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Abstract In this paper, stochastic analysis of interaction between palm leaf and caterpil-
lar life-cycle is presented analytically and numerically. Existence, stabilities and extinction are
analysed theoretically. Further, the results explained theoretically are simulated by using nu-
merical representation.

1 Introduction

In Indonesia, the food and energy industries have mostly benefited from palm oil during the past
ten years, and it has also made a big impact on global trade (cites [4] and [6]). Additionally,
palm oil has grown to be a significant domestic and global commodity as well as an important
Indonesian plantation product. Large-scale palm oil production necessitates substantial land
modification, which contributes to the loss of primary forests. The usage of pesticides that have
an adverse effect on the environment is one of the issues in the sector. The biggest challenges
that might drastically lower production are pests and illnesses. There are many causes for the
emergence of insect attacks on plants. Therefore, insect infestations must be controlled with min-
imal impact on the environment [7]. Insect predators, parasitoids, and pollinators are only a few
of the non-targeted pests that are negatively impacted by the extensive use of insecticides [8].
The latter situation was noticed in 2012 when a new caterpillar, Pseudoresia desmierdechenoni,
began to appear. In Batubara, North Sumatra, this outbreak has resulted in a substantial loss of
oil palm [5]. The persistent emergence of nettle caterpillars in Indonesian plantations is a sign
that helpful insects that were effective in keeping the pest under control economically have dis-
appeared. These caterpillars become oil palm defoliators and drastically reduce productivity by
eating the leaves of either young or elderly palms [7]. To preserve sustainable crop production,
the use of biological management by natural predators is being preferred [1]. For construc-
tion of ordinary differential equation system model, Syukriyah et al. (2019) [7] assumed that
the entire life cycle of a caterpillar is influenced by food availability (leaf surface area) and its
interaction with the predator as follows:



dM = (αP − βM)dt

dE = (σM − δE)dt

dL = (δE − θL− aL(1 − S)− cLR)dt

dS = (η(1 − S)− dL)dt

dP = (θL− αP )dt

dR = (τR(1 − bR) + eLR− µR)dt

(1.1)

where parameters mean:
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(i) α ≡ Transition rate from pupa to moth,

(ii) β ≡ Moth natural death rate,

(iii) σ ≡ Egg production rate by a moth,

(iv) δ ≡ Transition rate from egg to larva,

(v) θ ≡ Transition rate from larva to pupa,

(vi) η ≡ Growth rate of leaf surface area,

(vii) τ ≡ Predator natural growth rate,

(viii) µ ≡ Predator natural death rate,

(ix) a ≡ Interaction coefficient between L and S,

(x) b ≡ Increase of natural carrying capacity of R,

(xi) c ≡ Interaction coefficient between L and R,

(xii) e ≡ Interaction coefficient between L and R.

As was mentioned in [7], there have been many random situations that have affected palm
tree environment. For that reason, it is necessary tu study model (1.1) under random conditions,
in this case, under environmental variability. In order to define the stochastic model, we shall
consider that moth natural death rate (β), transition rate from egg to larva (δ), transition rate
from larva to pupa (θ), growth rate of leaf surface area (η), transition rate from pupa to moth
(α) and predator natural death rate (µ); since those rate can be susceptible of a white noise
(environmental variability) [3]. Therefore, stochastic predator-prey model is given as follows:



dM = (αP − βM)dt− σ1MdB1(t)

dE = (σM − δE)dt− σ2EdB2(t)

dL = (δE − θL− aL(1 − S)− cLR)dt− σ3LdB3(t)

dS = (η(1 − S)− αL)dt− σ6SdB6(t)

dP = (θL− αP )dt− σ4PdB4(t)

dR = (τR(1 − bR) + eLR− µR)dt− σ5RdB5(t),

(1.2)

where σiBi(t) for i = 1, 2, 3, 4, 5, 6 are independent each other.

