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Abstract This study discusses the µ-symmetries, µ-conservation laws, and exact solutions
of the modified equal width equation (MEWE). MEWE is used as a model in partial differential
equations (PDE) to simulate one-dimensional wave transmission in nonlinear media with disper-
sion processes. First and foremost, we present some essential pieces of information about the of-
fered techniques. In light of such information, we discover µ-symmetries. The essential idea be-
hind the µ-symmetry approach is that it reduces one-independent variables in a system of PDEs
by employing µ-symmetries and invariance surface conditions. The µ-symmetry method has
been applied to MEWE and transformed into an ordinary differential equation (ODE). Then, we
employ a modified version of the generalized exponential rational function method (mGERFM)
to this reduced ODE to obtain soliton solutions. Thanks to the mGERFM, we discover unique
wave solutions in the forms of exponential function solutions, combined periodic soliton solu-
tion, singular periodic wave solution, shock wave solutions, trigonometric function solutions,
mixed-form soliton solution, hyperbolic solution in mixed form, and periodic soliton solution.
Furthermore, by employing the variational problem procedure, we get the Lagrangian and the
µ-conservation laws. The mGERFM, µ-symmetry analysis, and µ-conservation laws have not
been discussed in previous investigations for the MEWE. We also demonstrate the properties
with figures for these solutions. Here, we use Maple software to validate the complete outcomes
of the study.

1 Introduction

Real-world phenomenons can be converted into mathematical language by employing NLPDEs.
The solution of nonlinear partial differential equations (NLPDEs) plays an essential role in un-
derstanding the behavior of a complex system. The effort to find exact solutions to nonlinear
equations is paramount for comprehending most nonlinear physical phenomena. Nonlinear wave
phenomena occur in various scientific and engineering disciplines, such as solid-state physics,
chemical physics, and geometry.

Recently, influential and efficient approaches to finding approximate and analytic solutions
to nonlinear equations have attracted substantial interest from different groups of scientists,
such as the extended (G′/G)-expansion method [1], Bifurcation analysis [2], Stability analysis
[3], Functional variable method (FVM) [4], Residual power series method [5], Hirota bilinear
method [6], Lie symmetry analysis [7], µ-symmetry analysis [8, 9, 10, 11], Differential trans-
form method (DTM) [12], F -Expansion Procedure [13], Homotopy Perturbation Method [14],
S(ξ)-expansion method [15], Convergence analysis [16], Exact and numerical solutions [17],
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and so on.
Lie symmetry procedure, first examined by S. Lie, is one of the most general and effective

procedures for obtaining exact solutions for NLPDEs. A symmetry group of a differential equa-
tion means a transformation that maps (smooth) solutions to solutions. Lie employed a contin-
uous group of transformations to develop solution methods for ODEs. ODEs with trivial Lie or
no symmetries but possess λ-symmetries can be integrated using the λ-symmetry procedure. λ-
symmetry was introduced by Muriel and Romero as a new kind of symmetry [18]. Morando and
Gaeta viewed the case of PDEs and extended the λ-symmetries to the µ-symmetries [19, 20, 21].
In the case of the µ-symmetries of the Lagrangian, the conservation law is referred to as the
µ-conservation law.

The principal purpose of the current study is to scrutinize the µ-symmetries, reductions, in-
variant solutions, and conservation laws for the MEWE.

The paper is assembled as follows. Section 2 offers the main concepts of the µ−symmetry,
conservation law of µ and the mGERFM. In Section 3, firstly, we introduce the MEWE, then
we yield the µ-symmetries of the MEWE and construct the invariant solutions of the model by
employing the accepted µ-symmetries. Also, Section 3 is devoted to reducing the MEWE into an
ODE using similarity variables. Then, the exact solutions for the MEWE are obtained by using
mGERFM. In Section 4, we obtain Lagrangian in potential form using the variational problem
method and the Frechet derivative. The conservation law of µ is investigated in Section 5 for the
MEWE. Lastly, in Section 6, conclusions are given.

2 Portrayal of offered techniques

2.1 µ-symmetry analysis

Surmise that µ = λidxi be a semi basic one-form on first order jet space (J (1)ℵ, π,ℵ), which is
compatible, namely, ℘jλi = ℘iλj [8, 9, 10, 11, 21]. Here, ℘i and ℘j are total derivative with
respect to xi, and λi defines from J (1)ℵ to R.

Think that ∆ be the sth-order partial differential equation (PDE) as follows

∆ : Z(x,w(s)) = 0. (2.1)

Here, w = w(x) = w(x1, x2, ..., xp) and w(s) symbolizes all sth order derivatives of w as to x.

Let Ω be a vector field on J (s)ℵ. Then, we describe the Ω as

Ω = ϒ +
s∑

|J|=1

ψJ∂wJ , (2.2)

in which ϒ is a vector field on ℵ and defines as

ϒ = ξi(x,w)
∂

∂xi
+ φ(x,w)

∂

∂w
. (2.3)

Eq.(2.2) is the prolongation of µ of Eq.(2.3) if its coefficient provides the prolongation formula
of µ

ψJ,i = (℘i + λi)ψJ − wJ,m(℘i + λi)ξ
m, (2.4)

in which ψ0 = φ. Let R ⊂ J (s)ℵ be the solution manifold for ∆. If Ω : R → TR, it is said that,
for Eq.(2.1), Eq.(2.3) is a µ-symmetry. To get µ-symmetry of Eq.(2.1), then applies Eq.(2.2)
to Eq.(2.1), and restrain the got outcomes to the solution manifold R∆ ⊂ ℵ(s) that will be up to
ξ, φ, λi. If we deem the λ as functions on ℵ(s) and compatibility conditions between the λi, a
system of all the dependence on wJ form the determining equations [21]. V = exp(

