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Abstract The study of spectral graph theory is concerned with the relationships between the
spectra of certain matrices associated with a graph and the structural properties of that graph.
The energy of a graph is related to the total π-electron energy in molecule represented by a
molecular graph. In this paper, we introduce a matrix called as a general degree subtraction of a
graph and compute its characteristic polynomial and spectra in terms of the first general Zagreb
index. We explore its bounds for spectral radius. Further we observe the effects on the general
degree subtraction energy when some operations are applied. We also give an algorithm with
time complexity O(n) to find the general degree subtraction energy of a graph.

1 Introduction

The characteristics polynomial, spectrum, eigenvalues, and energy of a graph frequently appear
in mathematical sciences, chemistry, physics, etc. One of the application of the characteristics
polynomial is to get the information about the structural properties of a graph [5, 8, 9]. Eigen-
values are used in Hückel molecular orbital [7, 8, 11, 18]. Many researches introduced many
different matrices like Laplacian Matrix[1, 10], Distance matrix [3], degree product matrix[22],
Degree Exponent Subtraction matrix[25], degree subtraction matrix[21], degree square subtrac-
tion matrix[17] and many more and also studied their eigenvalues and energy. Inspired by this
we introduced a general degree subtraction matrix of a simple connected graph G.

Let G be a simple connected graph with n vertices and m edges. Let V (G) = {v1, v2, · · · ,
vj , · · · , vn} be a vertex set, N(v) be the first neighbor vertex set of v, dj = degG(vj) be the
degree of a vertex vj of G.

The general degree subtraction of a graph G of order n is an n × n matrix which is denoted
by αDS(G) and defined as αDS(G) = [dsjk] where

dsjk =

{
dj

α − dk
α if vj ̸= vk

0 otherwise,

where α is a nonzero real number.
Let In be an identity matrix of order n. Then αDS(G)-eigenvalues of G are the roots of the

characteristic polynomial ϕ(G, ζ) = 0, and they are labeled as ζ1, ζ2, . . . , ζn. Since αDS(G) is
a skew symmetric matrix, its eigenvalues are either purely imaginary or zero. The collection of
αDS(G)-eigenvalues is called as αDS(G)-spectra. The general degree subtraction energy of G
is denoted by αDSE and defined as

αDSE(G) =
n∑

j=1

|ζj |. (1.1)
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Consider δ a minimum degree of G, ∆ a maximum degree of G and π(G) = (d1, d2, . . . , dn)
is the graphic sequence of G. Let λ1, λ2, · · · , λk are distinct eigenvalues of adjacency matrix
of G, and m1,m2, · · · ,mk, where k ≤ n are multiplicity of the adjacency eigenvalues of G
respectively. Then the spectra of G [4] is defined as

spec(G) =

(
λ1 λ2 · · · λk

m1 m2 · · · mk

)
.

Li and Zheng [27] introduced the general Zagreb index as Mα
1 (G) =

∑n
j=1 d

α
j , where

α ∈ R − {0, 1} and general Randić index as Mα
2 (G) =

∑
uv∈E (dudv)

α, where α is a nonzero
real number and E is the edge set of G.

In [28], Li and Zhao characterized all trees with the first three smallest and largest values of
the first general Zagreb index when α is an integer or a fraction 1

p for a nonzero integer p. In [30]
H. Zhang and S. Zhang identified all the unicyclic graphs with the first three smallest and largest
values of the first general Zagreb index.

In this paper, we obtain the characteristic polynomial and spectra of general degree subtrac-
tion of a graph G in terms of the first general Zagreb index. We explore its bounds for spectral
radius. Further we observe the effects on the general degree subtraction energy when some op-
erations are applied. We also give an algorithm to find the general degree subtraction energy of
a graph with time complexity O(n).

2 Spectra of αDS(G)

Theorem 2.1. Let G be a graph of order n, size m and Mα
1 (G) is first general Zagreb index.

Then the αDS(G)-spectra is

Spec(G) =

 0 i
√
n
∑n

j=1 d
2α
j − (Mα

1 (G))
α −i

√
n
∑n

j=1 d
2α
j − (Mα

1 (G))
2

n− 2 1 1

 ,

where i =
√
−1.

Proof. The characteristic polynomial of αDS(G) is

ϕ(G : ζ) = det(ζI − αDS(G))

=

∣∣∣∣∣∣∣∣∣∣∣∣

ζ −dα1 + dα2 −dα1 + dα3 · · · −dα1 + dαn
−dα2 + dα1 ζ −dα2 + dα3 · · · −dα2 + dαn
−dα3 + dα1 −dα3 + dα2 ζ · · · −dα3 + dαn

...
...