2 Main Results

The coefficients of model (1.2) are continuos and locally Lipschitz. For instance, we can show
that in a finite time, the solution does not diverge, thus it has a positive R6

+ = {(a, b, c, d, e, f) ∈
R6 : a > 0, b > 0, c > 0, d > 0, e > 0, f > 0} as an invariant set. Therefore, the following
theorem come up with:

Theorem 2.1. For initial values (M(0), E(0), L(0), S(0), P (0), R(0)) ∈ R6
+, the system (1.2)

has an unique solution (M(t), E(t), L(t), S(t), P (t), R(t)) for all t ≥ 0 and the solution remains
in R6

+ with probability one.

Proof. Let q = (q1, q2, q3, q4, q5, q6) y u = (u1, u2, u3, u4, u5, u6), where
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q1 = αP − βM

q2 = σM − δE

q3 = δE − θL− aL(1 − S)− cLR

q4 = η(1 − S)− dL

q5 = θL− αP

q6 = τR(1 − bR) + eLR− µR

u1 = −σ1M

u2 = −σ2E

u3 = −σ3L

u4 = −σ6S

u5 = −σ4P

u6 = −σ5R

Lyapunov’s operator associated (1.1) is given by

L =q1
∂

∂M
+ q2

∂

∂E
+ q3

∂

∂L
+ q4

∂

∂S
+ q5

∂

∂P
+ q1

∂

∂R

+
1
2
u2

1
∂2

∂M2 +
1
2
u2

2
∂2

∂E2 +
1
2
u2

3
∂2

∂L2 +
1
2
u2

4
∂2

∂S2

+
1
2
u2

5
∂2

∂P 2 +
1
2
u2

6
∂2

∂R2 .

Now, let’s define V : R6
+ × [0,∞) → [0,∞) by

V (M,E,L, S, P,R) =M − 1 − ln(M) +E − 1 − ln(E) + L− 1 − ln(L)

+ S − 1 − ln(S) + P − 1 − ln(P ) +R− 1 − ln(R).

Therefore, we obtain
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q1
∂V

∂M
= αP − βM − αP

M
+ β,

q2
∂V

∂E
= σM − δE − σM

E
+ δ,

q3
∂V

∂L
= δE − θL− aL+ aLS − cLR− δE

L
+ θ + a+ aS + cR,

q4
∂V

∂S
= η − ηS − αP − η

S
+ η +

αP

S
,

q5
∂V

∂P
= θL− αP − θL

P
+ α,

q6
∂V

∂R
= τR− τbR2 + eLR− µR− τ + τbR− eL+ µ,

u2
1

2
∂2V

∂M2 = σ2
1

1
2
,

u2
2

2
∂2V

∂E2 = σ2
2

1
2
,

u2
3

2
∂2V

∂L2 = σ2
3

1
2
,

u2
4

2
∂2V

∂S2 = σ2
6

1
2
,

u2
5

2
∂2V

∂P 2 = σ2
4

1
2
,

u2
6

2
∂2V

∂R2 = σ2
5

1
2
,

Hence, LV (M,E,L, S, P,R) is given by

LV (M,E,L, S, P,R) ≤ αP + σM + δE + θL+R(a+ τ + τb)

+ (σ2
1/2 + σ2

2/2 + σ2
3/2 + σ2

4/2 + σ2
5/2 + σ2

6/2

+ 2η + β + δ + θ + a+ α+ µ)

≤ max{α, σ, δ, θ,K1, 1}(P +M +E + L+R+ S) +K2

where K1 = τ+τb y K2 = σ2
1/2+σ2

2/2+σ2
3/2+σ2

4/2+σ2
5/2+σ2

6/2+2η+β+δ+θ+a+α+µ

LV (M,E,L, S, P,R) ≤ 2K3(P +M +E + L+R+ S) +K2

where K3 = max{α, σ, δ, θ,K1, 1}. Thus,

LV (M,E,L, S, P,R) ≤ 2K3(V (M,E,L, S, P,R) + 3) +K2

= K4V (M,E,L, S, P,R) +K5.

