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Abstract The current work focuses on the existence of absolutely continuous solutions to an
evolution problem involving time and state-dependent maximal monotone operators. The well-
posedness result is proved under an anti-monotone condition on the domain of the operators.
Then, a minimization problem subject to this evolution problem is studied.

1 Introduction and preliminaries

We study, in a real separable Hilbert space H , the differential inclusion governed by time and
state-dependent maximal monotone operators described by{

−ẋ(t) ∈ A(t,x(t))x(t) + f(t, x(t)) a.e. t ∈ I := [0, T ],
x(0) = x0 ∈ D (A(0,x0)),

(1.1)

where A(t,y) : D (A(t,y)) ⊂ H ⇒ H , for each (t, y) ∈ I ×H , is a maximal monotone operator
that varies in the sense of the pseudo-distance (see (1.3) and Assumption 1 (1) below) and
f : I ×H → H is a single-valued map.

The main concern of the present paper is to compensate for the lack of the ball-compactness
assumption on the domain of the operators imposed in the recent contributions [3], [27] and
[28]. This ball-compactness assumption has also occurred in the investigation of some second-
order differential inclusions governed by such maximal monotone operators, see for instance
[13], [25], [26]. The study in the aforementioned papers has been achieved under an absolutely
continuous variation in the sense of the pseudo-distance (see Assumption 1 (1) below).

As we will see below, invoking an anti-monotone condition (instead of the ball-compactness
assumption) on the domain of the operators, that is, for each (ti, yi) ∈ I×H, xi ∈ D (A(ti,yi)), i =
1, 2, one has 〈y1 − y2, x1 − x2〉 ≤ 0, we succeed to establish the existence result related to (1.1).
This assumption has been considered in [24], to study a class of second-order differential inclu-
sions with maximal monotone operators. A suitable anti-monotone assumption on the sets C(·)
(or C(t, ·)) can be found in [2], [8], [12], [22], dealing with second-order sweeping processes
i.e., when A(t,x) = NC(t,x) (or Ax = NC(x)).

No need to use neither ball-compactness nor anti-monotone assumption when dealing with
time-dependent maximal monotone operators At instead of A(t,x) in (1.1), we refer to e.g. [4],
[5], [6], [15], [19], for some achievements on first-order evolution problems with At.

Differential inclusions with maximal monotone operators have many applications, we cite
e.g., [1], [10], [18], [20] [23], [29], [30].

The authors in [28] have built a sequence of maps that converges to a solution of (1.1) by the
Arzelà-Ascoli theorem, while in [3], the existence result is proved using Schauder’s fixed point
theorem (under a ball-compactness assumption in both papers). In our development, we proceed
by a discretization approach to establish the main existence result. A sequence of solutions
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to the approximate problems is constructed. Then, the Cauchy criterion is proved so that the
latter sequence converges uniformly to a solution of (1.1). Uniqueness is obtained under an
hypo-monotone assumption on the operators and a Lipschitz property on the perturbation. The
well-posedness result is therefore applied to optimal control theory.

The paper contains three sections. In Section 2, we prove the existence and uniqueness result
to (1.1). In the last section, we provide an application to optimal control theory.

Now, we give notations and recall the background material needed later. Let I := [0, T ]
(T > 0) be an interval of R. Let H be a real separable Hilbert space whose inner product is
denoted by 〈·, ·〉 and the associated norm by ‖ · ‖. Denote by BH(x, r) the closed ball of center
x and radius r on H , and by BH the closed unit ball of H .
Let CH(I) be the space of all continuous maps x from I to H endowed with the norm of uniform
convergence, ‖x‖∞ = sup

t∈I
‖x(t)‖.

By LpH(I) for p ∈ [1,+∞[ (resp. p = +∞), we denote the space of measurable maps x : I → H
such that

∫
I
‖x(t)‖pdt < +∞ (resp. which are essentially bounded) endowed with the usual

norm ‖x‖Lp
H (I) = (

∫
I
‖x(t)‖pdt)

1
p , 1 ≤ p < +∞ (resp. endowed with the usual essential supre-

mum norm ‖ · ‖L∞H (I)).
By W 1,2(I,H), we denote the space of absolutely continuous functions from I to H with deriva-
tives in L2

H(I).
Let us give some definitions and properties of maximal monotone operators, see [7], [9], [32].
Define the domain, range and graph of a set-valued operator A : D (A) ⊂ H ⇒ H by

D (A) = {x ∈ H : Ax 6= ∅},
R(A) = {y ∈ H : ∃x ∈ D (A), y ∈ Ax} = ∪{Ax : x ∈ D (A)},
Gr(A) = {(x, y) ∈ H ×H : x ∈ D (A), y ∈ Ax}.

The operator A : D (A) ⊂ H ⇒ H is said to be monotone, if for (xi, yi) ∈ Gr(A), i = 1, 2 one
has 〈y1− y2, x1−x2〉 ≥ 0. It is maximal monotone, if its graph could not be contained strictly in
the graph of any other monotone operator, in this case, for all λ > 0, R(IH + λA) = H , where
IH denotes the identity map of H .
If A is a maximal monotone operator, then, for every x ∈ D (A), Ax is non-empty, closed and
convex. Then, the projection of the origin onto Ax, denoted A0x, exists and is unique.
Define for λ > 0, the resolvent of A by JAλ = (IH + λA)

−1 and the Yosida approximation of A
by Aλ = 1

λ

(
IH − JAλ

)
. These operators are both single-valued and defined on the whole space

H , and one has
JAλ x ∈ D (A) and Aλx ∈ A(JAλ x) for every x ∈ H, (1.2)

‖Aλx‖ ≤ ‖A0x‖ for every x ∈ D (A).

Let S be a non-empty closed convex subset of H. Denote by NS(x) the normal cone to S at
x ∈ H given by

NS(x) = {y ∈ H : 〈y, z − x〉 ≤ 0 ∀z ∈ S}.

In such a case, NS(·) is a maximal monotone operator.
Let A : D (A) ⊂ H ⇒ H and B : D (B) ⊂ H ⇒ H be two maximal monotone operators. Then,
the pseudo-distance between A and B denoted by dis (A,B) (see [31]) is defined by

dis (A,B) = sup
{
〈y1 − y2, x2 − x1〉
1 + ‖y1‖+ ‖y2‖

: (x1, y1) ∈ Gr(A), (x2, y2) ∈ Gr(B)
}
. (1.3)

Clearly, dis (A,B) ∈ [0,+∞], dis (A,B) = dis (B,A) and dis (A,B) = 0 iff A = B.

We need to recall the following lemmas (see [19]).

Lemma 1.1. Let A be a maximal monotone operator of H . If x ∈ D (A) and y ∈ H are such
that

〈A0z − y, z − x〉 ≥ 0 ∀z ∈ D (A),

then, x ∈ D (A) and y ∈ Ax.
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Lemma 1.2. LetAn (n ∈ N),A be maximal monotone operators ofH such that dis (An, A)→ 0.
Suppose also that xn ∈ D (An) with xn → x and yn ∈ Anxn with yn → y weakly for some
x, y ∈ H . Then, x ∈ D (A) and y ∈ Ax.