−dαn + dα1 −dαn + dα2 −dαn + dα3 · · · ζ

∣∣∣∣∣∣∣∣∣∣∣∣
.

(2.1)

To obtain (2.2) from (2.1) subtract first row from all the succeeding rows

=

∣∣∣∣∣∣∣∣∣∣∣∣

ζ −dα1 + dα2 −dα1 + dα3 · · · −dα1 + dαn
−dα2 + dα1 − ζ ζ + dα1 − dα2 −dα2 + dα1 · · · −dα2 + dα1
−dα3 + dα1 − ζ −dα3 + dα1 ζ + dα1 − dα3 · · · −dα3 + dα1

...
...

−dαn + dα1 − ζ −dαn + dα1 −dαn + dα1 · · · ζ + dα1 − dαn

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.2)

To obtain (2.3) from (2.2) subtract first column from all the succeeding columns

=

∣∣∣∣∣∣∣∣∣∣∣∣

ζ −dα1 + dα2 − ζ −dα1 + dα3 − ζ · · · −dα1 + dαn − ζ

−dα2 + dα1 − ζ 2ζ ζ · · · ζ

−dα3 + dα1 − ζ ζ 2ζ · · · ζ
...

...
−dαn + dα1 − ζ ζ ζ · · · 2ζ

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.3)
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To obtain (2.4) from (2.3) subtract second column from all the succeeding columns

=

∣∣∣∣∣∣∣∣∣∣∣∣

ζ −dα1 + dα2 − ζ −dα2 + dα3 · · · −dα2 + dαn − ζ

−dα2 + dα1 − ζ 2ζ −ζ · · · −ζ

−dα3 + dα1 − ζ ζ ζ · · · 0
...

...
−dαn + dα1 − ζ ζ 0 · · · ζ

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.4)

To obtain (2.5) from (2.4) add rows 3, 4, · · · , n to the second row

=

∣∣∣∣∣∣∣∣∣∣∣∣

ζ −dα1 + dα2 − ζ −dα2 + dα3 · · · −dα2 + dαn − ζ

−Mα
1 (G) + ndα1 − (n− 1)ζ nζ 0 · · · 0

−dα3 + dα1 − ζ ζ ζ · · · 0
...

...
−dαn + dα1 − ζ ζ 0 · · · ζ

∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

(2.5)

Let M =

[
ζ −dα1 + dα2 − ζ

−Mα
1 (G) + ndα1 − (n− 1)ζ nζ

]
2×2

N =

[
−dα2 + dα3 · · · −dα2 + dαn − ζ

0 · · · 0

]
2×(n−2)

P =


−dα3 + dα1 − ζ ζ

...
...

−dαn + dα1 − ζ ζ


(n−2)×2

Q =


ζ 0 · · · 0
0 ζ · · · 0
...

...
0 0 · · · ζ


(n−2)×(n−2)

.

ϕ(G : ζ) = ζn−2
∣∣∣M −N 1

ζ I(n−2)P
∣∣∣
2×2

= ζn−2

∣∣∣∣∣
[

ζ −dα1 + dα2 − ζ

−Mα
1 (G) + ndα1 − (n− 1)ζ nζ

]
− 1

ζ

[
K L

0 0

]∣∣∣∣∣ ,
where

K = −
n∑

j=1

d2α
j +Mα

1 (G)(dα1 + dα2 )− n(d1d2)
α −Mα

1 (G)ζ + ζ(dα1 + dα2 ) + (n− 2)dα2 ζ,

L = (Mα
1 (G)− dα1 − dα2 )ζ − (n− 2)dα2 ζ.

Therefore,

ϕ(G : ζ) = ζn−2
(
ζ2 + n

∑n
j=1 d

2α
j −

(∑n
j=1 d

α
j

)2
)
. (2.6)

From (2.6), the αDS(G)-eigenvalues are 0 with multiplicity (n− 2) times and

±i

√√√√√n

n∑
j=1

d2α
j −

 n∑
j=1

dαj

2

. (2.7)
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If α is an arbitrary real number, not 0 and 1, then

ϕ(G : ζ) = ζn−2
(
ζ2 + n

∑n
j=1 d

2α
j − (Mα

1 (G))
2
)
. (2.8)

From (2.8), the αDS(G)-eigenvalues are 0 with multiplicity (n− 2) and

±i
√
n
∑n

j=1 d
2α
j − (Mα

1 (G))
2.