where K4 = 2K3 y K5 = 6K3 +K2.
The arguments below are standard for the theory of stochastic differential equations. Now,

let W (0) ≡ (M(0), E(0), L(0), S(0), P (0), R(0)) ∈ R6
+ fixed and let m0 ∈ N sufficiently

large, thus min{|M(0)|, |E(0)|, |L(0)|, |S(0)|, |P (0)|, |R(0)|} > 1/m for all m > m0. Let’s
define the following stopping time τm = inf{t > 0 : W (t) /∈ [1/n, n]6} where W (t) =
(M(t), E(t), L(t), S(t), P (t), R(t)), for all m ≥ m0. It can be seen that τm is increasing in
m if τ∞ lim

m→∞
τm, then τ∞ ≤ τe with probability one, where τe is the explosion time defined as
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τe = inf{t ≥ 0 : |W (t)| = ∞}. We shall show that P[τ∞ = ∞] = 1, which implies that, with
probability one, the process remains in R6

+ besides, it does not diverges in a finite time, because
τe = ∞ with probability one. Let’s consider the opposite, that is P[τ∞ = ∞] < 1. Therefore,
there exists T > 0 and η > 0 such that P[τ∞ < T ] > η. Then, there is m1 ≥ m0 such that
P[τm < T ] > η, for all m ≥ m1. Applying the Itô formula,

dV (W (t), t) =LV (W (t), t)dt+
∂V

∂M
dB1(t) +

∂V

∂E
dB2(t) +

∂V

∂L
dB3(t)

+
∂V

∂S
dB4(t) +

∂V

∂P
dB5(t) +

∂V

∂R
dB6(t).

Thus, V (W (τn ∧ T ), τnT ) is equal to

V (W (0), 0) +
∫ τn∧T

0
LV (X(τn ∧ T ), τn ∧ T )dt+

∫ τn∧T

0

∂V

∂M
dB1(t)

+

∫ τn∧T

0

∂V

∂E
dB2(t) +

∫ τn∧T

0

∂V

∂L
dB3(t) +

∫ τn∧T

0

∂V

∂S
dB4(t)

+

∫ τn∧T

0

∂V

∂P
dB5(t) +

∫ τn∧T

0

∂V

∂R
dB6(t)

By getting the expected value and by using

LV (M,E,L, S, P,R, t) ≤ K4V (M,E,L, S, P,R, t)+K5 and the assumption that E
[∫ τn∧T

0

∂V

∂M
dB1(t)

]
=

E
[∫ τn∧T

0

∂V

∂E
dB2(t)

]
= E

[∫ τn∧T

0

∂V

∂L
dB3(t)

]
=

E
[∫ τn∧T

0

∂V

∂S
dB4(t)

]
= E

[∫ τn∧T

0

∂V

∂P
dB5(t)

]
= E

[∫ τn∧T

0

∂V

∂R
dB6(t)

]
= 0. Therefore,

we get

EV (W (τn ∧ T ), τn ∧ T ) ≤ V (W (0), 0) + E
∫ τn∧T

0
(K4V (M,E,L, S, P,R, t) +K5)dt

≤ V (W (0), 0) + E
∫ T

0
(K4V (W (τn ∧ T )), τn ∧ T ) +K5)dt

≤ V (W (0), 0) +K5T +K4E
∫ T

0
V (W (τn ∧ T )), τn ∧ T )dt.

Now, by Fubini’s Theorem,

E
∫ T

0
V (W (τn ∧ T )), τn ∧ T )dt =

∫ T

0
EV (W (τn ∧ T )), τn ∧ T )dt

and from Gronwall’s inequality, we have

EV (W (τn ∧ T )), τn ∧ T ) ≤ [V (W (0), 0) +K5T ]e
K4T .

Furthermore, if k(n) = min{1/n− 1 − log(1/n), n− 1 − log(n)}, therefore

EV (W (τn ∧ T )), τn ∧ T )1{τn<T ≥ k(n)P[τn < T ] ≥ k(n)η.