Lemma 1.3. Let A, B be maximal monotone operators of H . Then,
(1) for λ > 0 and x ∈ D (A)

‖x− JBλ (x)‖ ≤ λ‖A0(x)‖+ dis (A,B) +
√
λ
(
1 + ‖A0x‖

)
dis (A,B);

(2) for λ > 0 and x, y ∈ H
‖JAλ (x)− JAλ (y)‖ ≤ ‖x− y‖.

Lemma 1.4. LetAn (n ∈ N), A be maximal monotone operators ofH such that dis (An, A)→ 0
and ‖A0

nx‖ ≤ c(1 + ‖x‖) for some c > 0, all n ∈ N and x ∈ D (An). Then, for every z ∈ D (A)
there exists a sequence (zn) such that

zn ∈ D (An), zn → z and A0
nzn → A0z.

To close this section, recall a discrete version of Gronwall’s lemma (see [16]).

Lemma 1.5. Let α > 0. Let (γi) and (ηi) be sequences of non-negative real numbers such that

ηi+1 ≤ α+ (
i∑

k=0

γkηk) for i ∈ N.

Then, one has

ηi+1 ≤ α exp(
i∑

k=0

γk) for i ∈ N.

2 Main result

In this section, we study the existence of absolutely continuous solutions to problem (1.1), under
the following hypothesis:
Assumption 1: Let for (t, x) ∈ I × H , A(t,x) : D (A(t,x)) ⊂ H ⇒ H be a maximal monotone
operator such that

(1) there exist a non-negative real constant λ < 2
3 , and a function α ∈ W 1,2(I,R) which is

non-negative on [0, T [ and non-decreasing with α(T ) <∞ and α(0) = 0 such that

dis (A(t,y), A(s,z)) ≤ |α(t)− α(s)|+ λ‖y − z‖, ∀t, s ∈ I, ∀y, z ∈ H;

(2) there exists a non-negative real constant c such that

‖A0
(t,y)z‖ ≤ c(1 + ‖y‖+ ‖z‖) for t ∈ I, y ∈ H, z ∈ D (A(t,y));

(3) for any (ti, yi) ∈ I ×H , xi ∈ D (A(ti,yi)), i = 1, 2, one has

〈y1 − y2, x1 − x2〉 ≤ 0.

Assumption 2: Let f : I ×H → H be a map such that

(1) for any fixed x ∈ H , f(·, x) is measurable on I and for any fixed t ∈ I , f(t, ·) is continuous
on H;

(2) there exists a non-negative real constant L such that

‖f(t, x)‖ ≤ L(1 + ‖x‖) for all (t, x) ∈ I ×H. (2.1)
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Now, we are able to state and prove our existence result regarding the evolution problem (1.1).

Theorem 2.1. Suppose that Assumption 1 and Assumption 2 hold true. Then, for any x0 ∈
D (A(0,x0)), the evolution problem (1.1) has at least one absolutely continuous solution x(·)
which satisfies

‖ẋ(t)‖ ≤ %(1 + α̇(t)) a.e. t ∈ I, (2.2)

where % is a non-negative real constant depending on λ, c, T , α(T ) and ‖x0‖.

Proof. The proof is divided into three parts.
Part 1: Construction of the sequence (xn).
Consider a subdivision of the interval I with

0 = tn0 < tn1 < · · · < tni < tni+1 < · · · < tnn = T.

For every n ≥ 1 and i = 0, 1, · · · , n− 1, set

hni+1 = tni+1 − tni , αni+1 = α(tni+1)− α(tni ), (2.3)

and suppose that

hni ≤ hni+1, αni ≤ αni+1 and γni+1 = hni+1 + αni+1 ≤ ρn, (2.4)

where ρn = γ(T )
n and the map γ is defined by γ(t) = t+ α(t), t ∈ I . It is clear that ρn → 0 as

n→ +∞.
Put xn0 = x0 and set

xni+1 = Jni+1

(
xni −

∫ tni+1

tni

f(s, xni )ds

)
, (2.5)

where

Jni+1 = J
A(tn

i+1
,xn

i
)

hn
i+1

=

(
IH + hni+1A(tni+1,x

n
i )

)−1

.

Then, note by (1.2), that
xni+1 ∈ D (A(tni+1,x

n
i )
), (2.6)

and, by (2.5), one writes

− 1
hni+1

(
xni+1 − xni +

∫ tni+1

tni

f(s, xni )ds

)
∈ A(tni+1,x

n
i )
xni+1. (2.7)

Now, Lemma 1.3 yields

‖xni+1 − xni ‖ = ‖Jni+1

(
xni −

∫ tni+1

tni

f(s, xni )ds

)
− xni ‖

≤ ‖Jni+1

(
xni −

∫ tni+1

tni

f(s, xni )ds

)
− Jni+1(x

n
i )‖+ ‖Jni+1(x

n
i )− xni ‖

≤
∫ tni+1

tni

‖f(s, xni )‖ds+ hni+1‖A0
(tni ,x

n
i−1)

xni ‖+ dis (A(tni+1,x
n
i )
, A(tni ,x

n
i−1)

)

+

(
hni+1(1 + ‖A0

(tni ,x
n
i−1)

xni ‖)dis (A(tni+1,x
n
i )
, A(tni ,x

n
i−1)

)

) 1
2

.
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Using Assumption 1 (1)-(2), Assumption 2 (1)-(2) and the fact that
√
ab ≤ 1

2(a + b) for non-
negative real constants a, b, gives

‖xni+1 − xni ‖ ≤ hni+1L(1 + ‖xni ‖) + hni+1c(1 + ‖xni ‖+ ‖xni−1‖) + λ‖xni − xni−1‖

+
hni+1

2
(1 + c(1 + ‖xni ‖+ ‖xni−1‖)) +

3
2
αni+1 +

λ

2
‖xni − xni−1‖

≤ hni+1(L+
3c
2
)‖xni ‖+

3c
2
hni+1‖xni−1‖+

3
2
αni+1 +

3λ
2
‖xni − xni−1‖

+hni+1(L+
3c
2

+
1
2
).

This along with (2.4), one writes for any i = 0, 1, · · · , n− 1 with tn−1 = tn0 and xn−1 = xn0

‖xni+1 − xni ‖ ≤ γni+1(L+
3c
2
)‖xni ‖+

3c
2
γni+1‖xni−1‖+

3λ
2
‖xni − xni−1‖

+
3
2
γni+1 + γni+1(L+

3c
2

+
1
2
)

≤ γni+1(L+
3c
2
)(‖xni ‖+ ‖xni−1‖) +

3λ
2
‖xni − xni−1‖

+γni+1(L+
3c
2

+ 2)

≤ γni+1(L+
3c
2

+ 2)(1 + ‖xni ‖+ ‖xni−1‖) +
3λ
2
‖xni − xni−1‖.

Remember that λ < 2
3 , then, setting µ = 3λ

2 and η = (L+ 3c
2 + 2), it follows by iteration

‖xni+1 − xni ‖ ≤ ηγni+1

i∑
j=0

µj(1 + ‖xni−j‖+ ‖xni−j−1‖). (2.8)

Thus, for any n and i = 0, · · · , n− 1 using (2.4), it results

‖xni+1‖ ≤ ‖xn0 ‖+
i∑
j=0

‖xnj+1 − xnj ‖

≤ ‖xn0 ‖+ η

i∑
j=0

γnj+1

j∑
k=0

µk(1 + ‖xnj−k‖+ ‖xnj−k−1‖)

≤ ‖xn0 ‖+ ηρn

( i∑
j=0

( j∑
k=0

µk
)
+

i∑
j=0

j∑
k=0

µk
(
‖xnj−k‖+ ‖xnj−k−1‖

))

≤ ‖xn0 ‖+ ηρn

(
i+ 1
1− µ

+ 3
i∑
j=0

µj
( i∑
j=0

‖xnj ‖
))

≤ ‖x0‖+ η
γ(T )

1− µ
+

3ηρn
1− µ

i∑
j=0

‖xnj ‖.