Corollary 2.2. If G is a regular graph, then the characteristic polynomial of general degree
subtraction of G is

ϕ(G : ζ) = ζn. (2.9)

3 Bounds for spectral radius |ζ1| of αDS(G)

Theorem 3.1. Let G be a graph of order n, and |ζj |, j = 1, 2, . . . , n are the non ascending
absolute αDS(G)-eigenvalues. Then they satisfy the following relations

(i) ζ2 = −ζ1 (3.1)

(ii) ζ1 = i
√
Z or ζ2 = −i

√
Z (3.2)

(iii) |ζ1| = |ζ2| =
√
Z, (3.3)

where Z =
∑

1≤j<k≤n (dj
α − dk

α)
2 and i =

√
−1.

Proof. Since we have two nonzero αDS(G)-eigenvalues ζ1 and ζ2 remaining eigenvalues are
zero and

n∑
j=1

ζj = trace(αDS(G)) = 0.

Therefore,
ζ2 = −ζ1.

Since,

n∑
j=1

ζ2
j = trace(αDS(G)2) = −2

∑
1≤j<k≤n

(dj
α − dk

α)
2
= −2Z.

Which implies

ζ1 = i
√
Z or ζ2 = −i

√
Z.

Hence,

|ζ1| = |ζ2| =
√
Z.

Theorem 3.2. Let G be a graph of order n with the maximum degree ∆ and minimum degree δ
and let |ζ1| be the largest absolute αDS(G)-eigenvalue. Then

|ζ1| ≤ |∆α − δα|
√

n(n− 1)
2

. (3.4)

Equality holds if G is a regular graph or α = 0.
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Proof. Since,

Z =
∑

1≤j<k≤n

(dj
α − dk

α)
2
.

Then

Z ≤
(
n

2

)
(∆α − δα)

2
. (3.5)

From (3.3) and (3.5) we get the required result.

Theorem 3.3. Let G be a graph of order n with the maximum degree ∆ and minimum degree δ.
Let |ζj |, j = 1, 2, · · · , n be the non ascending absolute αDS(G)-eigenvalues and let α be an
arbitrary real number, not 0 and 1.

(i) If α < 0, then
0 ≤ |ζ1| ≤ nδα −Mα

1 (G).

(ii) If α > 0, then
0 ≤ |ζ1| ≤ n∆

α −Mα
1 (G).

Equality holds if G is a regular graph.

Proof. Let v1, v2, · · · , vn are the vertices of G and dj be the degree of vj . Since the sum of the
elements of jth row in αDS(G) is ndαj −Mα

1 (G). Therefore we get the following

min{ndαj −Mα
1 (G)} ≤ |ζj | ≤ max{ndαj −Mα

1 (G)}.

Since αDS(G)-eigenvalues are either purely imaginary or zeros so we get the following equa-
tion.

(i) If α < 0, then
0 ≤ |ζj | ≤ nδα −Mα

1 (G). (3.6)

Since |ζ1| and |ζ2| are nonzero αDS(G)-eigenvalues and remaining eigenvalues are zero,
then from (3.6) we get the required result.

(ii) If α > 0, then
0 ≤ |ζj | ≤ n∆

α −Mα
1 (G). (3.7)

Since |ζ1| and |ζ2| are nonzero αDS(G)-eigenvalues and remaining eigenvalues are zero,
then from (3.7) we get the required result.

Corollary 3.4. Let G be a graph of order n with the maximum degree ∆ and minimum degree δ
and let |ζ1| be the largest absolute αDS(G)-eigenvalue. Then

|ζ1| ≤ n |∆α − δα| . (3.8)

Equality holds if G is a regular graph.

Remark 3.5. Since
√

n(n−1)
2 < n, the upper bound Theorem (3.2) is more sharper than the upper

bound corollary (3.4).

Remark 3.6. Since |ζ1| = |ζ2|. Then |ζ1| and |ζ2| have the same upper bound.
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4 Energy of αDS(G) and its Bounds

Theorem 4.1. Let G be a graph of order n and dj the degree of vj of G. Let α be an arbitrary
real number, not 0 and 1. Then the general degree subtraction energy of G is

αDSE(G) = 2

√√√√n

n∑
j=1

d2α
j − (Mα

1 (G))
2
.

Proof. From Theorem (2.1) we get the required result.

Theorem 4.2. Let G be a graph. Then

αDSE(G) = 2
√
Z. (4.1)

Proof. From (1.1)

αDSE(G) =
n∑

j=1

|ζj |

αDSE(G) = 2|ζ1| (4.2)

αDSE(G) = 2
√
Z.

