that

a(Zh, vh) = F (vh), vh ∈ Sh, (2.5)

where

a(Zh, v) =

∫ 1

0
Z ′
h(s)v

′(s)ds+

∫ 1

0
b(s)Z ′

h(s)v(s)ds+

∫ 1

0
c(s)Zh(s)v(s)ds

−
∫ 1

0
v(s)

∫
0sk(s, t)Zh(t)dtds,

F (vh) =

∫ 1

0
f(s)vh(s)ds.
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2.2 Calculation and assembly of stiffness and mass matrices

Let N be a positive integer number and a = 0 < s0 < s1 < · · · < sN−1 < sN = b and
h = 1/(N + 1) be a uniform partition of [a, b] and h = b−a

N . The typical third-degree B-spline
basis functions defined as

B3
i (s) =



h−3g1(s− si−2), s ∈ [si−2, si−1]

g2

(
s−si−1

h

)
s ∈ [si−1, si]

g2
( si+1−s

h

)
s ∈ [si, si+1]

h−3g1(si+2 − s), s ∈ [si+1, si+2]

0, otherwise

(2.6)

where

g1(s) = s3, g2(s) = 1 + 3s+ 3s2 − 3s3, for i = −1, 0, . . . , N + 1.

For a sufficiently smooth function z(s) there always exists a unique third-degree spline Zh such
that

Zh =
N+1∑
m=−1

αiB
3
i (s), (2.7)

where αi are unknown quantities to be determined from (2.6). For the sake of simplicity, using
zi = Zh(si, t) 

Zi = αi−1 + 4αi + αi+1

Z ′
i =

3
h (αi−1 − αi+1)

Z ′′
i = 6

h2 (αi−1 − 2αi + αi+1) .

(2.8)

Using (2.7) and boundary conditions (2.2), gives
a1 = −a−1 − 4a0

aN+1 = −aN−1 − 4aN .

(2.9)

Substituting (2.8) in (2.7), we have

Zh = a0 [B0(s)− 4B−1(s)] + a1 [B1(s)−B−1(s)] + · · ·+
+aN−1 [BN−1(s)−BN+1(s)] + aN [BN (s)− 4BN (s)] ,

so that
Zh = a0B0(s) + a1B1(s) + · · ·+ aN−1BN−1(s) + aNBN (s),

where 

B0(s) = B0(s)− 4B−1(s)

B1(s) = B1(s)−B−1(s)

Bi(s) = Bi(s), i = 2, 3, . . . , N − 2

BN−1(s) = BN−1(s)−BN+1(s)

BN (s) = BN (s)− 4BN+1(s).

(2.10)
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Table 1. The values of Bi(s) and their derivatives.
si si−1 si+1 else

Bi(s) 1/6 2/3 1/6 0
B′

i(s)
−1
2h 0 1

2h 0
B′′

i (s)
1
h2

−2
h2

1
h2 0

Inserting (2.10) in (2.5) with choosing vh = Bm(s), gives

N∑
i=0

αi

(∫ 1

0
(Bi)′(s)(Bm)′(s) +

∫ 1

0
b(s)(Bi)′(s)(Bm)(s)ds+

∫ 1

0
c(s)(Bi)′(s)(Bm)′(s)ds

−
∫ 1

0
Bm(s)

∫ s

0
k(s, t)Bi(t)dtds

)
=

∫ 1

0
f(s)Bm(s)ds,

or
(Ae + bBe + cCe −De)α = F e, (2.11)

where

Ae =

∫ 1

0
(Bi)′(s)(Bm)′(s)ds =

3
10h


80 43 −20 −1
43 104 −14 −24
−20 −14 80 −15
−1 −24 −15 80

 (2.12)

Be =

∫ 1

0
(Bi)′(s)(Bm)(s)ds =

1
20


0 133 52 1

−133 0 244 56
−52 −244 0 245
−1 −56 −245 0

 (2.13)

Ce =

∫ 1

0
(Bi)(s)(Bm)(s)ds =

h

40


496 733 116 1
733 2296 1190 120
116 1190 2416 1191
1 120 1191 2416

 (2.14)

are element matrices. The latter integral F e and De will be handled numerically using the
composite 3-point Guass quadrature given by:

∫ 1

0
g(s)ds =

N∑
k=0

∫ sk+1

sk

g(s)ds =
h

2

N∑
k=0

∫ 1

−1
g

(
sk +

h

2
(1 + t)

)
ds ≈ h

2

N∑
k=0

3∑
j=0

Cjg(ξk,j)

(2.15)
ξk,j =

h
2 ξj +

Sk+Sk+1
2 , k = 0, 1, . . . , N , i = 1, 2, 3.