∫
µ)ϒ is an

exponential vector field if Eq.(2.3) is a vector field on ℵ.
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Theorem 2.1. Let sth-order PDE defines as ∆(x,ws), Eq.(2.3) be a vector field on ℵ, with in-
variant surface condition Q = φ − wiξ

i, and Ω be the µ−prolong of order s of ϒ. In this case,
for △, Eq.(2.3) is a µ-symmetry, then Ω : Rϒ → TRϒ, in which Rϒ ⊂ J (s)ℵ is the solution
manifold for ∆ϒ made of ∆ and ÈJ := ℘JQ = 0, ∀J with |J | = 0, 1, ..., s− 1 [8, 9, 10, 11, 21].

2.2 µ−conservation law

Surmise that µ = λidxi be a semi-basic one-form and with the compability condition
℘jλi = ℘iλj .

A conservation law of µ is

(℘i + λi)P
i = 0. (2.5)

Here, P i is a conserved vector of µ and this vector is a matrix-valued ℵ-vector.
Think that L = L(x,w(s)) depicts the sth order Lagrangian. For L, Eq.(2.3) is a µ-symmetry,

namely, ∃ℵ-vector P i such that (℘i + λi)P i = 0 where the necessary and sufficient condition is
Ω[L] = 0 [19].
Let second-order Lagrangian defines as L = L(x, t, w,wx, ..., wtt) and for L, ϒ = φ( ∂

∂w ) be a
µ-symmetry. ℵ-vector P i is got as [19]

P i := φ
∂L
∂wi

+ [(℘j + λj)φ]
∂L
∂wij

− φ℘j(
∂L
∂wij

). (2.6)

Here, ℘j is the total derivative.
The Frechet derivative ℘∆ is self adjoint, namely, ℘∗

∆
= ℘∆ is necessary and sufficient condi-

tion in which a system admits a variational formulation [8, 9, 10, 11, 22].

Theorem 2.2. Let ∆ = 0 be a system of differential equations. For some variational problem
£ =

∫
Ldx, ∆ is the Euler-Lagrange expression, i.e., ℘∆ = ℘∗

∆
if and only if ∆ = È(L). Then,

by employing the homotopy formula L[u] =
1∫

0
u∆[λu]dλ, a Lagrangian can be found for ∆.

2.3 The mGERFM

In this part, we think mGERFM, scrutinized in [23]. Utilizing the approach is mainly based on
the subsequent framework [24].

Let us consider the following NLPDE as follows:

Q1[q, qt, qx, qtt, qxx, ...] = 0. (2.7)

Using q = q(x, t) = v(Φ), and Φ = kx− wt, Eq.(2.7) is transferred to

Q2[v(Φ),−w∂v(Φ)

∂Φ
, k
∂v(Φ)

∂Φ
, w2 ∂

2v(Φ)

∂Φ2 , k2 ∂
2v(Φ)

∂Φ2 , ...] = 0. (2.8)

This approach includes a symbolic configuration for the solution that can be characterized as
follows:

v(Φ) = γ0 +
n0∑
n=1

γn

(
Λ′(Φ)

Λ(Φ)

)n

+
n0∑
n=1

δn

(
Λ′(Φ)

Λ(Φ)

)−n

, (2.9)

in which

Λ(Φ) =
ς1 exp(ϵ1Φ) + ς2 exp(ϵ2Φ)

ς3 exp(ϵ3Φ) + ς4 exp(ϵ4Φ)
. (2.10)

Unknown coefficients γ0, γn, δn (1 ≤ n ≤ n0) and ςi, ϵi (1 ≤ i ≤ 4) are real (or complex)
constants to be evaluated, such that Eq.(2.9) satisfies the Eq.(2.8). Besides, the positive integer
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n0 is calculated by the principles of balancing. Substituting Eq.(2.9) together with Eq.(2.10) into
Eq.(2.8) and gathering all terms, the left-hand side of the resultant the equation is converted into
a polynomial equation Ψ(T1, T2, T3, T4) = 0 as to Tr = exp(ϵrΦ) for r = 1, 2, 3, 4. Taking
each coefficient of Ψ to zero, we reach a set of algebraic equations. Solving these algebraic
equations with the aid of a symbolic computation package and then inserting non-trivial solutions
in Eq.(2.9), the explicit shape of the solutions of Eq.(2.7) will be extracted.

3 Mathematical discussion for the nonlinear model

One particularly well-known NLPDE is the KdV equation derived by Korteweg and de Vries
[25]. The KdV equation can be offered as

Θt + ΘΘx + Θxxx = 0. (3.1)

Eq.(3.1) is a NLPDE in one dimension and defines the time-dependent motion of shallow
water waves. Another equation is the Regularised Long-wave equation (RLWE) [26]. This
equation can be written as

Θt + Θx + εΘΘx − κΘxxt = 0.

RLWE is more common than the KdV equation to describe the behavior of nonlinear disper-
sive waves.

Morrison et al. [27] presented an equal width equation (EWE) derived by utilizing both KdV
and RLWE. The EWE is also known as one-dimensional NLEE in the offered form

Θt + ΘΘx − κΘxxt = 0.

Because of the soliton solution with permanent speed and form, the wave has EW for all
amplitude. That is why it is named the EW wave equation. Here, Θ = Θ(x, t) represents wave
amplitude with boundary condition Θ → 0 as x→ ±∞. Also, x represents the space coordinate,
t denotes the time coordinate, and κ is a positive parameter.

