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Abstract In this paper, we deal with ring extensions R ⊂ S with a few non zero-dimensional
intermediate rings. We prove that the set of intermediate rings of such extensions is finite. If
moreover, R is integrally closed in S, then R ⊂ S is a Prüfer extension. We show that R ⊂ S has
a unique non zero-dimensional intermediate ring if and only if R ⊂ S is a minimal extension,
dim(R) = 1 and dim(S) = 0. We also characterize ring extensions R ⊂ S with exactly two non
zero-dimensional intermediate rings. In particular, we show that |[R,S]| ≤ 4.

1 Introduction

Throughout this paper all rings are commutative with nonzero identity. We assume that all ring
homomorphisms preserve the units. If R is a subring of S, then we let [R,S] denote the set
of intermediate rings in the ring extension R ⊆ S. We also set [R,S[:= [R,S] \ {S} and
]R,S] := [R,S] \ {R}. In the particular case where R is an integral domain with quotient field
K, then [R,K] is called the set of overrings of R. Let P be a ring-theoretic property. Recall
from [31, p. 34] that a pair of rings (R,S) is said to be a P-pair if R ⊆ S and each ring in
[R,S] satisfies P . A ring R is said to be a maximal non-P subring of S if R is a proper subring
of S, R does not satisfy P , while each ring in ]R,S] satisfies P (cf. [52]). It is worth noting
that among the difficult problems to solve in commutative algebra are the characterizations of
P-pairs of rings and maximal non-P subrings. In fact, the structures of the bottom and the top
rings forming the extension have a subtle influence on the intermediary rings in between. We
point out that several researchers in the area of commutative algebra have studied pairs of rings
and maximal non-P subrings for some properties P such as Jaffard (cf. [15, 16, 28]), valuation
(cf. [18, 36, 37, 38, 46]), Prüfer (cf. [5, 35, 39]), Universally catenarian (cf. [6, 14, 17]), ACCP
[8, 44], Noetherian (cf. [10, 52]), Artinian (cf. [1, 3, 42]), Dedekind [2], PVD [47, 48], Mori
[45], Almost valuation [43], integrally closed [40, 41, 46], prime ideally equal [4], PID [7, 46],
treed [11, 12], etc.

In [42] (resp., [1, 3]), the authors have studied ring extensions with at most two (resp., with
exactly three) non-Artinian intermediate rings. Our aim here is to complete this circle of ideas
by dealing with pairs of rings with a few non-zero-dimensional intermediate rings.

Recall that a ring R is called zero-dimensional if each prime ideal of R is maximal. Any
Artinian ring is zero-dimensional. It is worth mentioning that zero-dimensional rings, and espe-
cially local Artinian rings, play an important role in algebraic geometry, for instance in defor-
mation theory. Among the reasons that prompted us to do this study, we mention three. First,
the growing interest in P-pairs and maximal non-P subrings as described above. Second, the
nice paper [32], written by Gilmer and Heinzer, concerning zero-dimensional pairs of rings. In
fact, in [32, Corollary 4.2] Gilmer and Heinzer have completely characterized zero-dimensional
pairs of rings. Third, the paper [42] where the authors have considered the problem, but for the
property “Artinian”. In this context, we would like to point out that we cannot apply directly [42]
in our study, even though the properties “Artinian” and “zero-dimensional” appear to be closely
related. In fact, when the ring extension R ⊂ S has exactly n non zero-dimensional intermediate
rings, nothing guarantees that it has exactly n non-Artinian intermediate rings.