Applying Lemma 1.5 gives for any n ≥ 1 and i = 1, · · · , n− 1

‖xni+1‖ ≤
(
‖x0‖+ η

γ(T )

1− µ

)
exp

(
3ηγ(T )
1− µ

)
= %1.

This along with (2.8) yields

‖xni+1 − xni ‖ ≤
η(1 + 2%1)

1− µ
γni+1 = %2γ

n
i+1.
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Set % = max(%1, %2), then, one writes

‖xni ‖ ≤ % and ‖xni+1 − xni ‖ ≤ %γni+1. (2.9)

For any n ≥ 1, define the sequence xn : I → H by

xn(t) = xni +
t− tni
tni+1 − tni

(
xni+1 − xni +

∫ tni+1

tni

f(s, xni )ds

)
−
∫ t

tni

f(s, xni )ds, (2.10)

for t ∈ [tni , t
n
i+1[, i = 0, 1, · · · , n− 1 and xn(T ) = xnn. By derivation one gets

ẋn(t) =
1

tni+1 − tni

(
xni+1 − xni +

∫ tni+1

tni

f(s, xni )ds

)
− f(t, xni ). (2.11)

Put for any n ≥ 1

θn(t) =

{
0 if t = 0,
tni if t ∈]tni , tni+1] for some i ∈ {0, 1, · · · , n− 1},

and

φn(t) =

{
0 if t = 0,
tni+1 if t ∈]tni , tni+1] for some i ∈ {0, 1, · · · , n− 1}.

Hence, for each n ∈ N∗, there is a null Lebesgue measure set Xn ⊂ I such that

−ẋn(t)− f(t, xn(θn(t))) ∈ A(φn(t),xn(θn(t)))xn(φn(t)) ∀t ∈ I \Xn, (2.12)

and

xn(φn(t)) ∈ D (A(φn(t),xn(θn(t)))), (2.13)

using (2.6) and (2.7).
Part 2: Convergence of the sequence (xn).
Now, we show that the sequence (xn)n is bounded in norm and variation.
From (2.1), (2.9) and (2.10), one has

‖xn(t)− xni ‖ ≤ ‖xni+1 − xni ‖+ 2Lhni+1(1 + ‖xni ‖)
≤ γni+1(%+ 2L(1 + %)).

Then, using (2.4), one has for t ∈ [tni , t
n
i+1[, i ∈ {0, 1, · · · , n− 1}

‖xn(t)− xni ‖ ≤ (%+ 2L(1 + %))ρn = %3ρn, (2.14)

along with (2.9) yields

sup
n
‖xn(t)‖ ≤ (%+ 2L(1 + %))γ(T ) + % = %0.

Thus, one deduces

sup
n
‖xn(·)‖∞ ≤ %0 and sup

n
var(xn(·)) = sup

n

(
n−1∑
i=0

‖xni+1 − xni ‖

)
≤ %γ(T ).
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Fix s ∈ [tni , t
n
i+1[ and t ∈ [tnj , t

n
j+1[ with i < j. Then, by (2.4), (2.9), (2.14) one writes

‖xn(t)− xn(s)‖ ≤ ‖xn(t)− xnj ‖+ ‖xnj − xni ‖+ ‖xni − xn(s)‖
≤ ‖xnj − xni ‖+ 2%3ρn

≤
j−i−1∑
l=0

‖xni+l+1 − xni+l‖+ 2%3ρn

≤ %

j−i−1∑
l=0

γni+l+1 + 2%3ρn

= %

(
γ(tnj )− γ(tni )

)
+ 2%3ρn

≤ %

(
γ(t)− γ(tni )

)
+ 2%3ρn

= %

(
γ(t)− γ(s) + γ(s)− γ(tni )

)
+ 2%3ρn

≤ %

(
γ(t)− γ(s) + γ(tni+1)− γ(tni )

)
+ 2%3ρn

≤ %

(
γ(t)− γ(s)

)
+ %γni+1 + 2%3ρn.

Once more by (2.4), it follows that for each t, s ∈ I such that s ≤ t

‖xn(t)− xn(s)‖ ≤ %
(
γ(t)− γ(s)

)
+ (%+ 2%3)ρn. (2.15)

Now, since the sequence of bounded variation continuous functions (xn) is uniformly bounded
in norm and in variation, then, by Theorem 0.2.1 [22], we may assume that there is a bounded
variation continuous map x : I → H such that (xn(t)) converges weakly to x(t) for all t ∈ I .
Combining (2.1), (2.3), (2.4), (2.9), (2.11), one has for all t ∈ [tni , t

n
i+1[

‖ẋn(t)‖ ≤
1

hni+1
‖xni+1 − xni ‖+ 2L(1 + %) (2.16)

≤ %
γni+1

hni+1
+ 2L(1 + %)

≤ %
(

1 +
α(tni+1)− α(tni )

tni+1 − tni

)
+ 2L(1 + %).

By the absolute continuity of α(·), one has for a.e. t ∈]tni , tni+1[, α̇(t) = lim
n→∞

α(tni+1)−α(t
n
i )

tni+1−t
n
i

. Then,
there is a Lebesgue measure null-set Y ⊂ I such that for every t ∈ I \ Y , there exists bt < +∞

‖ẋn(t)‖ ≤ bt. (2.17)

Observe by (2.9) that

‖xni+1 − xni ‖ ≤
∫ tni+1

tni

δ(s)ds,

where the map δ is defined by δ(t) = %(1 + α̇(t)) for any t ∈ I .
Next, using the Cauchy-Schwarz inequality, one writes

‖xni+1 − xni ‖ ≤ (tni+1 − tni )1/2
(∫ tni+1

tni

δ2(s)ds

)1/2

.
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Combining the last inequality with (2.16), noting that (x + y)2 ≤ 2(x2 + y2) for x, y ∈ R, one
gets

‖ẋn‖2
L2

H (I) =
n−1∑
i=0

∫ tni+1

tni

‖ẋn(t)‖2dt

≤
n−1∑
i=0

∫ tni+1

tni

(
1

hni+1
‖xni+1 − xni ‖+ 2L(1 + %)

)2

dt

≤ 2
n−1∑
i=0

∫ tni+1

tni

((‖xni+1 − xni ‖
tni+1 − tni

)2

+ 4L2(1 + %)2
)
dt

≤ 2
n−1∑
i=0

(‖xni+1 − xni ‖2

tni+1 − tni
+ 4L2(1 + %)2(tni+1 − tni )

)

≤ 2
( n−1∑
i=0

∫ tni+1

tni

δ2(s)ds+ 4L2(1 + %)2T

)

= 2
(∫ T

0
δ2(s)ds+ 4L2(1 + %)2T

)
< +∞. (2.18)