The MEWE is derived from the EWE, and it has cubic nonlinearity with dispersive wave-
form

∆ : Θt + Θ
2
Θx − Θxxt = 0. (3.2)

Different analytical and numerical approaches have been used to discover the solution to
MEWE, for example, Collocation Method [28], Multigrid Method [29], Sine-cosine method
[30], Classical Lie symmetry analysis [31].

3.1 Primary outcomes of solving model (3.2) using the µ-symmetry analysis

Suppose that, we have a semi-basic one-form µ = λ1dx + λ2dt such that ℘tλ1 = ℘xλ2 when
Θt + Θ2Θx − Θxxt = 0.

Let

ϒ = ξ
∂

∂x
+ τ

∂

∂t
+ φ

∂

∂Θ
(3.3)

be a vector field on ℵ, and ξ, τ, φ based on x, t,Θ. The third prolongation is given as

Ω = ξ
∂

∂x
+ τ

∂

∂t
+ φ

∂

∂Θ
+ ψx ∂

∂Θx
+ ψt ∂

∂Θt
+ ψxxt ∂

∂Θxxt
. (3.4)

Ω satisfies the following µ-symmetry condition:

ψt + ψx
Θ

2 + 2φΘΘx − ψxxt |= 0
∆Θ=0

, (3.5)
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where

ψx = (℘x + λ1)φ− Θx(℘x + λ1)ξ − Θt(℘x + λ1)τ,

ψt = (℘t + λ2)φ− Θx(℘t + λ2)ξ − Θt(℘t + λ2)τ,

ψxx = (℘x + λ1)ψ
x − Θxx(℘x + λ1)ξ − Θxt(℘x + λ1)τ,

ψxxt = (℘t + λ2)ψ
xx − Θxxx(℘t + λ2)ξ − Θxxt(℘t + λ2)τ, (3.6)

and ℘t and ℘x denote the total differentiations with respect to t and x:

℘t =
∂

∂t
+ Θt

∂

∂Θ
+ Θxt

∂

∂Θx
+ Θtt

∂

∂Θt
+ ..., (3.7)

℘x =
∂

∂x
+ Θx

∂

∂Θ
+ Θxt

∂

∂Θt
+ Θxx

∂

∂Θx
+ ....

To begin with, we substitute Eq.(3.6) into Eq.(3.5) together with (3.7). Then, we write
Θt + Θ2Θx instead of Θxxt, and expanding them, we obtain an over-determined system for
λ1, λ2, ξ, τ, φ :

3ξΘΘ = 0, 2τΘ = 0,

3λ2ξΘ + 3ξtΘ = 0,

4τxΘ + 4τΘλ1 + 3τλ1Θ = 0,

2τxΘ + 2τΘλ1 + τλ1Θ = 0,

.

.

.

2τΘΘx + 2τΘΘλ1 + 3τΘλ1Θ + τλ1ΘΘ = 0,

−φΘΘ + 2ξxΘ + τtΘ + 2ξΘλ1 + 2ξλ1Θ + λ2τΘ = 0. (3.8)

Surmise that λ1 and λ2 are any choices of the type

λ1 = ℘x[H] + y, λ2 = ℘t[H] + z, (3.9)

where H = H(x, t), y = y(x) and z = z(t) are arbitrary functions, and λ1, λ2 satisfy to
℘xλ2 = ℘tλ1 on solutions to Eq.(3.2).

Case-1: When y = 0, z = 0, and H = − ln(ϱ) in the functions of λ1 and λ2, then by
substituting the functions

λ1 = −ϱx
ϱ
, λ2 = −ϱt

ϱ
(3.10)

into the system of Eq.(3.8) and solving them, we get

ξ = 0, τ = ϱ, φ = 0. (3.11)

Then, by substituting the ξ, τ, and φ into Eq.(3.3), we obtain



µ-SYMMETRY ANALYSIS, and µ-CONSERVATION LAWS 647

ϒ1 = ϱ
∂

∂t
. (3.12)

Eq.(3.12) is µ-symmetry of Eq.(3.2). Also,

V = exp
(∫

λ1dx+ λ2dt

)
ϒ

= exp
(∫

(−ϱx
ϱ
)dx+ (−ϱt

ϱ
)dt

)
ϒ1. (3.13)

Thanks to the Theorem 2.1, the order reduction of Eq.(3.2) is

Q1 = φ− ξΘx − τΘt

= −ϱΘt. (3.14)

Case-2: When y = 0, z = 1
t−d1

, and H = − ln(ϱ) in the functions of λ1 and λ2, then by
placing the functions

λ1 = −ϱx
ϱ
, λ2 = −ϱt

ϱ
+

1
t− d1

(3.15)

into the system of Eq.(3.8) and solving them, we attain

ξ = 0, τ = ϱ, φ =
Θ

2(d1 − t)
ϱ. (3.16)

Here, d1 is an integration constant. Then, by inserting the ξ, τ, and φ into Eq.(3.3), we obtain

ϒ2 = ϱ

(
∂

∂t
+

Θ

2(d1 − t)

∂

∂Θ

)
. (3.17)

Eq.(3.17) is µ−symmetry of Eq.(3.2). Also,

V = exp
(∫

(−ϱx
ϱ
)dx+ (−ϱt

ϱ
+

1
t− d1

)dt

)
ϒ2. (3.18)

By using the Theorem 2.1, the order reduction of Eq.(3.2) is

Q2 = φ− ξΘx − τΘt

= ϱ

(
Θ

2(d1 − t)
− Θt

)
. (3.19)

Here, d1 is an integration constant.