Therefore, using (2.15) we obtain

F e =

∫ 1

0
f(s)(Bi)(s)ds ≈

h

2

N∑
k=0

3∑
j=0

Cjf(ξk,j)(Bi)(ξk,j), i = 1, 2, . . . , N + 1. (2.16)

De =

∫ 1

0
k(s, t)(Bi)(s)dtds ≈

N∑
k=0

3∑
j=0

CjKk,j(Bi)(ξk,j), i = 1, 2, . . . , N + 1. (2.17)

To find the coefficient α0, α1, . . . .., αN , we assemble all the matrices in (2.11), imply that

(A+B + bC + cD)α = F,
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for each matrix has Ae, Be, Ce and De assembled from the element matrices A,B,C, and D
such that
A = 3

10h(−1,−44, 14, 344, 14,−44,−1), B = 1
20(1,−108,−622, 0,−622,−108, 1), and

C =
3

10h
(−1,−24,−15, 80,−15,−24,−1).

3 Convergence analysis

The aim of this section is to present the error analysis theorems for the proposed method. The
lemma below will show (2.3) satisfying the Lax–Milgram theorem.

Lemma 3.1. (Existence, uniqueness) Let a(z, v) be bilinear form defined by (2.3). Suppose that
N1 ≤ c(s) ≤ N2, Q1 ≤ b(s) ≤ Q2 and 0 ≤ b

′
(s) ≤ T2, then a(z, v) is a V -ellipticity, (2.3) has a

unique solution.
a(z, z) ≥ Ccovr∥z∥2

a, ∀w ∈ H1
0 (0, 1), (3.1)

a(z, v) ≤ Ccont∥z∥a.∥v∥a, ∀z, v ∈ H1
0 (0, 1). (3.2)

Proof. Recalling weak form in (2.3) along with Cauchy–Schwarz inequality, we have

a(z, v) ≤ ∥z(s)∥a∥v(s)∥a +Q2∥z(s)∥a∥v(s)∥L2(0,1) +N2∥z(s)∥L2(0,1)∥v(s)∥L2(0,1) +

KR∥z(s)∥a∥v(s)∥a = (1 +Q2 +N2 +KR)∥z(s)∥a∥v(s)∥a = Ccont∥z∥a.∥v∥a.

Using Poincaré-Friedrichs inequality

∥v(s)∥L2(0,1) ≤ Cp∥v(s)∥H1
0 (0,1)

= Cp∥v(s)∥a,

and setting

Ccont = (1 +Q2 +N2 +KR), K = max |K(s, t)|, x ∈ [0, 1], t ∈ [0, x], and R = ∥1∥L2(0,1).

The second part of (3.2) of above lemma is proved. To prove the V-ellipticity of a(z, v), we have∫ 1

0
z′(s)z′(s)ds+

∫ 1

0
c(s)z(s)z(s)ds ≥

∫ 1

0
(z′)2(s)ds ≥ 1

1 + c
∥z∥2

H1(0,1), (3.3)

and

−
∫ 1

0
z(s)

∫ s

0
k(s, t)z(t)dsds = −1

2

∫ 1

0
b′(s)(z(s))2ds ≥ −T2

2

∫ 1

0
(z(s))2ds ≥ −T2

2
∥z∥2

H1(0,1),

(3.4)
also

−
∫ 1

0
z(s)

∫ s

0
k(s, t)z(t)dtds ≥ −|

∫ 1

0
z(s)

∫ s

0
k(s, t)z(t)dtds| (3.5)

≥ −KR∥z∥2
L2(0,1) ≥ KR∥z∥2

H1(0,1). (3.6)

(3.7)

Combining (3.3)-(3.5), we have

a(z, z) ≥
(

1
1 + c

− T2

2
−KR

)
∥z∥2

H1(0,1), (3.8)

or
a(z, z) ≥ Ccovr∥z∥2

H1(0,1), (3.9)

where Ccovr =
( 1

1+c −
T2
2 −KR

)
, c is a Poincare’s constant. Thus a(z, v) is a V−elliptic if

Ccovr ≥ 0. Therefore, by the Lax-Milgram theorem and the V− ellipticity of a(z, v), equation
(2.3) has a unique solution.
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3.1 Error Estimates in the Energy Norm

This section aims to employ Cea’s lemma to derive an optimal error bound for the finite ele-
ment approximation for a one-dimensional model problem. To start with, the energy norm ∥v∥a
defined by

∥z∥2
a = ∥z′∥2 + ∥z∥2 +

∫ s

0
k(s, t)∥z(t)∥2dt = ∥z∥2

H1(0,1).