Before presenting our results, we need to mention some definitions, tools and results that we
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will use throughout this research. Let R ⊆ S be a ring extension. We let RS denote the integral
closure of R in S and R′ denote the integral closure of R (in its total quotient ring). Any ring
extension R ⊂ S such that [R,S] = {R,S} is called minimal (cf. [27]). As RS lies between R
and S, it results that if R ⊂ S is minimal, then it is either closed (that is, RS = R); or integral
(that is, RS = S). A pair of rings (R,S) is called normal if T ⊆ S is an integrally closed
extension (in the sense that T is integrally closed in S) for each ring T ∈ [R,S] (cf. [20]). Davis
was the first who introduced the concept of normal pairs, but for integral domains. Normal pairs
generalize Prüfer domains. In fact, if R is an integral domain with quotient field K, then (R,K)
is a normal pair if and only if R is a Prüfer domain (cf. [20, Theorem 1] or [29, Theorems
23.4(1) and 26.1(1)]). Other interesting results about normal pairs of integral domains have been
established in [9]. The study of normal pairs of rings with zero divisors has attracted attention of
many researchers (see for instance, [19], [25] and [50]). This led to the generalization of many
results from the domain-theoretic case to arbitrary rings. We draw the reader’s attention that,
on the other hand, Knebusch and Zhang [50] have introduced the concept of Prüfer extensions.
Recall that R ⊆ S is called a Prüfer extension if R ⊆ T is a flat epimorphism for each T ∈ [R,S].
It was proved [50, Theorem 5.2] that R ⊆ S is a Prüfer extension if and only if (R,S) is a normal
pair. Any ring extension R ⊆ S has a greatest Prüfer subextension R ⊆ R̃S , called the Prüfer
hull of R in S (cf. [50]) and a ring extension R ⊆ S is called Prüfer-closed if R = R̃S .

We have organized our paper as follows: In Section 2, we study ring extensions R ⊂ S with
only one non zero-dimensional intermediate ring. We show in Theorem 2.7 that the number of
non zero-dimensional intermediate rings is 1 if and only if R is a maximal non zero-dimensional
subring of S if and only if R ⊂ S is a closed minimal extension with dim(R) = 1 and dim(S) =
0. As a consequence, if S is an integral domain, then R is a maximal non zero-dimensional
subring of S if and only if R is a rank one valuation domain with quotient field S (see Corollary
2.8). In Section 3, we present some interesting properties of pairs of rings with a few non zero-
dimensional intermediate rings. A key result is Theorem 3.2, which states that if R ⊂ S is
a ring extension with n ≥ 1 non zero-dimensional intermediate rings, then [R,S] is finite. If
moreover R ⊂ S is integrally closed, then (R,S) is a normal pair and all maximal chains of
rings in [R,S] have the same finite length. Section 4 is devoted to a complete description of ring
extensions having exactly two non zero-dimensional intermediate rings (see Theorems 4.2 and
4.3). In Corollary 4.5, we treat the particular case of integral domains.

We use “⊆” for inclusion and “⊂” for strict inclusion. Most of our notation is standard and
can for instance be found in [29] and [49].

2 Maximal non zero-dimensional subrings

In 1992, Gilmer and Heinzer have studied and characterized zero-dimensional pairs of rings (cf.
[32, Corollary 4.2]). We label their result as Theorem 2.1.

Theorem 2.1. Let R ⊂ S be a ring extension. Then the following conditions are equivalent:

(i) (R,S) is a zero-dimensional pair.

(ii) R ⊂ S is an integral extension and dim(R) = 0.

(iii) R ⊂ S is an integral extension and dim(S) = 0.

Our investigation for this work was motivated by the following nice result due to Gilmer and
Heinzer (cf. [31, Theorem 1]).

Lemma 2.2. Let R ⊂ S be a ring extension and n ≥ 0 an integer. Assume that dim(T ) ≤ n for
each ring T in [R,S[ that is finitely generated as an R-algebra. Then dim(S) ≤ n. In particular,
if dim(T ) = 0 for each ring T in [R,S[, then dim(S) = 0.

The following proposition is an easy consequence of Lemma 2.2.

Proposition 2.3. Let R ⊂ S be a ring extension and n a positive integer. Assume that T1, T2, · · · , Tn

are the only intermediate rings between R and S such that dim(Ti) ≥ 1 for any i. Then
dim(R) ≥ 1.
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The next result follows immediately from Proposition 2.3.