Therefore, the sequence (ẋn) is bounded in L2
H(I), extracting a subsequence that we do not

relabel, (ẋn) converges weakly to some map y. Recall that (xn(t)) converges weakly to x(t) for
each t ∈ I . Let z ∈ H . One has for any t ∈ I

〈z, x(t)− x(0)〉 = lim
n→∞

〈z, xn(t)− xn(0)〉

= lim
n→∞

〈
z,

∫ t

0
ẋn(s)ds

〉
= lim

n→∞

∫ T

0
〈z1]0,t](s), ẋn(s)〉ds

=

∫ T

0
〈z1]0,t](s), y(s)〉ds =

〈
z,

∫ t

0
y(s)ds

〉
,

where 1]0,t] denotes the characteristic function of the interval ]0, t].
One deduces that x(t)− x(0) =

∫ t
0 y(s)ds, t ∈ I, that is, ẋ = y a.e. on I and

(ẋn) converges weakly to ẋ in L2
H(I). (2.19)

Now, let us prove that (xn)n is a Cauchy sequence in CH(I).
Let n,m ∈ N∗ and let xn, xm be the absolutely continuous maps such that

−ẋn(t)− f(t, xn(θn(t))) ∈ A(φn(t),xn(θn(t)))xn(φn(t)), (2.20)

xn(φn(t)) ∈ D (A(φn(t),xn(θn(t)))), xn(0) = x0, (2.21)

and
−ẋm(t)− f(t, xm(θm(t))) ∈ A(φm(t),xm(θm(t)))xm(φm(t)), (2.22)

xm(φm(t)) ∈ D (A(φm(t),xm(θm(t)))), xm(0) = x0. (2.23)

Note that for each t ∈ I

‖xn(θn(t))− xm(θm(t))‖2 = 〈xn(θn(t))− xm(θm(t)), xn(θn(t))− xm(θm(t))〉
= 〈xn(θn(t))− xn(φn(t)) + xm(φm(t))− xm(θm(t)), xn(θn(t))− xm(θm(t))〉
+ 〈xn(φn(t))− xm(φm(t)), xn(θn(t))− xm(θm(t))〉
≤ (‖xn(θn(t))− xn(φn(t))‖+ ‖xm(θm(t))− xm(φm(t))‖)‖xn(θn(t))− xm(θm(t))‖
+ 〈xn(φn(t))− xm(φm(t)), xn(θn(t))− xm(θm(t))〉,
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simplifying using (2.9), one gets

‖xn(θn(t))− xm(θm(t))‖2

≤ 2%
(
‖xn(θn(t))− xn(φn(t))‖+ ‖xm(θm(t))− xm(φm(t))‖

)
+ 〈xn(φn(t))− xm(φm(t)), xn(θn(t))− xm(θm(t))〉.

In view of Assumption 1 (3), (2.21) and (2.23), one remarks that

〈xn(φn(t))− xm(φm(t)), xn(θn(t))− xm(θm(t))〉 ≤ 0,

then, one writes
‖xn(θn(t))− xm(θm(t))‖ ≤ (∆n,m(t))

1
2 , (2.24)

where

∆n,m(t) = 2%(‖xn(θn(t))− xn(φn(t))‖+ ‖xm(θm(t))− xm(φm(t))‖)
≤ 2%(‖xn(θn(t))− xn(t)‖+ ‖xn(t)− xn(φn(t))‖+ ‖xm(θm(t))− xm(t)‖
+ ‖xm(t)− xm(φm(t))‖).

Using (2.15) one has for all t ∈ I

‖xn(φn(t))− xn(t)‖ ≤ %
(
γ(φn(t))− γ(t)

)
+ (%+ 2%3)ρn,

and

‖xn(θn(t))− xn(t)‖ ≤ %
(
γ(t)− γ(θn(t))

)
+ (%+ 2%3)ρn,

along with (2.4), it results that for any t ∈ I and any n ≥ 1

‖xn(φn(t))− xn(t)‖ ≤ %4ρn, ‖xn(θn(t))− xn(t)‖ ≤ %4ρn, (2.25)

where %4 = 2(%+ %3). Hence, it results that for any t ∈ I and any n,m ≥ 1

∆n,m(t) ≤ 4%%4(ρn + ρm).

Coming back to (2.24), one deduces that

‖xn(θn(t))− xm(θm(t))‖ ≤ 2
(
%%4(ρn + ρm)

) 1
2

. (2.26)

In the same way, one obtains

‖xn(φn(t))− xm(φm(t))‖ ≤ 2
(
%%4(ρn + ρm)

) 1
2

. (2.27)

Set for any n ≥ 1, fn(t) = f(t, xn(θn(t))), for all t ∈ I . In view of (2.1) and (2.9), one remarks
that

‖fn(t)‖ ≤ L(1 + %) for all t ∈ I and any n ≥ 1. (2.28)

By the definition of the pseudo-distance in (1.3) and the differential inclusions (2.20) and (2.22),
one writes

〈xn(φn(t))− xm(φm(t)), ẋn(t) + fn(t)− ẋm(t)− fm(t)〉

≤
(

1 + ‖ẋn(t) + fn(t)‖+ ‖ẋm(t) + fm(t)‖
)

dis (A(φn(t),xn(θn(t))), A(φm(t),xm(θm(t)))).
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Combining Assumption 1 (1), (2.3), (2.4), (2.26) and (2.28), one has

〈xn(φn(t))− xm(φm(t)), ẋn(t) + fn(t)− ẋm(t)− fm(t)〉

≤
(

1 + ‖ẋn(t)‖+ ‖ẋm(t)‖+ 2L(1 + %)

)
dis (A(φn(t),xn(θn(t))), A(φm(t),xm(θm(t))))

≤
(

1 + ‖ẋn(t)‖+ ‖ẋm(t)‖+ 2L(1 + %)

)(
|α(φn(t))− α(φm(t))|+ λ‖xn(θn(t))− xm(θm(t))‖

)
,

≤
(

1 + ‖ẋn(t)‖+ ‖ẋm(t)‖+ 2L(1 + %)

)(
ρn + ρm + 2λ

(
%%4(ρn + ρm)

) 1
2
)
.

Next, using the latter inequality yields

〈xn(φn(t))− xm(φm(t)), ẋn(t)− ẋm(t)〉

≤
(

1 + ‖ẋn(t)‖+ ‖ẋm(t)‖+ 2L(1 + %)

)(
ρn + ρm + 2λ

(
%%4(ρn + ρm)

) 1
2
)

+ 〈xn(φn(t))− xm(φm(t)), fm(t)− fn(t)〉. (2.29)

But from (2.27) and (2.28), it follows

〈xn(φn(t))− xm(φm(t)), fm(t)− fn(t)〉 ≤
(
‖fn(t)‖+ ‖fm(t)‖

)
‖xn(φn(t))− xm(φm(t))‖

≤ 2L(1 + %)‖xn(φn(t))− xm(φm(t))‖

≤ 4L(1 + %)

(
%%4(ρn + ρm)

) 1
2

.