Case-3: When y = 0, z = 0, and H = − ln(ϱ) in the functions of λ1 and λ2, then, by
substituting the functions

λ1 = −ϱx
ϱ
, λ2 = −ϱt

ϱ
(3.20)

into the system of Eq.(3.8) and solving them, we reach

ξ = ϱ, τ = (d1 + td2)ϱ, φ = −Θd2

2
ϱ. (3.21)

Then, by inserting the ξ, τ, and φ into the vector field, we obtain

ϒ3 = ϱ

(
∂

∂x
+ (d1 + td2)

∂

∂t
− Θd2

2
∂

∂Θ

)
. (3.22)
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Eq.(3.22) is µ−symmetry of Eq.(3.2). Also,

V = exp
(∫ (

−ϱx
ϱ

)
dx+

(
−ϱt
ϱ

)
dt

)
ϒ3. (3.23)

By using the Theorem 2.1, the order reduction of Eq.(3.2) is

Q3 = φ− ξΘx − τΘt

= −ϱ
(

Θd2

2
+ Θx + (d1 + td2)Θt

)
. (3.24)

Note that ϱ = ϱ(x, t) is an arbitrary function, and d1, d2 are integration constants.

3.2 µ-invariant solutions for the MEWE

The characteristic equation forms are constructed by using the invariant surface condition. By
solving the characteristic equation form, similarity variables are obtained. Then, thanks to the
similarity variables and the original equation, a PDE can be converted to an ODE. Then, by
solving the ODE, the invariant solution is obtained.

The characteristic equation corresponding to Eq.(3.14) is written as

dx

0
=

dt

−ϱ
=
dΘ

0
. (3.25)

By solving Eq.(3.25), we get similarity variables as indicated below

ρ = x, Θ = ϱ1(ρ).

After placing Θ into Eq.(3.2), Eq.(3.2) can be reduced to the ODE

ϱ1(ρ)
2
(
d

dρ
ϱ1(ρ)

)
= 0,

ϱ1(ρ) = C.

Therefore, we have an invariant solution

Θ = C.

For Eq.(3.24), let us consider −ϱ ̸= 0. Then, we have Θd2
2 + Θx + (d1 + td2)Θt = 0. The

characteristic equation corresponding to Eq.(3.22) is written as

dx

1
=

dt

(d1 + td2)
=
dΘ

d2
2

. (3.26)

Specially, if we choose d1 = 1, d2 = 0 in Eq.(3.26), we have

dx

1
=
dt

1
=
dΘ

0
. (3.27)

By solving Eq.(3.27), we get similarity variables as indicated below

ϖ1 = t− x, Θ = ϱ2(ϖ1). (3.28)

After placing Θ into Eq.(3.2), Eq.(3.2) can be reduced to the ODE as

d

dϖ1
ϱ2(ϖ1)− ϱ2(ϖ1)

2(
d

dϖ1
ϱ2(ϖ1))−

(
d3

dϖ3
1
ϱ2(ϖ1)

)
= 0. (3.29)

If we solve Eq.(3.29) directly, we get an integral form as follows:
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∫ ϱ2(ϖ1) 6√
−6x4 − 72C1x+ 36x2 + 72C2

dx−ϖ1 − C3 = 0. (3.30)

Thanks to the Eq.(3.30), we have:
Set-1:
letting C1 = C3 = 0, C2 = 1, and solving them, we obtain

Θ(x, t) = −
6 JacobiSN

(
1
6

√
−18 + 6

√
21(t− x), i

2

(√
3 +

√
7
))

√
−9 + 3

√
21

. (3.31)

Set-2:
Let C2 = C3 = 1, C1 = 0, we get

Θ(x, t) = −
6 JacobiSN

(
1
6

√
−18 + 6

√
21(t− x+ 1), i

2

(√
3 +

√
7
))

√
−9 + 3

√
21

. (3.32)

Set-3:
If we choose C2 = −1, C1 = C3 = 0, we reach

Θ(x, t) = −
6 JacobiSN

(
1
6

√
−18 + 6i

√
3(t− x), 1

2

(√
2 + 2i

√
3
))

√
9 − 3i

√
3

. (3.33)

Set-4:
If we take C1 = 0, C2 = C3 = −1, we attain

Θ(x, t) = −
6 JacobiSN

(
1
6

√
−18 + 6i

√
3(t− x− 1), 1

2

(√
2 + 2i

√
3
))

√
9 − 3i

√
3

. (3.34)

Particular Case
We know that the combination of a vector field (infinitesimal generator) is also a vector field.

Then, let us consider the following linear combination of the µ-symmetry generators:

ϒ1,3 = kϒ1 + wϒ3. (3.35)

Especially, if we take d1 = d2 = 0 in Eq.(3.22), then, ϒ3 becomes

ϒ3 = ϱ

(
∂

∂x

)
.

Thus, from the Eq.(3.35) we attain

ϒ1,3 = ϱ

(
k
∂

∂t
+ w

∂

∂x

)
. (3.36)

By using the Theorem 2.1, we have

Q = φ− ξΘx − τΘt.

= −ϱ [wΘx + kΘt] . (3.37)

Here, ϱ ̸= 0, thus, we say that wΘx + kΘt = 0.
The characteristic equation corresponding to Eq.(3.37) is written as

dx

w
=
dt

k
=
dΘ

0
. (3.38)
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By solving Eq.(3.38), we get similarity variables as indicated below

Φ = kx− wt, Θ = u(Φ).