Nonetheless, the previous inequality contradicts the fact that EV (W (τn ∧ T )), τn ∧ T ) ≤
[V (W (0), 0) +K5T ]eK4T . Hence, P[τ∞ = ∞] = 1.
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Next, we show some stability results.

Definition 2.2. [3] The trivial solution of a stochastic differential equation is called stable in
probability if for all t ≥ 0 and for any ε ∈ (0, 1) and r > 0, there exists δ = δ(ε, r) > 0 such that

P(∥x(t)∥ < r for all t ≥ 0) ≥ ε,

for any ∥x(0)∥ < δ.

Theorem 2.3. (See Theorem 2.2 in [3]) If there exists a function V (x, t) ∈ C2,1 ∈ (Rd
+×R+,R+)

positive-definitive such that LV (x, t) ≤ 0 for all (x, t) ∈ Rd
+ × R+, then the trivial solution of

the stochastic differential equation is stable in probability.

Theorem 2.4. Let’s consider the stochastic model (1.2). Then, the trivial solution of (1.2) is said
to be stable in probability, if the following conditions hold:

(i) σ ≤ β,

(ii) τ ≤ µ.

Proof. Let’s define V (M,E,L, S, P,R, t) = M +E+L+S+P +R ∈ C2,1 ∈ (R6
+×R+,R+);

we can see that V (M,E,L, S, P,R, t) is positive-definitive. Therefore, Lyapunov’s operator
associated to (1.2) over C2,1(M,E,L, S, P,R, t), is given by

L =q1
∂

∂M
+ q2

∂

∂E
+ q3

∂

∂L
+ q4

∂

∂S
+ q5

∂

∂P
+ q1

∂

∂R

+
1
2
u2

1
∂2

∂M2 +
1
2
u2

2
∂2

∂E2 +
1
2
u2

3
∂2

∂L2 +
1
2
u2

4
∂2

∂S2

+
1
2
u2

5
∂2

∂P 2 +
1
2
u2

6
∂2

∂R2 .

where,

q1 = αP − βM

q2 = σM − δE

q3 = δE − θL− aL

q4 = η − ηS − αL

q5 = θL− αP

q6 = τR− µR

u1 = −σ1M

u2 = −σ2E

u3 = −σ3L

u4 = −σ6S

u5 = −σ4P

u6 = −σ5R

By mentioned above, we can see that

LV =− βM + σM − aL+ η − ηS − αL+ τR− µR

If σ ≤ β and τ ≤ µ, then LV ≤ 0.
Therefore, by theorem (2.3), trivial solution of (1.2) is stable in probability.

Definition 2.5. [3] The trivial solution of a stochastic differential equation is said to be stochas-
tically asymptotically stable in probability if for every ε ∈ (0, 1) there exists δ = δ(ε) such
that

P
(

lim
t→∞

x(t) = 0
)
≥ 1 − ε,

for any ∥x(0)∥ < δ.
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Theorem 2.6. (See Theorem 2.4 in [3]) If there exists a positive-define decreasing unbounded
fucntion V (x, t) ∈ C2,1(Rd × R+;R+) such that Lv(x, t) is negatove-definitive, the the trivial
solution of the stochastic differential equation is stochastically stable in the large.

Theorem 2.7. (See Theorem 7.1 in [2]) If the trivial solution of the linear system associated to
a stochastic differential equation is stochastically asymptotically stable, then the trivial solution
with respect to the stochastic differential equation is stochastically stable.