Corollary 2.4. Let R ⊂ S be a ring extension. Then the following statements are equivalent:

(i) The number of non zero-dimensional rings in [R,S] is 1.

(ii) R is a maximal non zero-dimensional subring of S.

Before leaving this train of thoughts, we provide in the next corollary a new and short proof
of [13, Proposition 3.21].

Corollary 2.5. Let R ⊂ S be a minimal ring extension. Then dim(R) = 0 if and only if dim(S) =
0 and R ⊂ S is an integral extension.

Proof. If dim(R) = 0, then dim(S) = 0 by Lemma 2.2. Hence, (R,S) is a zero-dimensional
pair. Thus, R ⊂ S is an integral extension by virtue of Theorem 2.1. Conversely, assume that
dim(S) = 0 and R ⊂ S is an integral extension. Then, by integrality, dim(R) = 0.

Our main purpose here is to provide a characterization of maximal non zero-dimensional
subrings. Recall from [49, p. 28] that a ring extension R ⊆ S is said to satisfy incomparability
(in short, INC) if and only if distinct comparable prime ideals of S contract to distinct prime
ideals of R. Dobbs [23] has introduced the concept of INC-pairs of rings. More precisely, given
a ring extension R ⊆ S, we say that (R,S) is an INC-pair if R ⊆ T satisfies INC for any ring
T ∈ [R,S]. We recall from [33] that a ring extension R ⊆ S is called a P -extension if any
element of S is a root of a polynomial in R[X] with unit content. It was demonstrated in [22,
Theorem] that (R,S) is an INC pair if and only if R ⊆ S is a P -extension. Normal pairs of rings
and P -extensions are closely related. In fact, (R,S) is a normal pair if and only if R ⊆ S is an
integrally closed P -extension (see [19, Theorem 1]).

Lemma 2.6. If R is a maximal non zero-dimensional subring of S, then (R,S) is a normal pair.

Proof. One can easily check that (R,S) is a INC pair. Indeed, if A ∈]R,S], then dim(A) = 0.
Therefore, R ⊂ A satisfies INC. On the other hand, R is integrally closed in S. To see this,
assume by way of contradiction that RS ̸= R. Since R is a maximal non zero-dimensional
subring of S, then necessarily dim(RS) = 0. Hence, by integrality, dim(R) = dim(RS) = 0,
which is a contradiction. An application of [19, Theorem 1] ensures that (R,S) is a normal
pair.

Theorem 2.7. Let R ⊂ S be a ring extension. Then the following statements are equivalent:

(i) R is a maximal non zero-dimensional subring of S.

(ii) R ⊂ S is a closed minimal extension and dim(S) = 0.

(iii) R ⊂ S is a minimal extension, dim(R) = 1 and dim(S) = 0.

(iv) R/(R : S) is a one-dimensional valuation domain with quotient field S/(R : S) and
dim(S) = 0.

Proof. (i)⇒(ii) The fact that R is integrally closed in S follows from Lemma 2.6. It remains
to show that R ⊂ S is a minimal ring extension. To this end, let B ∈]R,S]. Then (B,S) is a
zero-dimensional pair. Thus, B ⊆ S is an integral extension by virtue of Theorem 2.1. But, B is
integrally closed in S according to Lemma 2.6. This yields B = S.
(ii)⇒(iii) Follows from [13, Proposition 3.2].
(iii)⇔(iv) Follows from [21, Corollary 2.14].
(iii)⇒(i) Trivial.

Applying Theorem 2.7 to integral domains, we derive immediately the following corollary.

Corollary 2.8. Let R ⊂ S be an extension of integral domains. Then the following statements
are equivalent:

(i) R is a maximal non zero-dimensional subring of S.

(ii) R is a rank one valuation domain with quotient field S.
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3 Some properties of Ring extensions with a few non zero-dimensional
intermediate rings

We start this section with some general results concerning ring extensions R ⊂ S with n ≥ 1
non zero-dimensional intermediate rings.