Combining back to (2.29) gives

〈xn(φn(t))− xm(φm(t)), ẋn(t)− ẋm(t)〉

≤
(

1 + ‖ẋn(t)‖+ ‖ẋm(t)‖+ 2L(1 + %)

)(
ρn + ρm + 2λ

(
%%4(ρn + ρm)

) 1
2
)

+ 4L(1 + %)

(
%%4(ρn + ρm)

) 1
2

. (2.30)

On the one hand, for all t ∈ I and n,m ∈ N∗, one has

1
2
d

dt
‖xn(t)− xm(t)‖2 = 〈xn(t)− xm(t), ẋn(t)− ẋm(t)〉

= 〈xn(t)− xn(φn(t)), ẋn(t)− ẋm(t)〉 − 〈xm(t)− xm(φm(t)), ẋn(t)− ẋm(t)〉
+ 〈xn(φn(t))− xm(φm(t)), ẋn(t)− ẋm(t)〉. (2.31)

On the other hand, from (2.30) and (2.31), one gets

1
2
d

dt
‖xn(t)− xm(t)‖2

≤
(
‖ẋn(t)‖+ ‖ẋm(t)‖

)(
‖xn(t)− xn(φn(t))‖+ ‖xm(t)− xm(φm(t))‖

)

+

(
1 + ‖ẋn(t)‖+ ‖ẋm(t)‖+ 2L(1 + %)

)(
ρn + ρm + 2λ

(
%%4(ρn + ρm)

) 1
2
)

+ 4L(1 + %)

(
%%4(ρn + ρm)

) 1
2

.
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Then, for a.e. t ∈ I ,
1
2
d

dt
‖xn(t)− xm(t)‖2 ≤ ϕn,m(t), (2.32)

where for every n,m ≥ 1 and every t ∈ I , the function ϕn,m is defined by

ϕn,m(t) =

(
‖ẋn(t)‖+ ‖ẋm(t)‖

)(
‖xn(t)− xn(φn(t))‖+ ‖xm(t)− xm(φm(t))‖

)

+

(
1 + ‖ẋn(t)‖+ ‖ẋm(t)‖+ 2L(1 + %)

)(
ρn + ρm + 2λ

(
%%4(ρn + ρm)

) 1
2
)

+ 4L(1 + %)

(
%%4(ρn + ρm)

) 1
2

.

Simplifying using (2.25) entails

ϕn,m(t) ≤
(
‖ẋn(t)‖+ ‖ẋm(t)‖

)(
%4(ρn + ρm)

)
+ 4L(1 + %)

(
%%4(ρn + ρm)

) 1
2

+

(
1 + ‖ẋn(t)‖+ ‖ẋm(t)‖+ 2L(1 + %)

)(
ρn + ρm + 2λ

(
%%4(ρn + ρm)

) 1
2
)
.

Next, deduce from (2.18) that (ẋn) is bounded in L1
H(I), then, one obtains∫ T

0
ϕn,m(s)ds ≤ %4

(
‖ẋn‖L1

H (I) + ‖ẋm‖L1
H (I)

)
(ρn + ρm)

+

(
T + ‖ẋn‖L1

H (I) + ‖ẋm‖L1
H (I) + 2TL(1 + %)

)(
ρn + ρm + 2λ

(
%%4(ρn + ρm)

) 1
2
)

+ 4TL(1 + %)

(
%%4(ρn + ρm)

) 1
2

.

Thus, it follows that

lim
n,m→+∞

∫ T

0
ϕn,m(s)ds = 0. (2.33)

Integrating (2.32) over [0, t], yields

‖xn(t)− xm(t)‖2 ≤ 2
∫ T

0
ϕn,m(s)ds,

noting that ‖xn(0)−xm(0)‖ = 0. This along with (2.33), one concludes that (xn(·)) is a Cauchy
sequence in CH(I). So by the uniform Cauchy’s criterion, the sequence (xn(·)) converges uni-
formly in CH(I) to x(·) (since the weak pointwise convergence of (xn(·)) to x(·) is proved
above).
Observe moreover that

‖xn(θn(t))− x(t)‖ ≤ ‖xn(θn(t))− xn(t)‖+ ‖xn(t)− x(t)‖.

This along with the uniform convergence above and (2.25) gives

‖xn(θn(t))− x(t)‖ → 0, as n→ +∞. (2.34)

In the same vein, one obtains

‖xn(φn(t))− x(t)‖ → 0, as n→ +∞. (2.35)

Part 3: Statement of the following differential inclusions

−ẋ(t) ∈ A(t,x(t))x(t) + f(t, x(t)) a.e. t ∈ I, (2.36)
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x(t) ∈ D (A(t,x(t))) t ∈ I. (2.37)

First, we prove (2.37).
Recall by (2.13) that xn(φn(t)) ∈ D (A(φn(t),xn(θn(t)))) for all t ∈ I . In view of Assumption 1
(1), (2.4) and (2.34), it follows that

dis (A(φn(t),xn(θn(t))), A(t,x(t))) ≤ α(φn(t))− α(t) + λ‖xn(θn(t))− x(t)‖

≤ ρn + λ‖xn(θn(t))− x(t)‖ → 0, as n→∞. (2.38)

Remark that (un) = (A0
(φn(t),xn(θn(t)))

xn(φn(t))) is bounded by Assumption 1 (2) and (2.9).
Then, we may extract from (un) a subsequence that converges weakly to some u ∈ H . Since the
sequence (xn(φn(t))) converges to x(t) in H (see (2.35)), applying Lemma 1.2, one concludes
that x(t) ∈ D (A(t,x(t))), t ∈ I .
Now, let us show (2.36).
Combining (2.34) with Assumption 2 (1) then, one gets f(t, xn(θn(t)))→ f(t, x(t)) a.e, along
with (2.28), then, applying the Lebesgue dominated convergence theorem yields

fn(·)→ f(·, x(·)) in L2
H(I). (2.39)

From (2.19) and (2.39), one deduces that (ẋn + fn) converges weakly to ẋ(·) + f(·, x(·)) in
L2
H(I). Then, there exists a sequence (vj) such that for each j ∈ N, vj ∈ co{ẋl + fl, l ≥ j}

and (vj) converges strongly to ẋ(·) + f(·, x(·)) in L2
H(I). Then, we may extract from (vj) a

subsequence that converges a.e. to ẋ(·) + f(·, x(·)). Hence, there exists a subset Yn of I with
null Lebesgue measure and a subsequence (jp) of N such that for all t ∈ I\Yn, (vjp(t)) converges
to ẋ(t) + f(t, x(t)). Hence, for t ∈ I \ Yn

ẋ(t) + f(t, x(t)) ∈
⋂
p∈N

co{ẋl(t) + fl(t), l ≥ jp},

which means that for t ∈ I \ Yn and any ζ ∈ H

〈ẋ(t) + f(t, x(t)), ζ〉 ≤ lim sup
n→∞

〈ẋn(t) + fn(t), ζ〉. (2.40)

Recall that x(t) ∈ D (A(t,x(t))), t ∈ I . By Lemma 1.1, it remains to prove that

〈ẋ(t) + f(t, x(t)), x(t)− y〉 ≤ 〈A0
(t,x(t))y, y − x(t)〉 a.e. t ∈ I,

for all y ∈ D (A(t,x(t))).
Let y ∈ D (A(t,x(t))). Now, applying Lemma 1.4 to the maximal monotone operators A(t,x(t))

and A(φn(t),xn(θn(t))) that satisfy (2.38), then, there exists yn ∈ D (A(φn(t),xn(θn(t)))) such that

yn → y and A0
(φn(t),xn(θn(t)))

yn → A0
(t,x(t))y. (2.41)

For every t ∈ I \Xn, from (2.12) and the monotone property of A(φn(t),xn(θn(t))) it follows that