Theorem 4.3. Let G be a bi-regular graph with n vertices. Then

αDSE(G) = 2((dα1 − dα2 )
√
(n− k)k.

Proof. Consider a graph G with k vertices having a degree of d1, and n−k vertices with a degree
of d2 and from (2.7) we get

αDSE(G) = 2

√√√√√n

n∑
j=1

d2α
j −

 n∑
j=1

dαj

2

. (4.3)

αDSE(G) = 2
√
n[kd2α

1 + (n− k)d2α
2 ]− [kdα1 + (n− k)dα2 ]

2

= 2
√

n[kd2α
1 + (n− k)d2α

2 ]− [kdα1 + (n− k)dα2 ]
2

= 2
√
(n− k)kd2α

2 + k(n− k)d2α
1 − k(n− k)dα1 d

α
2

= 2((dα1 − dα2 )
√
(n− k)k.

Corollary 4.4. Let Ka,b be a complete bipartite graph with n = a + b vertices. Then from
Theorem (4.3)

αDSE(Ka,b) = 2(aα − bα)
√
ab.

Corollary 4.5. Let Pn be a path with n ≥ 2 vertices. Then from Theorem (4.3)

αDSE(Pn) = 2(2α − 1)
√

2n− 4.

Corollary 4.6. Let Sn be a star graph with n ≥ 1 vertices. Then from Theorem (4.3)

αDSE(Sn) = 2
√
n− 1[(n− 1)α − 1].
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Corollary 4.7. If Pn and Sn are path and star graph with n > 1 vertices respectively.

(i) If α < 0, then
αDSE(Sn) ≤ αDSE(Pn).

(ii) If α > 0, then

αDSE(Pn) ≤ αDSE(Sn).

Equality holds if n = 2, 3 or α = 0.

Proof. If Pn and Sn are path and star graph respectively then from corollaries (4.5) and (4.6),
we get the required result.

Theorem 4.8. Let G be a graph of order n with maximum degree ∆ and minimum degree δ. Then

αDSE(G) ≤ |∆α − δα|
√

2n(n− 1).

Equality holds if G is a regular graph or α = 0.

Proof. From (4.2) and Theorem (3.2) we get the required result.

Theorem 4.9. Let G be a graph of order n with maximum degree ∆ and minimum degree δ and
ζj where j = 1, 2, · · · , n are αDS(G)-eigenvalues and let α be an arbitrary real number, not 0
and 1.

(i) If α < 0, then
αDSE(G) ≤ 2 (nδα −Mα

1 (G)) .

(ii) If α > 0, then
αDSE(G) ≤ 2 (n∆

α −Mα
1 (G)) .

Equality holds if G is a regular graph.

Proof. From (4.2) and Theorem (3.3) we get the required result.

Theorem 4.10. Let G be a graph of order n with maximum degree ∆ and minimum degree δ.
Then

αDSE(G) ≤ 2n |∆α − δα| .

Equality holds if G is a regular graph.

Proof. From the corollary (3.4) we get the required result.

Remark 4.11. Since
√

2n(n− 1) < 2n, the upper bound in theorem (4.8) is more sharper than
the upper bound in theorem (4.10).

Theorem 4.12. Let G be a graph of order n with maximum degree ∆ and minimum degree δ.
Then

αDSE(G) ≤ 2n
√
|∆2α − δ2α|.

Equality holds if G is a regular graph or α = 0.

Proof. From (4.3) we get the required result.

Remark 4.13. Since |∆α − δα| <
√
|∆2α − δ2α|, the upper bound in theorem (4.10) is more

sharper than the upper bound in theorem (4.12).

Lemma 4.14. Let G be a graph of order n and let α be an arbitrary real number, not 0 and 1.
Then

αDSE(G) ≤ 2Mα
1 (G)

√
n− 1.

Equality holds for null graphs.
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Proof. If dj is a degree of the vertex vj , where j = 1, 2, · · · , n, then

n∑
j=1

d2α
j ≤

 n∑
j=1

dαj

2

. (4.4)

Thus from (4.3) we get

αDSE(G) ≤ 2

 n∑
j=1

dαj

√
n− 1. (4.5)

If α is an arbitrary real number, not 0 and 1, then from Theorems (4.1) and (4.5) we get the
required result.

Theorem 4.15. Let G be a graph of order n with maximum degree ∆ and minimum degree δ.
Then

αDSE(G) ≤

{
2nδα

√
n− 1 if α < 0

2n∆α
√
n− 1 if α > 0

Equality holds for null graphs.

Proof. From (4.5) we get the required result.