Lemma 3.1. Let R ⊂ S be a ring extension with (exactly) n ≥ 2 non zero-dimensional interme-
diate rings. If T ∈]R,S] is minimal with respect to being non zero-dimensional, then R ⊂ T is a
minimal extension.

Proof. Assume the contrary and let A be a ring such that R ⊂ A ⊂ T . As T is minimal with
respect to being non zero-dimensional, then each ring in [A, T [ is zero-dimensional. Therefore,
Lemma 2.2 ensures that dim(T ) = 0, the desired contradiction completing the proof.

Recall that a ring extension R ⊆ S is said to be an FIP extension (for the “finitely many
intermediate algebras property”) if [R,S] is finite. Recall also that R ⊆ S is said to be an FCP
extension if each chain in [R,S] is finite. Clearly, each FIP extension is an FCP extension. In
[24], the authors have characterized FCP and FIP extensions. Following Dobbs and Shapiro
[26], an FCP ring extension is called catenarian if all maximal chains between R and S have the
same length (equivalently, the Jordan-Hölder chain condition holds true).

Theorem 3.2. Let R ⊂ S be a ring extension with (exactly) n ≥ 1 non zero-dimensional inter-
mediate rings. Then the following conditions hold true:

(i) R ⊂ S is an FIP extension.

(ii) If R ⊂ A ⊆ S and dim(A) = 0, then (A,S) is a zero-dimensional pair. In particular,
A ⊆ S is an integral extension.

(iii) If moreover R ⊂ S is integrally closed, then the following hold true:

a. (R,S) is a normal pair.

b. R ⊂ S is catenarian.

c. We have:

|[R,S]| =

{
n+ 1 if dim(S) = 0
n if dim(S) ≥ 1

Proof. (i) We argue by induction on n. If n = 1, then R ⊂ S is a closed minimal extension
according to Theorem 2.7. Thus, R ⊂ S is an FIP extension. Assume now that the result holds
for any ring extension A ⊂ B with k non zero-dimensional intermediate rings, where k ≤ n
and let R ⊂ S be a ring extension with n + 1 non zero-dimensional intermediate rings. Using
Proposition 2.3, dim(R) ≥ 1. So, let T ∈]R,S] be minimal with respect to being non zero-
dimensional. According to Lemma 3.1, R ⊂ T is a minimal extension. Thus, R ⊂ T is an
FIP extension. On the other hand, since the number of non zero-dimensional intermediate rings
between T and S is ≤ n, then the induction hypothesis asserts that T ⊂ S is an FIP extension.
It follows that R ⊂ T and T ⊆ S are both P -extensions. Thus, R ⊂ S is also a P -extension (cf.
[19, Theorem 2]). We will discuss the following two cases:
case 1. R is integrally closed in S.
In this case, R ⊂ T is an integrally closed extension. Moreover, (R,S) is a normal pair. Thus,
T ⊆ S is also an integrally closed extension. On the other hand, it follows from the above
comments that R ⊂ T and T ⊆ S are both P -extensions. Therefore, R ⊂ S is an FIP extension
by virtue of [24, Corollary 6.5].
case 2. R is not integrally closed in S.
In this case, the number of non zero-dimensional intermediate rings between RS and S is ≤ n.
Thus, the induction hypothesis asserts that RS ⊆ S is an FIP extension. As dim(R) ≥ 1, then
dim(D) ≥ 1 for each ring D in [R,RS ]. Thus, |[R,RS ]| ≤ n + 1. If |[R,RS ]| ≤ n, then
the induction hypothesis ensures that R ⊂ RS is an FIP extension. Hence, it follows from [24,
Theorem 3.13] that R ⊂ S is also an FIP extension. Now, if |[R,RS ]| = n+1, then two subcases
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can occur.
subcase 2.1. RS ̸= S.
In this subcase, RS would be a maximal non-zero-dimensional subring of S. Hence, RS ⊂ S
would be a minimal extension. Thus, RS ⊂ S is an FIP extension. An appeal to [24, Theorem
3.13] guarantees that R ⊂ S is an FIP extension.
subcase 2.2. RS = S.
In this subcase, |[R,S]| = n+ 1. Thus, R ⊂ S is an FIP extension.
(ii) Let A ∈]R,S] such that dim(A) = 0 and let B ∈ [A,S]. Our task is to show that dim(B) = 0.
Note that the ring extension A ⊆ B inherits the FIP property from R ⊂ S. Thus, there exists a
(finite) chain of rings A = A0 ⊂ A1 ⊂ ... ⊂ Al = B. As A ⊂ A1 is minimal and dim(A) = 0,
then dim(A1) = 0 accordingly to Corollary 2.4. Again, as A1 ⊂ A2 is minimal and dim(A1) = 0,
then dim(A2) = 0. Proceed along the same lines, one can easily check that dim(B) = 0.
Hence, (A,S) is a zero-dimensional pair. It follows from Theorem 2.1 that A ⊆ S is an integral
extension.
(iii) a. Since R ⊂ S is an integrally closed extension satisfying FIP, then [24, Theorem 6.3]
ensures that (R,S) is a normal pair.
b. As R ⊂ S is an integrally closed extension satisfying FCP, then R ⊂ S is catenarian by virtue
of [34, Theorem 1, p. 172].
c. Assume first that dim(S) = 0 and let A ∈ [R,S] such that dim(A) = 0. Then, A ̸= R by
Proposition 2.3. It follows from (ii) that A ⊆ S is an integral extension. But, A is integrally
closed in S since (R,S) is a normal pair. This yields that A = S. So S is the unique zero-
dimensional intermediate ring between R and S. Therefore, |[R,S]| = n+ 1. Suppose now that
dim(S) ≥ 1 and let A ∈ [R,S]. If dim(A) = 0, then A ∈]R,S] (since dim(R) ≥ 1) and A ⊆ S
is an integral extension by using (ii), which is impossible since A and S have distinct (Krull)
dimensions. It follows that dim(A) ≥ 1. Therefore, each intermediate ring between R and S is
non-zero-dimensional. This implies that |[R,S]| = n.

4 When is the number of non zero-dimensional intermediate rings 2?

Our main goal in this section is to completely describe the structure of ring extensions with ex-
actly two non zero-dimensional intermediate rings. We start our investigation with the following
lemma.

Lemma 4.1. Let R ⊂ S be a ring extension with (exactly) two non zero-dimensional intermedi-
ate rings. Then (exactly) one of the following conditions holds true:

(i) R ⊂ S is a minimal extension and dim(S) ≥ 1.

(ii) There exists an intermediate ring T such that R ⊂ T and T ⊂ S are minimal extensions
with dim(S) = 0 and dim(T ) = 1.

Proof. According to Proposition 2.3, dim(R) ≥ 1. Let T be the second non zero-dimensional
ring such that R ⊂ T ⊆ S. Then R ⊂ T is a minimal ring extension by virtue of Lemma 3.1. If
T = S, then R ⊂ S is a minimal extension with both R and S non zero-dimensional. Suppose
now that T ̸= S. Then, T would be a maximal non zero-dimensional subring of S. Thus,
Theorem 2.7 guarantees that T ⊂ S is a minimal extension, dim(S) = 0 and dim(T ) = 1.

The next result provides a classification of integrally closed ring extensions with exactly two
non zero-dimensional intermediate rings.

Theorem 4.2. Let R ⊂ S be a ring extension such that R is integrally closed in S. Then the
following statements are equivalent:

(i) The number of non zero-dimensional intermediate rings is 2.