〈ẋn(t) + fn(t), xn(φn(t))− yn〉 ≤ 〈A0
(φn(t),xn(θn(t)))

yn, yn − xn(φn(t))〉. (2.42)

Combining (2.17), (2.28) with (2.42) , it results for t ∈ I \ (
⋃
n∈N

Xn ∪ Yn ∪ Y )

〈ẋn(t) + fn(t), x(t)− y〉 = 〈ẋn(t) + fn(t), xn(φn(t))− yn〉
+〈ẋn(t) + fn(t), (x(t)− xn(φn(t)))− (y − yn)〉

≤ 〈A0
(φn(t),xn(θn(t)))

yn, yn − xn(φn(t))〉

+

(
bt + L(1 + %)

)(
‖xn(φn(t))− x(t)‖+ ‖yn − y‖

)
.
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Taking (2.35), (2.40) and (2.41) into account entail that

〈ẋ(t) + f(t, x(t)), x(t)− y〉 ≤ lim sup
n→∞

〈ẋn(t) + fn(t), x(t)− y〉 ≤ 〈A0
(t,x(t))y, y − x(t)〉.

Thus, the differential inclusion (2.36) holds true. In other words, the evolution problem (1.1) has
at least one absolutely continuous solution x(·) : I → H .
In view of (2.15) and the convergence above, it follows

‖x(t)− x(s)‖ ≤ %
(
γ(t)− γ(s)

)
, for 0 ≤ s ≤ t ≤ T,

that is,
‖x(t)− x(s)‖ ≤ %(t− s+ α(t)− α(s)), for 0 ≤ s ≤ t ≤ T,

then, the estimate (2.2) is fulfilled.
The proof of the theorem is therefore finished.

To end this section, we impose extra assumptions to obtain the uniqueness of the solution to
problem (1.1).

Theorem 2.2. Suppose that assumptions of Theorem 2.1 hold true. Let for any (t, y) ∈ I × H
the operator A(t,y) be hypo-monotone in the sense that for every η > 0, there exists a non-
negative real function βη(·) ∈ L1

R(I) such that for any t ∈ I , for any xi ∈ BH(0, η) and for
zi ∈ A(t,xi)xi, i = 1, 2, one has

〈z1 − z2, x1 − x2〉 ≥ −βη(t)‖x1 − x2‖2.

Moreover, suppose that for every ρ > 0, there exists a non-negative real function κρ(·) ∈ L1
R(I)

such that for all t ∈ I and for x, y ∈ BH(0, ρ)

‖f(t, x)− f(t, y)‖ ≤ κρ(t)‖x− y‖. (2.43)

Then, for any x0 ∈ D (A(0,x0)), the evolution problem (1.1) has one and only one absolutely
continuous solution which satisfies (2.2).

Proof. Existence of the solution follows from Theorem 2.1.
Let us study the uniqueness of the solution. Suppose that x1(·) and x2(·) are two solutions to
problem (1.1). Since each solution satisfies (2.2), then, there exists η > 0 such that

‖xi(t)‖ ≤ η, i = 1, 2, t ∈ I,

and
−ẋ1(t)− f(t, x1(t)) ∈ A(t,x1(t))x1(t), x1(0) = x0 ∈ D (A(0,x0)) a.e. t ∈ I,
−ẋ2(t)− f(t, x2(t)) ∈ A(t,x2(t))x2(t), x2(0) = x0 ∈ D (A(0,x0)) a.e. t ∈ I.

By the hypo-monotone property above, one gets

〈−ẋ1(t)− f(t, x1(t)) + ẋ2(t) + f(t, x2(t)), x1(t)− x2(t)〉 ≥ −βη(t)‖x1(t)− x2(t)‖2,

then,

〈ẋ1(t)− ẋ2(t), x1(t)−x2(t)〉+ 〈f(t, x1(t))−f(t, x2(t)), x1(t)−x2(t)〉 ≤ βη(t)‖x1(t)−x2(t)‖2.

Using the Lipschitz assumption on f(t, ·) on bounded sets in (2.43), there exists κη(·) ∈ L1
R(I)

such that
1
2
d

dt
‖x1(t)− x2(t)‖2 = 〈ẋ1(t)− ẋ2(t), x1(t)− x2(t)〉

≤ βη(t)‖x1(t)− x2(t)‖2 + κη(t)‖x1(t)− x2(t)‖2.

Thus, integrating over [0, t] yields

‖x1(t)− x2(t)‖2 ≤ 2
∫ t

0
(βη(s) + κη(s))‖x1(s)− x2(s)‖2ds,

and Gronwall’s lemma allows to conclude that x1 ≡ x2. Consequently, the solution of (1.1) is
unique.
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We close this section by the following particular case of the sweeping process.

Corollary 2.3. Let C : I ×H ⇒ H be a set-valued map such that
for each (t, y) ∈ I ×H , C(t, y) is a non-empty closed convex subset of H;
there exist a non-negative real constant λ < 2

3 , and a function α ∈ W 1,2(I,R) which is non-
negative on [0, T [ and non-decreasing with α(T ) <∞ and α(0) = 0 such that

d(x,C(t, u))− d(x,C(s, v)) ≤ |α(t)− α(s)|+ λ‖v − u‖, ∀t, s ∈ I and ∀x, v, u ∈ H;

for any (ti, yi) ∈ I ×H, xi ∈ C(ti, yi), i = 1, 2, one has

〈y1 − y2, x1 − x2〉 ≤ 0.

Let for any (t, y) ∈ I × H , the operator NC(t,y) be hypo-monotone in the sense that for every
η > 0, there exists a non-negative real function βη(·) ∈ L1

R(I) such that for any t ∈ I , for any
xi ∈ BH(0, η) and for zi ∈ NC(t,xi)xi, i = 1, 2, one has

〈z1 − z2, x1 − x2〉 ≥ −βη(t)‖x1 − x2‖2.

Let f : I ×H → H be a map satisfying Assumption 2 (1)-(2) which is Lipschitz in the sense of
(2.43). Then, for any x0 ∈ C(0, x0), the following perturbed sweeping process{

−ẋ(t) ∈ NC(t,x(t))x(t) + f(t, x(t)) a.e. t ∈ I,
x(0) = x0,

has a unique solution x(·) ∈W 1,2(I,H).

Proof. Set for each (t, y) ∈ I ×H , A(t,y) = NC(t,y). Then, this operator is maximal monotone
and satisfies Assumption 1 (1)-(2)-(3). Hence, all assumptions of Theorem 2.2 are satisfied.
Theorem 2.1 yields the desired existence result, while Theorem 2.2 ensures the uniqueness of
the solution.

3 Application to optimal control theory

In this section we are interested in the existence of an optimal solution to a minimization problem
subject to the differential inclusion studied in Section 2.

Theorem 3.1. Let for any (t, y) ∈ I ×H , A(t,y) : D (A(t,y)) ⊂ H ⇒ H be a maximal monotone
operator satisfying assumptions of Theorem 2.2. Let f : I ×H → H be measurable on I such
that for a non-negative real constant l > 0, one has

‖f(t, x)‖ ≤ l, and ‖f(t, x)− f(t, y)‖ ≤ l‖x− y‖, (3.1)

for all t ∈ I and for all x, y ∈ H .
The cost functional J : I ×H ×H → [0,+∞[ is measurable, such that J(t, ·, ·) is lower semi-
continuous on H ×H for every t ∈ I , and J(t, x, ·) is convex on H for every (t, x) ∈ I ×H .
Define the set V by

V := { v ∈ L∞R (I) : |v(t)| ≤ 1 a.e.}.