So, the group-invariant solution is

Θ(x, t) = u(kx− wt). (3.39)

Substitution of Θ into Eq.(3.2) yields a third order ODE

−wu′ + u2u′k + k2wu′′′ = 0. (3.40)

Integration of Eq.(3.40) with respect to u yields

k2wu′′ − wu+
k

3
u3 = 0, (3.41)

in which we take 0 as a constant of integration.

Remark 3.1. In Eq.(3.26), particularly, we choose d1 = 1, d2 = 0, we reach Eq.(3.27). By
solving Eq.(3.27), we obtain similarity variables as Eq.(3.28). We get reduced ODE as Eq.(3.29)
thanks to similarity variables. We obtain an integral form if we solve directly Eq.(3.29). By
solving this integral form, particularly, we take (C1, C2, C3) = (0, 1, 0), (C1, C2, C3) = (0, 1, 1),
(C1, C2, C3) = (0,−1, 0), (C1, C2, C3) = (0,−1,−1), we obtain Jacobi elliptic function solu-
tions. On the other hand, as a particular case, we deal with Eq.(3.35). Let us focus on Eq.(3.38).
If we choose k = w = 1, then, Eq.(3.29) is the same as Eq.(3.40). However, we do not solve
Eq.(3.40) directly. First, we integrate Eq.(3.40) concerning u, then we obtain Eq.(3.41).

3.3 Main results of solving Eq.(3.41) employing the mGERFM

Balancing u′′ with u3 in Eq.(3.41) gives n0 + 2 = 3n0 and n0 = 1. From Eq.(2.9), we have

u(Φ) = γ0 + γ1

(
Λ′(Φ)

Λ(Φ)

)
+ δ1

(
Λ′(Φ)

Λ(Φ)

)−1

, (3.42)

in which Λ(Φ) is defined by Eq.(2.10) as

Λ(Φ) =
ς1 exp(ϵ1Φ) + ς2 exp(ϵ2Φ)

ς3 exp(ϵ3Φ) + ς4 exp(ϵ4Φ)
. (3.43)

Category 1
Taking [ς1, ς2, ς3, ς4] = [1, 1, 1, 0] and [ϵ1, ϵ2, ϵ3, ϵ4] = [0, 1,−2, 0] in Eq.(3.43) yields

Λ1(Φ) =
1 + exp(Φ)

exp(−2Φ)
. (3.44)

To get the values of parameters, we need to solve algebraic equations with the aid of Maple
and the pursuing set of solutions can be delivered as

Sub-category 1.1

γ0 = ±5
(
−9w2

2

) 1
4

, ± i× 5
(
−9w2

2

) 1
4

, γ1 = 0,

δ1 = ±12
(
−9w2

2

) 1
4

, ± i× 12
(
−9w2

2

) 1
4

,

k = ± 2
3w

√
−9w2

2
.

Inserting these above values of γ0, γ1, δ2 into Eq.(3.42), we have

u1,1(Φ) =
2

3
4
√

3(−w2)
1
4 (−2 + 3 exp(Φ))

6 exp(Φ) + 4
. (3.45)
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By using the Eq.(3.45) together with Eq.(3.39), then, the exponential function can be ex-
pressed as

Θ1,1(x, t) =
2

3
4
√

3(−w2)
1
4 (3 exp(kx− wt)− 2)

2(3 exp(kx− wt) + 2)
. (3.46)

Sub-category 1.2

γ0 = ±5
2
(
−72w2) 1

4 , ± 5i
2
(
−72w2) 1

4 , δ1 = 0,

γ1 = ±
(
−72w2) 1

4 , ± i
(
−72w2) 1

4 ,

k = ±
√
−72w2

6w
.

Substituting the values of γ0, γ1, δ2 into Eq.(3.42), we have

u1,2(Φ) =
2

3
4
√

3(−w2)
1
4 (exp(Φ)− 1)

2(exp(Φ) + 1)
. (3.47)

Using the Eq.(3.47) together with Eq.(3.39), the exponential function solution is obtained as

Θ1,2(x, t) =
2

3
4
√

3(−w2)
1
4 (exp(kx− wt)− 1)

2(exp(kx− wt) + 1)
. (3.48)

Category 2
When we choose [ς1, ς2, ς3, ς4] = [1,−1, 2i, 0] and [ϵ1, ϵ2, ϵ3, ϵ4] = [i,−i, 1, 0] in Eq.(3.43)

gives

Λ2(Φ) =
sin(Φ)

exp(Φ)
. (3.49)

The next Sub-category are scheduled:
Sub-category 2.1

γ0 = ±18
1
4
(
w2) 1

4 , ± i× 18
1
4
(
w2) 1

4 , γ1 = 0,

δ1 = ±2 × 18
1
4
(
w2) 1

4 , ± 2i× 18
1
4
(
w2) 1

4 ,

k = ±
√

18
√
w2

6w
.

By considering these values in Eq.(3.42), we have

u2,1(Φ) =
2

1
4
√

3(w2)
1
4 (cos(Φ) + sin(Φ))

cos(Φ)− sin(Φ)
. (3.50)

By using the Eq.(3.50) together with Eq.(3.39), then the combined periodic solution can be
written as

Θ2,1(x, t) =
2

1
4
√

3(w2)
1
4 (cos(kx− wt) + sin(kx− wt))

cos(kx− wt)− sin(kx− wt)
. (3.51)

Sub-category 2.2

γ0 = ±18
1
4
(
w2) 1

4 , ± i× 18
1
4
(
w2) 1

4 , δ1 = 0,

γ2 = ±18
1
4
(
w2) 1

4 , ± i× 18
1
4
(
w2) 1

4 ,
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k = ±
√

18
√
w2

6w
.