Lemma 4.16. Cauchy-Schwarz inequality[29] states that if (a1, a2, . . . , an) and (b1, b2, . . . , bn)
are n real vector, then  n∑

j=1

ajbj

2

≤

 n∑
j=1

a2
j

 n∑
j=1

b2
j

 .

Lemma 4.17. Let G be a graph of order n and size m1 with real adjacency eigenvalues λj , j =
1, 2, · · · , n. Let H be another graph of order n and size m2 with vertex degree dj , j = 1, 2, · · · , n.
Let |ζj |, where j = 1, 2, · · · , n are the non increasing absolute αDS(H)-eigenvalues and |ζ1| be
the largest αDS(H)-eigenvalue.

(i) Consider the adjacency eigenvalues of G such as λ1 ≥ λ2 ≥ · · · ≥ λn. Then

αDSE(G) ≤ 4
√
m1Z

λ1 + λ2
. (4.6)

Equality holds if G is a regular graph or α = 0 or λ1 = λ2 =
√
m1.

(ii) Consider the absolute adjacency eigenvalues of G such as |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. Then

αDSE(G) ≤ 4
√
m1Z

|λ1|+ |λ2|
. (4.7)

Equality holds if G is a regular graph or α = 0 or |λ1| = |λ2| =
√
m1.

Proof. (i) If λ1 ≥ λ2 ≥ · · · ≥ λn are adjacency eigenvalues of G, then by Cauchy-Schwarz
inequality[29], we get n∑

j=1

(λj |ζj |)

2

≤

 n∑
j=1

λj
2

 n∑
j=1

|ζj |2
 . (4.8)

Since
∑n

j=1 |ζj |2 = 2Z and
∑n

j=1 λj
2 = 2m1 .

On substituting and simplifying (4.8), we get

|ζ1| ≤
√

4m1Z

λ1 + λ2
. (4.9)

From (4.9) and (4.2) we get the required result.
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(ii) If |λ1| ≥ |λ2| ≥ · · · ≥ |λn| are absolute adjacency eigenvalues of G, then by Cauchy-
Schwarz inequality[29], we get n∑

j=1

(|λj ||ζj |)

2

≤

 n∑
j=1

λj
2

 n∑
j=1

|ζj |2
 . (4.10)

Since
∑n

j=1 |λj |2 =
∑n

j=1 λj
2 = 2m1 .

On substituting and simplifying (4.10), we get

|ζ1| ≤
√

4m1Z

|λ1|+ |λ2|
. (4.11)

From (4.11) and (4.2) we get the required result.

Theorem 4.18. Let G be a graph of order n and size m with vertex degree dj , j = 1, 2, · · · , n.
Let |ζ1| be the nonzero largest absolute αDS(G)-eigenvalue. Let H = Ka ∪ Kn−a be another
graph.

(i) If the adjacency eigenvalues of H are arranged in non increasing order, then

αDSE(G) ≤


√

8aZ
a−1 2 ≤ a < n.

√
8n(n−1)Z
n−2 a = n.

Equality holds if G is a regular graph or α = 0.

(ii) If the absolute adjacency eigenvalues of H are arranged in non increasing order, then

αDSE(G) ≤
√

8(a− 1)Z
a

2 ≤ a ≤ n.

Equality holds if G is a regular graph or α = 0 or a = 2.

Proof. Let |ζ1|, |ζ2|, · · · , |ζn−a+1|, |ζn−a+2|, · · · , |ζn| be the non increasing absolute αDS(G)-
eigenvalues of G. The adjacency eigenvalues of H are a − 1, 0 (n − a times), and −1 (a −
1 times) and the size of H , m1 =

a(a−1)
2 .

(i) If the adjacency eigenvalues of H are arranged in non increasing order, then from (4.6), we
get

|ζ1| ≤


√

2a
a−1Z 2 ≤ a < n.

√
2n(n−1)Z
n−2 a = n.

(4.12)

From (4.12) and (4.2) we get the required result.

(ii) If the absolute adjacency eigenvalues of H are arranged in non increasing order, then from
(4.7), we get

|ζ1| ≤
√

2(a− 1)
a

Z 2 ≤ a ≤ n. (4.13)

From (4.13) and (4.2) we get the required result.

Theorem 4.19. Let G be a graph with n vertices, where the degrees of the vertices are denoted
as dj for j = 1, 2, · · · , n and let |ζ1| be the nonzero largest absolute αDS(G)-eigenvalue. Let H
be the union of k copies of complete graph Ka, H = ∪kKa with n = ka vertices.
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(i) If the adjacency eigenvalues of H are arranged in non increasing order, then

αDSE(G) ≤


√

2kaZ
a−1 1 < k ≤ n and 2 ≤ a ≤ n.