3.2 Definition

Let H1(0, 1) be a Hilbert space, and suppose a be a symmetric and H1
0 (0, 1)-elliptic bilinear

form. We define an inner product as follows

(·, ·) : H1(0, 1)×H1(0, 1) −→ R,

(z, v)a = a(z, v),

which is called the inner product energy. Also we define energy norm as follows

∥z∥2
a = a(z, z).

Suppose that z is the exact solution of the problem and Zh be its approximate solution, then, we
have

a(z, v) = (f(x), v), ∀v ∈ Sh

a(Zh, vh) = (f(x), vh), ∀vh ∈ Sh.

If e = z − Zh, then
a(e, vh) = 0, ∀vh ∈ Sh. (3.10)

The error can be decomposed as

e = z − Zh = z − Πhz + Πhz − Zh = ϵ1 − ϵ2,

where
ϵ1 = z − Πhz, ϵ2 = Πhz − Zh,

and
Πhz : H1(0, 1) −→ Sh

is the interpolant of the exact solution z ∈ H1(0, 1). Applying energy norm in above, gives

∥e∥a = ∥z − Zh∥a ≤ ∥z − Πhz∥a + ∥Πhz − Zh∥a ≤ ∥ϵ1∥a + ∥ϵ2∥a.

Lemma 3.2. Let Sh ⊆ H1
0 (0, 1), where 0 ≤ h ≤ 1. For z ∈ H1

0 (0, 1) ∩H4(0, 1), there exists a
constant C independent of h such that

inf
vh∈sh

∥Πhz − Zh∥a ≤ Ch3.

Proof. See [26].

Theorem 3.3. Assume that z be the exact solution of (2.3) and Zh be the approximate solution
of the variational formulation (2.5), then

∥z − Zh∥a ≤ C1h
3,

where C1 =
CCcont
Ccovr

+ C.
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Proof.
∥e∥a = z − Zh = z − Πhz + Πhz − Zh = ϵ1 + ϵ2,

where ϵ1 = z − Πhz, ϵ2 = Πhz − Zh. Plugging e = ϵ1 + ϵ2 in (3.10), this becomes

a(ϵ1 + ϵ2, v) = a(ϵ1, v) + a(ϵ2, v) = 0.

Testing v = ϵ2, gives
a(ϵ1, ϵ2) + a(ϵ2, ϵ2) = 0.

Therefore
a(ϵ1, ϵ2) = −a(ϵ2, ϵ2),

using the (3.1) and (3.2), imply that

Ccovr∥ϵ2∥2
a ≤ Ccont∥ϵ1∥a ∥ϵ2∥a

which leads to
∥ϵ2∥a ≤ Ccont

Ccovr
∥ϵ1∥a

from Lemma (3.2), gives
∥ϵ1∥a = Ch3.

Finally, we obtain

∥e∥a ≤ ∥ϵ1∥a + ∥ϵ2∥a =
CCcont

Ccovr
h3 + Ch3 = C1h

3.

4 Numerical Experiments

The section illustrates the performance of a presented method, through an implementation based
on Mathematica programming. The error norms are used to measure the error between the
numerical and exact solution. The error is defined as

E(s) = z(s)− Zh(s).

Then, the pointwise error is
εA(s) = |E(si)|.

Example 4.1. Given the following first order VIDE

z′(s) + z(s) = 1 − s− 2
3
s3 − 2

∫ s

0
z(t)dt,

with initial condition
z(0) = 0,

and exact solution z(s) = s− s2.

Table 2. Pointwise error εA(s) for Example 4.1.

s Zh(s) z(s) εA(s)

0.1 9.000e−02 9.e−02 1.544e−06

0.2 1.600e−02 1.6e−01 2.487e−06

0.3 2.100e−01 2.1e−01 7.297e−06

0.4 2.399e−01 2.4e−01 1.603e−05

0.5 2.500e−01 2.5e−01 6.851e−06

0.6 2.399e−01 2.4e−01 1.564e−05

0.7 2.100e−01 2.1e−01 8.723e−06

0.8 1.600e−01 1.6e−01 2.841e−06

0.9 9.000e−02 9.e−02 1.470e−06
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Figure 1. Numerical and exact solution of Example 4.1.

Example 4.2. Consider the VIDE

z′′(s)− z(s) = −f(s)−
∫ s

0
(s− t)z(t)dt, z(0) = z(1) = 0,

where

f(s) = s− s3

6
− ses−1 − e−1(2 + s),

and the exact solution z(s) = s− ses−1.