Substituting the values of γ0, γ1, γ2 into (3.42), we have

u2,2(Φ) =
2

1
4
√

3(w2)
1
4 cos(Φ)

sin(Φ)
. (3.52)

By using the Eq.(3.52) together with Eq.(3.39), we find singular periodic soliton solution as

Θ2,2(x, t) =
2

1
4
√

3(w2)
1
4 cos(kx− wt)

sin(kx− wt)
. (3.53)

Category 3
For [ς1, ς2, ς3, ς4] = [1,−1, 2, 0] and [ϵ1, ϵ2, ϵ3, ϵ4] = [1,−1,−1, 0] in Eq.(3.43) offers

Λ3(Φ) =
sinh(Φ)

exp(−Φ)
. (3.54)

Proceeding as the outline of mGERFM, we attain

γ0 = γ1 = ±
(
−18w2) 1

4 , ± i×
(
−18w2) 1

4 ,

δ1 = 0, k = ±
√
−18w2

6w
.

By regarding these values in Eq.(3.42), one receives

u3(Φ) = −2
1
4
√

3(−w2)
1
4 sinh(Φ)

cosh(Φ)
. (3.55)

By using the Eq.(3.55) together with Eq.(3.39), then, we obtain the shock wave solution as

Θ3(x, t) = −2
1
4
√

3(−w2)
1
4 sinh(kx− wt)

cosh(kx− wt)
. (3.56)

Category 4
On selecting [ς1, ς2, ς3, ς4] = [2, 0, 1, 1] and [ϵ1, ϵ2, ϵ3, ϵ4] = [1, 0, i,−i] in Eq.(3.43) yields

Λ4(Φ) =
exp(Φ)

cos(Φ)
. (3.57)

The subsequent Sub-category are planned:
Sub-category 4.1

γ0 = ±18
1
4
(
w2) 1

4 , ± i× 18
1
4
(
w2) 1

4 , γ1 = 0,

δ1 = ±2 × 18
1
4
(
w2) 1

4 , ± 2i× 18
1
4
(
w2) 1

4 ,

k = ±
√

18
√
w2

6w
.

Combining these outcomes with Eq.(3.42) yields

u4,1(Φ) =
2

1
4
√

3(w2)
1
4 (2 cos(Φ) sin(Φ)− 1)

2 cos2(Φ)− 1
. (3.58)

Using the Eq.(3.58) together with Eq.(3.39), in this way, we attain the following trigonomet-
ric solution as
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Θ4,1(x, t) =
2

1
4
√

3(w2)
1
4 (2 cos(kx− wt) sin(kx− wt)− 1)

2 cos2(kx− wt)− 1
. (3.59)

Sub-category 4.2

γ0 = ±18
1
4
(
w2) 1

4 , ± i× 18
1
4
(
w2) 1

4 , δ1 = 0,

γ1 = ±18
1
4
(
w2) 1

4 , ± i× 18
1
4
(
w2) 1

4 ,

k = ±
√

18
√
w2

6w
.

Inserting these values in Eq.(3.42), offers

u4,2(Φ) =
2

1
4
√

3(w2)
1
4 sin(Φ)

cos(Φ)
. (3.60)

Consequently, we discover the singular periodic solution can be expressed as

Θ4,2(x, t) =
2

1
4
√

3(w2)
1
4 sin(kx− wt)

cos(kx− wt)
. (3.61)

Category 5
Considering [ς1, ς2, ς3, ς4] = [2, 0, 1, 1] and [ϵ1, ϵ2, ϵ3, ϵ4] = [0, 0, 1,−1] in Eq.(3.43) yields

Λ5(Φ) =
1

cosh(Φ)
. (3.62)

Also, we reach

γ0 = 0, γ1 = ±
√
±3i

2

√
2w, δ1 =

3i
2 w

√
2√

± 3i
2

√
2w

,

k = ± i
√

2
4
.

Consequently, regarding these solutions and Eq.(3.42), it is likely to reach the subsequent
outcome

u5(Φ) = −2
3
4
√

3(
√
−iw)(2 cosh2(Φ)− 1)

2 sinh(Φ) cosh(Φ)
. (3.63)

Hence, we discover the mixed-form soliton solution can be written as

Θ5(x, t) = −2
3
4
√

3(
√
−iw)(2 cosh2(kx− wt)− 1)

2 cosh(kx− wt) sinh(kx− wt)
. (3.64)

Category 6
As long as, if it is allocated [ς1, ς2, ς3, ς4] = [2, 0, 1, 1] and [ϵ1, ϵ2, ϵ3, ϵ4] = [−2, 0, 1,−1] into

account in Eq.(3.43) produces

Λ6(Φ) =
exp(−2Φ)

cosh(Φ)
. (3.65)

We obtain,
Sub-category 6.1

γ0 = ±2
(
−18w2) 1

4 , ± 2i×
(
−18w2) 1

4 , γ1 = 0,

δ1 = ±3 ×
(
−18w2) 1

4 , ± 3i×
(
−18w2) 1

4 ,
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k = ±
√
−18w2

6w
.

Plugging the values of γ0, γ1, δ2 into Eq.(3.42), we have

u6,1(Φ) =
2

1
4
√

3(−w2)
1
4 (2 sinh(Φ) + cosh(Φ))

sinh(Φ) + 2 cosh(Φ)
. (3.66)

By use of Eq.(3.66) together with Eq.(3.39), then the hyperbolic solution in mixed form can
be formulated as

Θ6,1(x, t) =
2

1
4
√

3(−w2)
1
4 (2 sinh(kx− wt) + cosh(kx− wt))

sinh(kx− wt) + 2 cosh(kx− wt)
. (3.67)

Sub-category 6.2

γ0 = ±2
(
−18w2) 1

4 , ± 2i×
(
−18w2) 1

4 , δ1 = 0,

γ1 = ±
(
−18w2) 1

4 , ± i×
(
−18w2) 1

4 ,

k = ±
√
−18w2

6w
.