Then, the minimization problem

min
v∈V

∫ T

0
J(t, xv(t), ẋv(t))dt, (3.2)

has an optimal solution, where xv(·) denotes the unique absolutely continuous solution associ-
ated with the control v(·) ∈ V , to the control problem{

−ẋv(t) ∈ A(t,xv(t))xv(t) + v(t)f(t, xv(t)) a.e. t ∈ I,
xv(0) = x0 ∈ D (A(0,x0)).

(3.3)
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Proof. Note that the set V is σ(L∞R (I), L1
R(I))-compact and also σ(L1

R(I), L
∞
R (I))-compact. For

each v ∈ V , define the map fv(t, x) = v(t)f(t, x) for any (t, x) ∈ I ×H . Then, fv satisfies the
assumptions of Theorem 2.2. Consequently, the problem (3.3) has a unique absolutely continu-
ous solution xv, by Theorem 2.2.
Let vn(·) be a minimizing sequence of problem (3.2) i.e.,

lim
n→+∞

∫ T

0
J(t, xvn(t), ẋvn(t))dt = min

w∈V

∫ T

0
J(t, xw(t), ẋw(t))dt,

where xvn(·) denotes the unique absolutely continuous solution to{
−ẋvn(t) ∈ A(t,xvn (t))xvn(t) + vn(t)f(t, xvn(t)) a.e. t ∈ I,
xvn(0) = x0 ∈ D (A(0,x0)).

Since the set V is σ(L∞R (I), L1
R(I))-compact. Then, suppose that (vn(·)) σ(L∞R (I), L1

R(I))-
converges in L∞R (I) to v ∈ V . Hence (vn(·)) σ(L1

R(I), L
∞
R (I))-converges to v.

From (2.2), there exists η(·) ∈ L2
R(I) such that for any n ≥ 1

‖ẋvn(t)‖ ≤ η(t) a.e t ∈ I,

and

sup
n

∫ T

0
‖ẋvn(t)‖2dt < constant < +∞.

Remark by (3.1) and the construction of the set V that

sup
n
‖vn(t)f(t, xvn(t))‖ ≤ l a.e t ∈ I. (3.4)

Thus, there is x ∈W 1,2(I,H) such that

(xvn) converges pointwisely to x, (3.5)

(ẋvn) converges weakly to ẋ in L1
H(I). (3.6)

The Lipschitz property of f(t, ·) in (3.1) along with (3.5), yields

f(t, xvn(t))→ f(t, x(t)) a.e t ∈ I. (3.7)

Moreover, since f is measurable on I along with (3.1) and (3.7), the Lebesgue dominated con-
vergence theorem entails that

(f(·, xvn(·))) converges to f(·, x(·)) in L1
H(I).

By (3.4), there exists z(·) ∈ L1
H(I) such that

(vn(·)f(·, xvn(·))) converges weakly in L1
H(I) to z(·) .

It remains to prove that

(vn(·)f(·, xvn(·))) converges weakly in L1
H(I) to v(·)f(·, x(·)).

Let h ∈ L∞H (I), then, one has for each t ∈ I

〈h(t), vn(t)f(t, xvn(t))〉 = 〈vn(t)h(t), f(t, xvn(t))〉,

and
sup
n
‖vn(t)h(t)‖ ≤ ‖h‖L∞H (I) and ‖v(t)h(t)‖ ≤ ‖h‖L∞H (I).
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Observe that∣∣∣∣ ∫ T

0
〈h(t), vn(t)f(t, xvn(t))〉dt−

∫ T

0
〈h(t), v(t)f(t, x(t))〉dt

∣∣∣∣
=

∣∣∣∣ ∫ T

0
〈vn(t)h(t), f(t, xvn(t))〉dt−

∫ T

0
〈v(t)h(t), f(t, x(t))〉dt

∣∣∣∣
=

∣∣∣∣ ∫ T

0
〈vn(t)h(t), f(t, xvn(t))− f(t, x(t))〉dt+

∫ T

0
〈(vn(t)− v(t))h(t), f(t, x(t))〉dt

∣∣∣∣
≤

∣∣∣∣ ∫ T

0
〈vn(t)h(t), f(t, xvn(t))− f(t, x(t))〉dt

∣∣∣∣+ ∣∣∣∣ ∫ T

0
〈(vn(t)− v(t))h(t), f(t, x(t))〉dt

∣∣∣∣.
Since (vn(·)h(·)) converges weakly to v(·)h(·) in L1

H(I) and f(·, x(·)) ∈ L∞H (I), then, one
concludes that

lim
n→∞

∫ T

0
〈vn(t)h(t), f(t, x(t))〉dt =

∫ T

0
〈v(t)h(t), f(t, x(t))〉dt.

Since (f(·, xvn(·))) is uniformly bounded, and (f(·, xvn(·))) converges pointwisely to f(·, x(·)),
along with the fact that (vn(·)h(·)) is bounded in L∞H (I) and (vn(·)h(·)) σ(L∞H (I), L1

H(I))-
converges to v(·)h(·), it results that (f(·, xvn(·))) converges to f(·, x(·)) with respect to the
Mackey topology τ(L∞H (I), L1

H(I)) (see [11]), that is,

lim
n→∞

∫ T

0
〈vn(t)h(t), f(t, xvn(t))〉dt =

∫ T

0
〈vn(t)h(t), f(t, x(t))〉dt.

Combining the two last equalities gives

lim
n→+∞

∫ T

0
〈h(t), vn(t)f(t, xvn(t))〉dt =

∫ T

0
〈h(t), v(t)f(t, x(t))〉dt,

i.e.,
(vn(·)f(·, xvn(·))) converges weakly in L1

H(I) to v(·)f(·, x(·)). (3.8)

Now, an application of the lower semi-continuity for integral functionals (see Theorem 8.1.6
[14]) yields

lim inf
n→∞

∫ T

0
J(t, xvn(t), ẋvn(t))dt ≥

∫ T

0
J(t, x(t), ẋ(t))dt.

Thus, it follows that

inf
w∈V

∫ T

0
J(t, xw(t), ẋw(t))dt =

∫ T

0
J(t, x(t), ẋ(t))dt.

Let us verify that

−ẋ(t)− v(t)f(t, x(t)) ∈ A(t,x(t))x(t) a.e. t ∈ I, (3.9)

x(t) ∈ D (A(t,x(t))). (3.10)

Recall that for each n, one has

−ẋvn(t)− vn(t)f(t, xvn(t)) ∈ A(t,xvn (t))xvn(t) a.e. t ∈ I.

From the proceeding convergence modes (see (3.5)-(3.6) and (3.8) ) then, arguing as in Part 3 of
the proof of Theorem 2.1, the inclusions (3.9)-(3.10) hold true. We omit the details for shortness.
Since the solution of (3.9) is unique (see Theorem 2.2), one concludes that x(·) = xv(·) where
xv(·) is the unique absolutely continuous solution associated with the control v to problem (3.3).
This completes the proof of the theorem.
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We close this section by the following corollary.