(ii) (Exactly) one of the following conditions holds:

a. R ⊂ S is a closed minimal extension and dim(S) ≥ 1.

b. [R,S] ordered by the usual set inclusion is a chain of length 2 and dim(S) = 0.
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Proof. (i)⇒(ii) If dim(S) ≥ 1, then |[R,S]| = 2 by virtue of Theorem 3.2. Hence, R ⊂ S
is a closed minimal extension. Now, if dim(S) = 0, then using again Theorem 3.2 we get
|[R,S]| = 3. Therefore, [R,S] ordered by the usual set inclusion is a chain of length 2.
(ii)⇒(i) If R ⊂ S is a minimal extension with dim(S) ≥ 1, then according to Lemma 2.2,
dim(R) ≥ 1. Hence, we are done. Assume now that [R,S] is a chain of length 2 and dim(S) = 0.
Then [R,S] = {R, T, S}, where R ⊂ T and T ⊂ S are closed minimal extensions. We infer
that dim(T ) ≥ 1, since otherwise (T, S) would be a zero-dimensional pair and so S would be
integral over T according to Theorem 2.1, which is impossible since T is integrally closed in
S. Moreover, dim(R) ≥ 1 since otherwise T would be zero-dimensional by virtue of Lemma
2.2. Therefore, there are exactly two non zero-dimensional intermediate rings between R and S,
namely R and T . The proof is complete.

In the following theorem, we determine all ring extensions R ⊂ S with exactly two non
zero-dimensional intermediate rings in case R is not integrally closed in S.

Theorem 4.3. Let R ⊂ S be a ring extension such that R is not integrally closed in S. Then the
following statements are equivalent:

(i) The number of non zero-dimensional intermediate rings is 2.

(ii) (Exactly) one of the following conditions holds:

a. R ⊂ S is a minimal integral extension with dim(S) ≥ 1.

b. dim(S) = 0, dim(R) = 1 and [R,S] ordered by the usual set inclusion is either a
chain of length 2 or consists of two chains of length 2.

Proof. (i)⇒(ii) If R ⊂ S is a minimal extension, then it must be integral since R is not integrally
closed in S. Moreover, as there are exactly two non zero-dimensional intermediate rings between
R and S, then R and S should be non zero-dimensional. Now, assume that R ⊂ S is not a
minimal extension. Then according to Lemma 4.1, there exists an intermediate ring T such that
R ⊂ T and T ⊂ S are minimal extensions, dim(S) = 0 and dim(T ) = 1. Thus, T ⊂ S should
be a closed minimal extension. It follows that the minimal ring extension R ⊂ T is integral. In
this case RS ∈ [T, S] and hence T = RS . On the other hand, Theorem 3.2 (i) ensures that R ⊂ S
is a P -extension. Now, we will discuss the following two cases:
case 1. R ⊂ S is a Prüfer-closed extension.
We show in this case that [R,S] is a chain of length 2. More precisely, [R,S] = {R,RS , S}.
To this end, let A ∈ [R,S]. As R ⊂ RS is a minimal ring extension, then either A ∩ RS = R
or A ∩ RS = RS . If A ∩ RS = R, then R is integrally closed in A and as R ⊆ A is a P -
extension, then (R,A) is a normal pair. Thus A = R since R ⊂ S is a Prüfer-closed extension.
If A ∩RS = RS , then A ∈ [RS , S]. Therefore, A = RS or A = S because RS ⊂ S is a minimal
ring extension.
case 2. R ⊂ S is not a Prüfer-closed extension.
In this case, we show that [R,S] consists of two chains of length 2.
First claim. R ⊂ R̃S is a (closed) minimal extension.
For, let A ∈]R, R̃S ]. Then A and RS are incomparable under inclusion. This yields that A ∈
[R,S] \ {R,RS , S}. Hence, dim(A) = 0. It follows that R is a maximal non zero-dimensional
subring of R̃S . Therefore, R ⊂ R̃S is a closed minimal extension accordingly to Theorem 2.7.
Second claim. [R,S] = {R,RS , S, R̃