√
8a(a−1)Z
a−2 k = 1 and 2 < a ≤ n.

Equality holds if G is a regular graph or α = 0.

(ii) If the absolute adjacency eigenvalues of H are arranged in non increasing order, then

αDSE(G) ≤


√

2kaZ
a−1 1 < k ≤ n and 2 < a ≤ n.√

8(a−1)Z
a k = 1 and 2 ≤ a ≤ n.

Equality holds if G is a regular graph or α = 0 or a = 2.

Proof. Let |ζ1|, |ζ2|, · · · , |ζk|, |ζk+1|, · · · , |ζn| be the non increasing absolute αDS(G)-eigenvalues
of G. The H-adjacency eigenvalues are a − 1 (k times), −1 (n − k times) and the order and
size of H are n = ak and ka(a−1)

2 respectively.

(i) If the adjacency eigenvalues of H are arranged in non increasing order, then from (4.6), we
get

|ζ1| ≤


√

kaZ
2(a−1) 1 < k ≤ n and 2 ≤ a ≤ n.

√
2a(a−1)Z
a−2 k = 1 and 2 < a ≤ n.

(4.14)

From (4.14) and (4.2) we get the required result.

(ii) If the absolute adjacency eigenvalues of H are arranged in non increasing order, then from
(4.7), we get

|ζ1| ≤


√

kaZ
2(a−1) 1 < k ≤ n and 2 < a ≤ n.√
2(a−1)Z

a k = 1 and 2 ≤ a ≤ n.
(4.15)

From (4.15) and (4.2) we get the required result.

Theorem 4.20. Let G be a graph of order n with m edges. Let dj , j = 1, 2, · · · , n are degree
vertices of G. Let |ζ1| be the nonzero largest absolute αDS(G)-eigenvalue. Let H be the union
of k copies of complete bipartite graph Ka,b, H = ∪kKa,b, where n = k(a+ b).

(i) If the adjacency eigenvalues of H are arranged in non increasing order, then

αDSE(G) ≤

{
2
√
kZ k ≥ 2.

4
√
Z k = 1.

Equality holds if G is a regular graph, α = 0.

(ii) If the absolute adjacency eigenvalues of H are arranged in non increasing order, then

αDSE(G) ≤ 2
√
kZ k ≥ 1.

Equality holds if G is a regular graph, α = 0 or k = 1.

Proof. Let |ζ1|, |ζ2|, · · · , |ζk|, |ζk+1|, · · · , |ζn| be the non increasing absolute αDS(G)-eigenvalues
of G. The adjacency eigenvalues of H are

√
ab of multiplicity k, zero of multiplicity n− 2k and

−
√
ab of multiplicity k and the order and size of H are n = k(a+ b) and kab respectively.
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(i) If the adjacency eigenvalues of H are arranged in non increasing order, then from (4.6), we
get

|ζ1| ≤

{ √
kZ k ≥ 2.√
4Z k = 1.

(4.16)

From (4.16) and (4.2) we get the required result.

(ii) If the absolute adjacency eigenvalues of H are arranged in non increasing order, then from
(4.7), we get

|ζ1| ≤
√
kZ k ≥ 1. (4.17)

From (4.17) and (4.2) we get the required result.

Definition 4.21. [13] Suppose (r) = (r1, r2, . . . , rn) and (t) = (t1, t2, . . . , tn) are two non-
increasing sequences of real numbers. Then we say (r) is majorized by (t), denoted by (r) ⊴ (t),
if and only if

∑n
k=1 rk =

∑n
k=1 tk and

∑j
k=1 rk ≤

∑j
k=1 tk for all j = 1, 2, . . . , n.

Lemma 4.22. [13] Suppose (r) = (r1, r2, . . . ,n ) and (t) = (t1, t2, . . . , tn) are two non-increasing
sequences of real numbers. If (r) ⊴ (t), then for any convex function Φ,

∑n
k=1 Φ(rk) ≤∑n

k=1 Φ(tk).

Theorem 4.23. Let G1 be a connected graph with graphic sequence (π1) = (dj), j = 1, 2, . . . , n
and G2 be a connected graph with graphic sequence (π2) = (d′j), j = 1, 2, . . . , n.

(i) If (π1) ⊴ (π2), α < 0 or α > 1, then αDSE(G1) ≤ αDSE(G2).

(ii) If (π1) ⊴ (π2), 0 < α < 1, then αDSE(G1) ≥ αDSE(G2).

The equality holds if and only if (π1) = (π2).