Table 3. Pointwise error εA(s) for Example 4.2.

s Zh(s) z(s) εA(s)

0.1 5.930e−02 5.934e−02 3.526e−05

0.2 1.100e−01 1.101e−01 4.026e−05

0.3 1.509e−01 1.510e−01 9.038e−05

0.4 1.804e−01 1.804e−01 6.642e−05

0.5 1.966e−01 1.967e−01 8.194e−05

0.6 1.977e−01 1.978e−01 7.125e−05

0.7 1.813e−01 1.814e−01 9.604e−05

0.8 1.449e−01 1.450e−01 4.870e−05

0.9 8.560e−02 8.564e−02 4.292e−05
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Figure 2. Numerical and exact solution of Example 4.2.

Example 4.3. Consider the VIDE

−z′′(s)− 3z(s) = f(s)−
∫ s

0
sin(s+ t)z(t)dt, z(0) = z(1) = 0,

where

f(s) = (2 − 3s+ 3s2) + (s2 − s− 2) cos(2s)− (2s− 1) sin(2s)− sin(2s) + 2 cos(s),

and the exact solution z(s) = −s2 + s.

Table 4. Pointwise error εA(s) for Example 4.3.

s Zh(s) z(s) εA(s)

0.1 8.993e−02 9.e−02 6.640e−05

0.2 1.599e−01 1.6e−01 8.855e−05

0.3 2.098e−01 2.1e−01 1.633e−04

0.4 2.398e−01 2.4e−01 1.390e−04

0.5 2.498e−01 2.5e−01 1.578e−04

0.6 2.398e−01 2.4e−01 1.378e−04

0.7 2.098e−01 2.1e−01 1.611e−04

0.8 1.599e−01 1.6e−01 8.617e−05

0.9 8.993e−02 9e−02 6.469e−05
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Figure 3. Numerical and exact solution of Example 4.3.

Example 4.4. Consider the second order VIDE

−z′′(s) + 4z(s) = −f(s)−
∫ s

0
stz(t)dt, z(0) = z(1) = 0,

where

f(s) =
s3

2
cosh(1)− s2

2
sinh(2s− 1) +

s

4
cosh(2s− 1)− s

4
cosh(1)− 4 cosh(1),

and the exact solution z(s) = cosh(2s− 1)− cosh(1).

Table 5. Pointwise error εA(s) for Example 4.3.

s Zh(s) z(s) εA(s)

0.1 8.993e−02 9.e−02 6.640e−05

0.2 1.599e−01 1.6e−01 8.855e−05

0.3 2.098e−01 2.1e−01 1.633e−04

0.4 2.398e−01 2.4e−01 1.390e−04

0.5 2.498e−01 2.5e−01 1.578e−04

0.6 2.398e−01 2.4e−01 1.378e−04

0.7 2.098e−01 2.1e−01 1.611e−04

0.8 1.599e−01 1.6e−01 8.617e−05

0.9 8.993e−02 9e−02 6.469e−05



CUBIC B-SPLINE FINITE ELEMENT METHOD 581

Figure 4. Numerical and exact solution of Example 4.4.

This pointwise error norm of εA(s) is presented in Tables 2 − 5. These tables provide in-
formation about the accuracy of the numerical solutions obtained using the cubic B-spline finite
element method. Based on the results presented in these tables, it can be concluded that the
method is reliable and produces results that are consistent with analytical solutions. This sug-
gests that the numerical method is effective in approximating the solution to the given problem.
Furthermore, the physical behavior of both the exact and approximate solutions at different lev-
els of spatial discretization h ≤ 1 is depicted graphically in Figures 1− 4. These figures visually
represent how well the numerical solutions capture the true behavior of the system, thereby pro-
viding additional evidence of the method’s reliability and accuracy.

5 Conclusion

This study combines a finite element method with a cubic B-spline function to solve second-
order VIDE. The work not only focuses on developing the numerical method but also addresses
the existence and uniqueness of solutions and verifies the accuracy of error estimates. To evalu-
ate the precision of the proposed scheme, several test problems are considered, and error norms
are calculated for different levels of spatial discretization. The numerical experiments demon-
strate that the results obtained from the method are efficient, reliable, fruitful, and powerful in
approximating the solutions to the given problems. Moreover, the performance for the method
shows good agreement between the exact solution and the approximate solution. However, it
would also be interesting to explore the application of a compact finite difference method for
solving such problems. For more detailed information, refer to the references [29, 30, 31, 32].
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