Theorem 2.8. Consider the stochastic model (1.2), then the trivial solution of (1.2) is stochasti-
cally asymptotically stable in probability if the following conditions holds:

(i) (σ2
1 − β)(σ2

2 − δ) < ασ
4 ,

(ii) η < 2σ2
6

(iii) σ2
4 < α or τ + σ2

5 < µ

(iv) σ2
3 > θ + a

(v) (σ2
2 − δ)(σ2

3 − θ − a) < σδ
4

Proof. According to Theorems (2.6) and (2.7) , the model (1.2) should be linearised around the
trivial solution, thus 

dM = (αP − βM)dt− σ1MdB1(t)

dE = (σM − δE)dt− σ2EdB2(t)

dL = (δE − θL− aL)dt− σ3LdB3(t)

dS = (η − ηS − αL)dt− σ6SdB6(t)

dP = (θL− αP )dt− σ4PdB4(t)

dR = (τR− µR)dt− σ5RdB5(t),

(2.1)

Now, let

q1 = αP − βM

q2 = σM − δE

q3 = δE − θL− aL

q4 = η − ηS − αL

q5 = θL− αP

q6 = τR− µR

u1 = −σ1M

u2 = −σ2E

u3 = −σ3L

u4 = −σ6S

u5 = −σ4P

u6 = −σ5R

By (2.6) and (2.7), it is enough to define a function V (M,E,L, S, P,R, t) ∈ C2,1(R6
+×R+;R+)

positive-definite. Now, we define Lyapunov’s operator associated to (1.2) is given by:

L =q1
∂

∂M
+ q2

∂

∂E
+ q3

∂

∂L
+ q4

∂

∂S
+ q5

∂

∂P
+ q1

∂

∂R

+
1
2
u2

1
∂2

∂M2 +
1
2
u2

2
∂2

∂E2 +
1
2
u2

3
∂2

∂L2 +
1
2
u2

4
∂2

∂S2

+
1
2
u2

5
∂2

∂P 2 +
1
2
u2

6
∂2

∂R2 .
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Let’s define

V (M,E,L, S, P,R, t) = c1M
2 + c2E

2 + c3L
2 + c6S

2 + c4P
2 + c5R

2

where ci, i = 1, 2, 3, 4, 5, 6, are non-negative constants. Applying L in V , we have

LV =2c1αMP − 2c1βM
2 + 2c1σ

2
1M

2 + 2c2σME − 2c2δE
2 + 2c2σ

2
2E

2

+ 2c3δEL− 2c3(θ + a)L2 + 2c3σ
2
3L

2 + 2c6ηS − 2c6ηS
2

− 2c6αPS + 2c6σ
2
6S

2 + 2c4θLP − 2c4αP
2 + 2c4σ

2
4P

2

+ 2c5(τ − µ)R2 + 2c5σ
2
5R

2

LV =M2(2c1σ
2
1 − 2c1β) +E2(2c2σ

2
2 − 2c2δ) + L2(2c3σ

2
3 − 2c3(θ + a))

S2(2c6σ
2
6 − 2c6η) + 2c6ηS + P 2(2c4σ

2
4 − 2c4α) +R2(2c5(τ − µ) + 2c5σ

2
5)

MP (2c1α) +ME(2c2σ) +EL(2c3δ) + LP (2c4θ)− PS(2c6α).

Taking c1 =
1

2α
, c2 =

1
2σ

, c3 =
1
2δ

, c4 =
1
2θ

, c5 =
1
2

y c6 =
1
2

, we get

LV =M2(σ2
1/α− βα) +E2(σ2

2/σ − δ/σ) + L2(σ2
3/δ − (θ + a)/δ)

S2(σ2
6 − η) + ηS + P 2(σ2

4/θ − α/θ) +R2(τ − µ+ σ2
5)

MP +ME +EL+ LP − PS.

Therefore, LV can be represented by LV = AM2
1 +BE2 +CL2 +DS2 +EP 2 +FR2 GMP +

HME + IEL + JLP − KPS + NS, where A = −
σ2

1 − β

α
, B =

σ2
2 − δ

σ
, C =

σ2
3 − θ − a

δ
,

D = σ2
6 − η, E =

σ2
4 − α

θ
, F = τ − µ + σ2

5 , N = η and G = H = I = J = K = 1 . Now,
consider the vector y := (M,E,L, S, P,R) and coefficient matrix Q

2A H 0 0 G 0
H 2B I 0 0 0
0 I 2C 0 J 0
0 0 0 2D +N −K 0
G 0 J −K 2E 0
0 0 0 0 0 2F


we can rewrite LV = AM2

1 +BE2 +CL2 +DS2 +EP 2 + FR2 GMP +HME + IEL+

JLP −KPS +NS in its quadratic form LV =
1
2
yTQy.