Plugging the values of γ0, γ1, δ2 into Eq.(3.42), one obtains

u6,2(Φ) = −2
1
4
√

3(−w2)
1
4 sinh(Φ)

cosh(Φ)
. (3.68)

By using the Eq.(3.55) together with Eq.(3.39), the next shape is derived as the shock wave
solution

Θ6,2(x, t) = −2
1
4
√

3(−w2)
1
4 sinh(kx− wt)

cosh(kx− wt)
. (3.69)

Category 7
If we take [ς1, ς2, ς3, ς4] = [1, 1, 2, 0] and [ϵ1, ϵ2, ϵ3, ϵ4] = [i,−i, 0, 0] in Eq.(3.43) offers

Λ7(Φ) = cos(Φ). (3.70)

We get
Sub-category 7.1

γ0 = 0, γ1 = ±

√
−3w

√
2

2
, ±

√
3
√

2
√
w
√

2
2

,

δ1 = ± 3w
√

2

2
√
− 3w

√
2

2

, ± w
√

3√
w
√

2
,

k = ±
√

2
4
.

These outcomes along with Eq.(3.42) lead to the next construction

u7,1(Φ) =
2

3
4
√

3
√
−w(2 cos2(Φ)− 1)

2 cos(Φ) sin(Φ)
. (3.71)

Hence, we reach the following trigonometric solution as

Θ7,1(x, t) =
2

3
4
√

3
√
−w(2 cos2(kx− wt)− 1)

2 cos(kx− wt) sin(kx− wt)
. (3.72)
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Sub-category 7.2

γ0 = 0, γ1 = ±
√
±3iw,

δ1 = ± 3iw√
±3iw

,

k = ± i

2
.

If these outcomes are regarded in conjunction with Eq.(3.42), the next product is got

u7,2(Φ) = −
√

3
√
−iw

cos(Φ) sin(Φ)
. (3.73)

By using the Eq.(3.73) together with Eq.(3.39), hence, we get following periodic solution

Θ7,2(x, t) = −
√

3
√
−iw

cos(kx− wt) sin(kx− wt)
. (3.74)

Figure 1. The 3-dimensional, contour and density figures of |Θ1,1(x, t)| in (3.46), when k =
1, w = 1.

Figure 2. The 3-dimensional, contour and density figures of |Θ2,1(x, t)| in (3.51), when k =
1, w = 1.
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Figure 3. The 3-dimensional, contour and density figures of |Θ3(x, t)| in (3.56), when k =
1, w = 1.

Figure 4. The 3-dimensional, contour and density figures of |Θ4,1(x, t)| in (3.59), when k =
1, w = 1.

Figure 5. The 3-dimensional, contour and density figures of |Θ5(x, t)| in (3.64), when k =
1, w = 1.
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Figure 6. The 3-dimensional, contour and density figures of |Θ6,1(x, t)| in (3.67), when k =
1, w = 1.

Figure 7. The 3-dimensional, contour and density figures of |Θ7,1(x, t)| in (3.72), when k =
1, w = 1.

4 Lagrangian of the MEWE in potential form using the variational problem
method

It is crucial that if an equation has odd order, it does not accept a variational problem, but thanks
to the potential form ∆v, this equation accepts a variational problem [8, 10, 11].

The MEWE

∆Θ : Θt + Θ
2
Θx − Θxxt = 0

is in odd order. Frechet derivative of ∆Θ is

℘∆Θ
: ℘t + Θ

2℘x + 2ΘΘx − ℘2
x℘t. (4.1)

Note that ℘∆Θ
̸= ℘∗

∆Θ
.We say that the MEWE does not accept a variational problem. The MEWE

in potential form ∆v is obtained by the well-known differential substitution Θ = vx,

∆v = vxt + v2
xvxx − vxxxt = 0. (4.2)

Eq.(4.2) is named "the MEWE in the potential form" and its Frechet derivative is

℘∆v
= ℘x℘t + v2

x℘
2
x + 2vxvxx℘x − ℘3

x℘t. (4.3)

Note that Eq.(4.3) is self-adjoint.
Thanks to the Theorem 2.2, the MEWE in potential form ∆v has a Lagrangian of the form
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L[v] =

1∫
v

0

∆v[λv]dλ

= −1
2
vxvt −

1
12
v4
x − 1

2
vxxvxt +DivP. (4.4)

Thus, we have

L∆v
[v] = −1

2
(vxvt +

1
6
v4
x + vxxvxt). (4.5)

5 Significant outcomes of solving model (3.2) utilizing the µ−conservation
laws for the MEWE

First of all, we will compute the µ−conservation laws for the MEWE as ∆v. Consider the second
order Lagrangian Eq.(4.5) for the MEWE as ∆v

∆v = vxt + v2
xvxx − vxxxt

= È(L∆v
). (5.1)

Surmise that ϒ = φ∂v be a vector field for L∆v
[v]. Let µ = λ1dx + λ2dt be a semi-basic

one-form such that ℘xλ2 = ℘tλ1 when ∆v = 0.
Thanks to the Eq.(2.4), Ω and its coefficients are