Corollary 3.2. Let C : I × H ⇒ H be a set-valued map such that assumptions of Corollary
2.3 hold true. Let the maps f : I ×H → H , J : I ×H ×H → [0,+∞[, and the set V satisfy
assumptions of Theorem 3.1. Then, the minimization problem

min
v∈V

∫ T

0
J(t, xv(t), ẋv(t))dt,

has an optimal solution, where xv(·) denotes the unique absolutely continuous solution associ-
ated with the control v(·) ∈ V , to the control sweeping process{

−ẋv(t) ∈ NC(t,xv(t))xv(t) + v(t)f(t, xv(t)) a.e. t ∈ I,
xv(0) = x0 ∈ C(0, x0).

References
[1] S. Adly, T. Haddad and L. Thibault, Convex sweeping process in the framework of measure differential

inclusions and evolution variational inequalities, Math Program Ser B., 148, 5–47, (2014).

[2] S. Adly and B.K. Le, Unbounded second-order state-dependent Moreau’s sweeping processes in Hilbert
spaces, J. Optim. Theory Appl., 169(2), 407–423, (2016).

[3] F. Amiour, M. Sene and T. Haddad, Existence results for state-dependent maximal monotone differential
inclusions: Fixed point approach, Numer. Funct. Anal. Optim., 43(7), 838–859, (2022).

[4] D. Azzam-Laouir, W. Belhoula, C. Castaing and M.D.P. Monteiro Marques, Perturbed evolution problems
with absolutely continuous variation in time and applications, J. Fixed Point Theory Appl., 21 (2019).

[5] D. Azzam-Laouir, W. Belhoula, C Castaing and M.D.P. Monteiro Marques, Multivalued perturbation to
evolution problems involving time dependent maximal monotone operators, Evol. Equ. Control Theory,
9(1), 219–254, (2020).

[6] D. Azzam-Laouir, C. Castaing and M.D.P. Monteiro Marques, Perturbed evolution problems with contin-
uous bounded variation in time and applications, Set-Valued Var. Anal., 26(3), 693–728, (2018).

[7] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noordhoff International
Publishing Leyden The Netherlands, (1976).

[8] M. Bounkhel and D. Azzam, Existence results on the second-order nonconvex sweeping processes with
perturbation, Set Valued Anal., 12(3), 291–318, (2004).

[9] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert,
Lecture Notes in Math., North-Holland, (1973).

[10] B. Brogliato and A. Tanwani, Dynamical systems coupled with monotone set-valued operators: For-
malisms, applications, well-posedness and stability, SIAM Rev., 62(1), 3–129, (2020).

[11] C. Castaing, Topologie de la convergence uniforme sur les parties uniformément intégrables de L1
E et

théorèmes de compacité faible dans certains espaces du type Köthe-Orlicz, Travaux S. Anal. Convexe.
10, exposé no 5, 27 pages, (1980).

[12] C. Castaing, Quelques problèmes d’évolution du second ordre, Sém. d’Ana. Convexe, Montpellier, 18
(1988), exposé n 5.

[13] C. Castaing, C. Godet-Thobie and S. Saïdi, On fractional evolution inclusion coupled with a time and
state dependent maximal monotone operator, Set-Valued Var. Anal., 30(2), 621–656, (2022).

[14] C. Castaing, P. Raynaud de Fitte and M. Valadier, Young measures on topological spaces with applications
in 16 control theory and probability theory, Kluwer Academic Publishers, Dordrecht, (2004).

[15] C. Castaing and S. Saïdi, Lipschitz perturbation to evolution inclusion driven by time-dependent maximal
monotone operators, Topol. Methods Nonlinear Anal., 58(2), 677–712, (2021).

[16] J.M. Holte, Discrete Gronwall lemma and applications, http://homepages.gac.edu/holte/publications/
GronwallLemma.pdf

[17] H.A. Kayvanloo, M. Khanehgir and R. Allahyari, Existence results on infinite systems of nonlinear Caputo
fractional integrodifferential inclusions for convex-compact multivalued maps, Palest. J. Math., 11(3),
414–423, (2022).

[18] A. Krasnosel’skimi and V. Pokrovskiia, Systems with Hysteresis, Berlin, Springer, (1988).

[19] M. Kunze and M.D.P. Monteiro Marques, BV solutions to evolution problems with time-dependent do-
mains, Set-Valued Anal., 5, 57–72, (1997).



628 Nadjiba Abdi and Soumia Saïdi

[20] B. K. Le, On a class of Lur’e dynamical systems with state-dependent set-valued feedback, Set-Valued
Var. Anal. 28, 537–557, (2020).

[21] M. M. Matar, On existence of integral and anti-periodic differential inclusion of fractional order α ∈
(4, 5], Palest. J. Math., 6(2), 465–479, (2017).

[22] M.D.P. Monteiro Marques, Differential inclusions in nonsmooth mechanical problems: shocks and dry
friction, Birkhauser, Basel, (1993).

[23] J.J. Moreau, Unilateral contact and dry friction in finite freedom dynamics, Nonsmooth Mechanics and
Applications, CISM Courses and Lectures, Springer, Vienna, New York, 302, 1–82, (1988).

[24] S. Saïdi, A perturbed second-order problem with time and state-dependent maximal monotone operators,
Discuss. Math., Differ. Incl. Control Optim., 41, 61–86, (2021).

[25] S. Saïdi, On a second-order functional evolution problem with time and state dependent maximal mono-
tone operators, Evol. Equ. Control Theory, 11(4), 1001–1035, (2022).

[26] S. Saïdi, Second-order evolution problems by time and state-dependent maximal monotone operators and
set-valued perturbations, Int. J. Nonlinear Anal. Appl., 14(1), 699–715, (2023).

[27] S. Saïdi, A control problem involving time and state-dependent maximal monotone operators via Young
measures, Ann. Pol. Math., 129, 255–274, (2022).

[28] F. Selamnia, D. Azzam-Laouir and M.D.P. Monteiro Marques, Evolution problems involving state-
dependent maximal monotone operators, Appl. Anal. 101(1), 297–313, (2022).

[29] H. Tanaka, Stochastic differential equations with reflecting boundary conditions in convex regions, Hi-
roshima Math J., 9, 163–177, (1979).

[30] A. Tanwani, B. Brogliato and C. Prieur, Well-Posedness and output regulation for implicit time-varying
evolution variational inequalities, SIAM J Control Optim., 56, 751–781, (2018).

[31] A.A. Vladimirov, Nonstationary dissipative evolution equations in Hilbert space, Nonlinear Anal., 17,
499–518, (1991).

[32] I.I. Vrabie, Compactness methods for nonlinear evolution equations, Pitman Monographs and Surveys in
Pure and Applied mathematics, Longman Scientific and Technical, John Wiley and Sons, Inc. New York,
32, (1987).

Author information
Nadjiba Abdi, LAOTI Laboratory, Faculty of Exact Sciences and Informatics, University of Jijel, 18000 Jijel,
Algeria.
E-mail: nadjibaabdi@gmail.com

Soumia Saïdi, LMPA Laboratory, Faculty of Exact Sciences and Informatics, University of Jijel, 18000 Jijel,
Algeria.
E-mail: soumiasaidi44@gmail.com

Received: 2023-03-16
Accepted: 2023-12-13


	1 Introduction and preliminaries
	2 Main result
	3 Application to optimal control theory 