Proof. (i) For the condition α < 0 or α > 1, in [16] authors have stated that

Mα
1 (G1) ≤ Mα

1 (G2), (4.18)

the equality holds if and only if (π1) = (π2). From (4.18) and Lemma (4.14) we get the
required result.

(ii) For the condition 0 < α < 1, in [16] authors have stated that

Mα
1 (G1) ≥ Mα

1 (G2), (4.19)

the equality holds if and only if (π1) = (π2). From (4.19) and Lemma (4.14) we get the
required result.

Consider Tn is a class of trees of order n. The tree S(n, i) on n vertices is called a double star
graph, which is obtained by joining the center of K1,i−1 to that of K1,n−1−i by an edge, where
i ≥ ⌈n

2 ⌉. Particularly, S(n, n− 1) = K1,n−1. Let T s
n = {T ∈ Tn|∆(T ) = s}.

Corollary 4.24. Let T be a tree in T s
n, where s ≥ ⌈n

2 ⌉.

(i) If α < 0 or α > 1, then αDSE(T ) ≤ αDSE(S(n, s)).

(ii) If 0 < α < 1, then αDSE(T ) ≥ αDSE(S(n, s)).

The equality holds if and only if π(T ) = π(S(n, s)).
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Proof. (i) If α < 0 or α > 1 and T ∈ T s
n, then in [16] authors have stated that

Mα
1 (T ) ≤ Mα

1 (S(n, s)). (4.20)

From (4.20) and Lemma (4.14) we get the required result.

(ii) If 0 < α < 1 and T ∈ T s
n, then in [16] authors have stated that

Mα
1 (T ) ≤ Mα

1 (S(n, s)). (4.21)

From (4.21) and Lemma (4.14) we get the require result.

Theorem 4.25. Let G1 be a connected graph with a cut edge e = uv, where dv ≥ 2 and du ≥ 2.
Let G2 be the graph obtained from G1 by contracting the edge e into a new vertex ue, which
becomes adjacent to all the former neighbors of u and of v, and adding a new pendent edge
ueve, where ve is a new pendent vertex.

(i) If α < 0 or α > 1, then αDSE(G1) < αDSE(G2).

(ii) If 0 < α < 1, then αDSE(G1) > αDSE(G2).

Proof. (i) For the condition α < 0 or α > 1, in [16] authors have stated that

Mα
1 (G1) < Mα

1 (G2). (4.22)

From (4.22) and Lemma (4.14) we get the required result.

(ii) For the condition 0 < α < 1, in [16] authors have stated that

Mα
1 (G1) > Mα

1 (G2). (4.23)

From (4.23) and Lemma (4.14) we get the required result.

Corollary 4.26. Let T be a tree in Tn\K1,n−1.

(i) If α < 0 or α > 1, then αDSE(T ) < αDSE(K1,n−1).

(ii) If 0 < α < 1, then αDSE(T ) > αDSE(K1,n−1).

Proof. (i) If α < 0 or α > 1 and T ∈ Tn\K1,n−1, then in [16] authors have stated that

Mα
1 (T ) < Mα

1 (K1,n−1). (4.24)

From (4.24) and Lemma (4.14) we get the required result.

(ii) If 0 < α < 1 and T ∈ T s
n, then in [16] authors have stated that

Mα
1 (T ) > Mα

1 (K1,n−1). (4.25)

From (4.25) and Lemma (4.14) we get the required result.

Theorem 4.27. Let G1 be a connected graph with two vertices u, v such that dG1(v) ≥ dG1(u).
Consider v1, . . . , vs(1 ≤ s ≤ dG1(u)− 1) are some vertices of NG1(u)\{NG1(v)

⋃
v}. Let G2 be

the graph obtained from G1 by deleting the edges uvj and adding edges vvj for j = 1, . . . , s.

(i) If α < 0 or α > 1, then αDSE(G1) < αDSE(G2).
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(ii) If 0 < α < 1, then αDSE(G1) > αDSE(G2).

Proof. (i) For the condition α < 0 or α > 1, in [16] authors have stated that

Mα
1 (G1) < Mα

1 (G2). (4.26)

From (4.26) and Lemma (4.14) we get the required result.

(ii) For the condition 0 < α < 1, in [16] authors have stated that

Mα
1 (G1) > Mα

1 (G2). (4.27)

From (4.27) and Lemma (4.14) we get the required result.