S}.
Indeed, let B ∈ [R,S]. If B ∩ RS = R, then R is integrally closed in B and as R ⊆ B is a
P -extension, then (R,B) is a normal pair. Thus B ∈ [R, R̃S ]. So B = R or B = R̃S because
R ⊂ R̃S is minimal by the first claim. If B ∩ RS = RS , then B contains RS and so B = RS or
B = S, which completes the proof of our claim.
(ii)⇒(i) If R ⊂ S is a minimal extension and dim(S) ≥ 1, then we are done, by using Proposition
2.3. Suppose now that [R,S] is a chain of length 2, dim(S) = 0 and dim(R) = 1. We claim
that [R,S] = {R,RS , S}. Indeed, as R is not integrally closed in S, then R ̸= RS . Moreover,
as dim(RS) = dim(R) = 1 and dim(S) = 0, then RS ̸= S. It follows that [R,S] = {R,RS , S}
as claimed. Clearly, there are exactly two non zero-dimensional intermediate rings between R
and S, namely R and RS . Now, assume that [R,S] consists of two chains of length 2 such that
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dim(S) = 0 and dim(R) = 1. Then there exist two incomparable rings A1 and A2 distinct from
R and from S such that [R,S] = {R,A1, A2, S}. Since dim(RS) = dim(R) = 1 ̸= dim(S), then
clearly RS ̸= S. Without loss of generality, we can suppose that RS = A1 and hence dim(A1) =
dim(RS) = dim(R) = 1. One can check that dim(A2) = 0. Indeed, assume the contrary,
then A2 would be a maximal non zero-dimensional subring of S and hence A2 ⊂ S would be
a closed minimal extension accordingly to Theorem 2.7. Thus R ⊂ A2 is a minimal integral
extension, for otherwise R would be integrally closed in S, which contradicts the assumption
made on R. Hence A2 ⊆ RS , which is a contradiction with the incomparability of A2 and
A1 = RS . Therefore, there are exactly two non zero-dimensional intermediate rings between R
and S, namely R and RS . The proof is complete.

Corollary 4.4. If the number of non zero-dimensional intermediate rings in a ring extension
R ⊂ S is 2, then |[R,S]| ≤ 4.

The next corollary classifies ring extensions R ⊂ S with exactly two non zero-dimensional
intermediate rings in the particular case where S is an integral domain.

Corollary 4.5. Let R ⊂ S be an extension of integral domains. Then the following statements
are equivalent:

(i) The number of non zero-dimensional intermediate rings is 2.

(ii) (Exactly) one of the following conditions holds:

a. R ⊂ S is a minimal extension and S is not a field.

b. R is a rank two valuation domain with quotient field S.

c. R ⊂ R′ is a minimal extension and R′ is a rank one valuation domain with quotient
field S.

Proof. (i)⇒(ii) If R ⊂ S is a minimal extension, then we are done. Suppose now that R ⊂ S is
not a minimal extension. It follows from Theorems 4.2 and 4.3 that S is a field and R is not a
field. If R is integrally closed in S, then [R,S] is a chain of length 2 by virtue of Theorem 4.2.
According to [51, page 1738, lines 8-13], S is the quotient field of R. Thus, R is a rank two
valuation domain with quotient field S. If R is not integrally closed in S, then [51, page 1738,
lines 8-13] and Theorem 4.3 guarantee that S is the quotient field of R and R ⊂ R′ ⊂ S is a
chain of length 2. Hence, R ⊂ R′ is a minimal extension and R′ is a rank one valuation domain
with quotient field S.
(ii)⇒(i) If R ⊂ S is a minimal extension and S is not a field, then R cannot be a field (see
[27, Théorème 2.2]). If R is a rank two valuation domain with quotient field S, then [R,S] =
{R, V, S}, where V is the rank one valuation overring of R. Finally, if R ⊂ R′ is a minimal exten-
sion and R′ is a rank one valuation domain with quotient field S, then [30, Theorem 2.4] ensures
that [R,S] = {R,R′, S}. Therefore, in all cases, there are exactly two non zero-dimensional
intermediate rings between R and S. This completes the proof.
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