Now, let’s define the following sub-matrices on Q,

Q1 =

(
2A H

H 2B

)
, Q2 =

(
0 2D +N

J −K

)
, Q3 =

(
2E 0
0 2F

)
,

Q4 = 2C,Q5 =

(
2B I

I 2C

)
, Q6 = 2F.

Thus, LV is negative-definitive since det(Q1) < 0 if (σ2
1 − β)(σ2

2 − δ) < ασ
4 ; det(Q2) < 0

if η < 2σ2
6; det(Q3) < 0 if σ2

4 < α or τ + σ2
5 < µ; det(Q4) > 0 if σ2

3 > θ + a; det(Q5) < 0
if (σ2

2 − δ)(σ2
3 − θ − a) < σδ

4 and det(Q6) > 0. Therefore, LV is negative-definitive for the
trajectories in R6

+, except in the point (0, 0, 0, 0, 0, 0).
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Definition 2.9. [3] The trivial solution of a stochastic differential equation is said to be stochas-
tically asymptomatically stable in the large if it is stochastically stable and moreover for all
x(0) ∈ Rd,

P
(

lim
t→∞

x(t) = 0
)
= 1

Remark 2.10. In the stochastic differential equation (1.2), we can see if number of month get
extinction; number of egg, number of larva and number of pupa get extinction too. Thus, the
following theorem show the conditions under which number of moth is getting extinction.

Theorem 2.11. Let (M(t), E(t), L(t), S(t), P (t), R(t)) be the solution of of system (1.2) for
any initial value (M(0), E(0), L(0), S(0), P (0), R(0)) ∈ R6

+. Then, the number of month get
extinction exponentially with probability one, i.e.,

P
(

lim
t→∞

M(t) = 0
)
= 1

if α < β + σ2
1 .

Proof. Let

dM = (αP − βM)dt− σ1MdB1(t)

≤ [α(P +M)− β(M + P )]dt− σ1(M + P )dB1(t)

= (α− β)(M + P )dt− σ1(M + P )dB1(t).

Let’s define M + P ≡ X , then dM ≤ (α − β)Xdt − σ1XdB1(t). Then, let X(t) be the
unique solution of the equation:

dX(t) = (α− β)X(t)dt− σ1XdB1(t)

X(0) = M(0) + P (0).

Now, let W1(0) =
1

M(0) + P (0)
. Now, by applying Itô formula, we obtain

dW1 = (−(α− β)W1 +W1σ1) dt+ σ1W1dB1(t)

≤ (β − α+ σ1)W1dt+ σ1W1dB1(t),

with W1(0) =
1

M(0) + P (0)
. Now, by the numerical solution of stochastic differential equation,

we get

W1(t) ≤
1

M(0) + P (0)
eβ−α+σ2

1)t+σ1B1

Therefore, we have

X(t) ≤ (M(0) + P (0))e(α−β−σ2
1)t−σ1B1 (2.2)

where M(t) ≤ X(t). Now, form (2.2), we obtain

M(t) ≤ (M(0) + P (0))e(α−β−σ2
1)t−σ1B1 ,

for every t ≥ 0. Therefore,

ln(M(t)) ≤ ln((M(0) + P (0)) + (α− β − σ2
1)t− σ1B1,
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i.e.,

ln(M(t))

t
≤ ln((M(0) + P (0))

t
+

(α− β − σ2
1)t

t
− σ1B1

t
.

Now, by applying the strong law of large number for local martingale, we get

lim sup
t→∞

ln(M(t))

t
≤ lim sup

t→∞

(M(0) + P (0))
t

+
(α− β − σ2

1)t

t
− σ1B1

t

= α− β − σ2
1

and α− β − σ2
1 < 0 if α < β + σ2

1 which leads to

P
(

lim
t→∞

M(t) = 0
)
= 1.