Suppose v is a vertex of graph G. Let Gp,q(q ≥ p ≥ 1) be the graph obtained from G
by attaching two new paths P : v(= v0)v1v2 . . . vp and Q : v(= u0)u1u2 . . . uq of length p
and q, respectively, at v, where v1, v2, . . . , vp and u1, u2, . . . , uq are distinct new vertices. Let
Gp−1,q+1 = Gp,q − vp−1vp + uqvp.

Theorem 4.28. Let G be a connected graph with n ≥ 2 and q ≥ p ≥ 1. Then αDSE(Gp,q) =
αDSE(Gp−1,q+1).

Proof. Since Gp,q and Gp−1,q+1 has same graphic sequence so from (4.3) we get the required
result.

Corollary 4.29. Let T be a tree in Tn\Pn.

(i) If α < 0 or α > 1, then αDSE(Pn) < αDSE(T ).

(ii) If 0 < α < 1, then αDSE(Pn) > αDSE(T ).

Proof. (i) If α < 0 or α > 1 and T ∈ Tn\Pn, then in [16] authors have stated that

Mα
1 (Pn) < Mα

1 (T ). (4.28)

From (4.28) and Lemma (4.14) we get the required result.

(ii) If 0 < α < 1 and T ∈ Tn\Pn, then in [16] authors have stated that

Mα
1 (Pn) > Mα

1 (T ). (4.29)

From (4.29) and Lemma (4.14) we get the require result.

Theorem 4.30. Let T be a tree with n ≥ 2.

(i) If α < 0 or α > 1, then αDSE(T ) < 2
√

n[(n− 1)α + n− 1]2 − [2α(n− 2) + 2]2.

(ii) If 0 < α < 1, then αDSE(T ) < 2
√

n[2α(n− 2) + 2]2 − [(n− 1)α + n− 1]2.

Proof. (i) For α < 0 or α > 1 in [20] the author has stated that

(n− 2)2α + 2 ≤ Mα
1 (T ) ≤ (n− 1)α + n− 1. (4.30)

From (4.3), (4.4) and (4.30) we get the required result.

(ii) For 0 < α < 1 in [20] the author has stated that

(n− 1)α + n− 1 ≤ Mα
1 (T ) ≤ (n− 2)2α + 2. (4.31)

From (4.3), (4.4) and (4.31) we get the required result.
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Definition 4.31. [19] Unicyclic graph is a graph containing exactly one cycle.

Theorem 4.32. Let G be a unicyclic graph with n ≥ 4.

(i) If α < 0 or α > 1, then αDSE(G) < 2
√
n[(n− 1)α + 2α+1 + n− 3]2 − n24α.

(ii) If 0 < α < 1, then αDSE(G) < 2
√
n34α − [(n− 1)α + 2α+1 + n− 3]2.

Proof. (i) For α < 0 or α > 1, in [19] the author has stated that

n2α ≤ Mα
1 (G) ≤ (n− 1)α + 2α+1 + n− 3. (4.32)

From (4.3), (4.4) and (4.32) we get the required result.

(ii) For 0 < α < 1, in [19] the author has stated that

(n− 1)α + 2α+1 + n− 3 ≤ Mα
1 (G) ≤ n2α. (4.33)

From (4.3), (4.4) and (4.33) we get the required result.

5 Algorithm to Compute the general degree subtraction energy (αDSE(G))

In this section, we obtain an algorithm to compute the general degree subtraction energy of
(αDSE(G)).

Algorithm 1 Computation of general degree subtraction energy of a graph (αDSE(G))

1: Start
2: input: A simple connected graph G with n vertices
3: Declare: Adjacency Array list A[n], j, N1 = 0, N2 = 0 as integers and α which is a

nonzero real number
4: Declare: Result as floating point
5: Compute:
6: for j = 0 to j = n− 1 do
7: N1 = N1 + pow(A[j].size, 2α) ▷ pow(A[j].size, 2α) means A[j].size to the power

2α)
8: N2 = N2 + pow(A[j].size, α)

9: Compute the Result:
10: Result = 2 ∗

√
n ∗N1 − pow(N2, 2)

11: Display: The Result
12: Stop

In this Algorithm (1), we try to achieve the better with the time complexity O(n). From which
we can find general degree subtraction energy (αDSE(G)), similarly we can easily calculate
characteristic polynomial of αDS(G) and αDS(G)-eigenvalues.

6 Conclusion

Here we have introduced a new matrix associated with simple connected graph G called general
degree subtraction. We have studied characteristic polynomial, spectra, and energy of αDS(G).
We have also explored its bounds for spectral radius. Moreover we have observed the effects on
the general degree subtraction energy when some operations are applied. We have also given an
algorithm with time complexity O(n) to find the general degree subtraction energy of a simple
connected graph G.
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