3 Numerical Simulations

Simulation 1: This simulation shows the behaviour of the system under any circumstance at t =
20 with initial values (M,E,L, S, P,R) ≡ (10, 10, 9, 20, 20, 5) and with parameters α = 0.3,
β = 0.2, σ = 0.2, δ = 0.2, θ = 0.3, η = 0.4, τ = 0.3, µ = 0.15, a = 0.1, b = 0.2, c = 0.3,
e = 0.2, σ1 = 0.03, σ2 = 0.02, σ3 = 0.25, σ4 = 0.032, σ5 = 0.045 and σ6 = 0.05. We have
(M,E,L, S, P,R) ≡ (2, 4, 0.5, 0.3, 0.7, 5).

Figure 1: Stochastic trajectories with white noise on the system.

Simulation 2: Taking values showed in Theorem (2.4), at t = 20 with initial values (M,E,L, S, P,R) ≡
(10, 10, 9, 20, 20, 5) and with parameters α = 0.01, β = 0.2, σ = 0.01, δ = 0.2, θ = 0.2,
η = 0.1, τ = 0.1, µ = 0.3, a = 0.3, b = 0.01, c = 0.3, e = 0.03, σ1 = 0.6, σ2 = 0.01, σ3 = 0.1,
σ4 = 0.5, σ5 = 0.01 and σ6 = 0.01. We have (M,E,L, S, P,R) ≡ (0.4, 0.2, 0.1, 0.22, 0.1, 0.9).
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Figure 2: Stochastic trajectories with white noise on the system are described by (1.2) with parameters presented in (2.4).

Simulation 3: Taking values showed in Theorem (2.8), at t = 20 with initial values (M,E,L, S, P,R) ≡
(10, 10, 9, 20, 20, 5) and with parameters α = 0.3, β = 0.2, σ = 0.01, δ = 0.2, θ = 0.01, η =
0.1, τ = 0.1, µ = 0.3, a = 0.03, b = 0.01, c = 0.3, e = 0.03, σ1 = 0.6, σ2 = 0.01, σ3 = 0.4,
σ4 = 0.1, σ5 = 0.01 and σ6 = 0.4. We have (M,E,L, S, P,R) ≡ (0.4, 0.2, 0.3, 0.2, 0.06, 0.17).

Figure 3: Stochastic trajectories with white noise on the system are described by (1.2) with parameters presented in (2.8).

Simulation 4: The following simulation shows condition under which number of month,
number of egg, number of larva and number of pupa get extinction. Besides, leaf surface
area and number of larva’s predator is maintained persistent. At t = 100 with initial values
(M,E,L, S, P,R) ≡ (10, 10, 9, 20, 20, 5) and with parameters α = 0.3, β = 0.4, σ = 0.2,
δ = 0.2, θ = 0.3, η = 0.4, τ = 0.3, µ = 0.15, a = 0.1, b = 0.2, c = 0.3, e = 0.2,
σ1 = 0.2, σ2 = 0.02, σ3 = 0.025, σ4 = 0.032, σ5 = 0.045 and σ6 = 0.05. We have
(M,E,L, S, P,R) ≡ (0, 0, 0, 1, 0, 3).
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Figure 4: Stochastic trajectories with white noise on the system are described by (1.2) with parameters presented in (2.11).

4 Conclusion

A stochastic predator-prey interaction with two levels of predation between palm leaf, nettle
caterpillar, and predator is represented in a system of stochastic differential equations as was
shown in (1.2). The existence, probability stability and stochastically asymptotically stable in
probability have been gotten in Theorems 2.1, 2.4 and 2.8, respectively. Further, some extinction
conditions were establish (see Theorem 2.11). These results were supported with numerical
simulations. For future works, we suggest conditions under which predators extinction can be
determinated as well as ergodicity stationary distribution for persistent of the stochastic system
(1.2).
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