Ω = φ
∂

∂v
+ ψx ∂

∂vx
+ ψt ∂

∂vt
+ ψxx ∂

∂vxx
+ ψxt ∂

∂vxt
, (5.2)

in which

ψx = (℘x + λ1)φ, ψ
t = (℘t + λ2)φ, ψ

xx = (℘x + λ1)ψ
x, ψxt = (℘t + λ2)ψ

x. (5.3)

By applying the µ−prolongation Ω acts on the L∆v
[v] and substituting 1

vx
(− 1

6v
4
x − vxxvxt)

for vt, we get

−2
3
φvv = 0, − φv = 0,

φvλ2 + φvt = 0,

−2
3
φλ1v −

7
6
φvλ1 −

7
6
φvx = 0,

φxt + φtλ1 + φxλ2 + λ1λ2φ = 0,

φ

2
λ1 +

φx

2
= 0,

−φxx

2
− φ

2
λ1x − λ1φx − φ

2
λ2

1 = 0. (5.4)

Consider φ = ϱ, and L∆v
[v] = 0. A special solution of the system (5.4) is given by

λ1 = −ϱx
ϱ
, λ2 = −ϱt

ϱ
. (5.5)

Therefore, for L∆v
[v], ϒ = ϱ ∂

∂v is a µ-symmetry. Then, by using Theorem 2.2, there exists an
ℵ-vector P i which is conservation law of µ, that is, (℘i + λi)P i = 0. Then, by of Eq.(2.6), the
ℵ-vector P i for L∆v

[v] is got
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P 1 = −ϱ(1
2
vt +

1
3
v3
x − vxxt),

P 2 = −vx
2
ϱ. (5.6)

So, for L∆v
[v], conservation law of µ is the form ℘xP

1 + ℘tP
2 + λ1P

1 + λ2P
2 = 0.

Corollary 5.1. Conservation law of µ for the MEWE in potential form ∆v = È(L∆v
) is as

℘xP
1 + ℘tP

2 + λ1P
1 + λ2P

2 = 0, (5.7)

where P 1 and P 2 are the ℵ-vector P i of Eq.(5.6)

Remark 5.2. Conservation law of µ for the MEWE in potential form ∆v, satisfying to the
Noether’s Theorem for µ−symmetry, that is to say

(℘i + λi)P
i = −ϱ(vxt + v2

xvxx − vxxxt)

= QÈ(L∆v
). (5.8)

Secondly, let us consider the MEWE as ∆v

∆v = vxt + v2
xvxx − vxxxt = 0. (5.9)

Eq.(5.9) corresponds to

℘x(vt +
1
3
v3
x − vxxt) = 0,

or equivalently

vt +
1
3
v3
x − vxxt = Π1(t),

where Π1 = Π1(t) is an arbitrary function. If we substitute

Π1 −
1
3
v3
x + vxxt

for vt and substitute Θ for vx in the ℵ-vector P i of Eq.(5.6), then, we get the ℵ-vectors P 1 and
P 2 as:

P 1 = −ϱ(1
2

Π1 +
1
6

Θ
3 − 1

2
Θxt),

P 2 = −Θ

2
ϱ. (5.10)

Corollary 5.3. Conservation law of µ for the MEWE ∆Θ is

℘xP
1 + ℘tP

2 + λ1P
1 + λ2P

2 = 0, (5.11)

where P 1 and P 2 are the ℵ-vector P i of Eq.(5.10).

Remark 5.4. The MEWE ∆Θ satisfies the characteristic form, that is to say

(℘i + λi)P
i = −ϱ

2
(Θt + Θ

2
xΘx − Θxxt)

= Q∆Θ. (5.12)
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6 Conclusions

In this paper, we considered the MEWE to scrutinize the µ−symmetries, symmetry reductions,
invariant solutions, exact solutions, and conservation laws. Firstly, we offered some essential
properties of the µ−symmetries, µ−conservation law, and a modified version of GERFM. The
vital object of the µ−symmetry is a semi-basic one-form µ = λidxi, which must satisfy com-
patibility conditions. Then we demonstrated that the approach of the µ−symmetry reduction
could also be analyzed in terms of the formulation of the Noether theorem when µ−symmetries
were regarded to discover the invariant solutions of PDEs named the µ−invariant solutions.
With the help of these infinitesimal generators, we get similarity variables and similarity func-
tions. By utilizing these similarity variables and functions, we reduced nonlinear PDE into
ODE. We employed mGERFM to this reduced ODE to get the soliton solution. We discovered
various families of optical solutions, such as exponential function solutions, combined periodic
soliton solution, singular periodic wave solution, shock wave solutions, trigonometric function
solutions, mixed form soliton solution, hyperbolic solution in mixed form, and periodic soli-
ton solution the prototype using the mGERFM. In this context, exponential function solutions
Eq.(3.46), and Eq.(3.48), combined periodic soliton solution Eq.(3.51), singular periodic wave
solution Eq.(3.53), shock wave solutions Eq.(3.56), and Eq.(3.69), trigonometric function so-
lutions Eq.(3.59), and Eq.(3.72), mixed form soliton solution Eq.(3.64), hyperbolic solution in
mixed form Eq.(3.67), and periodic soliton solution Eq.(3.74). One of the primary benefits of
such approaches is that awaited configurations for solutions are determined from the beginning
of the process. Moreover, we obtained Lagrangian potential by using the variational problem
method and the Frechet derivative. In this context, the equation must have Lagrangian necessary
and sufficient condition that its Frechet derivative is self-adjoint. Finally, the µ−conservation
law was investigated. The main novelty of this paper is that the MEWE equation is first studied
using the µ−symmetry method, a modified version of the GERFM, and µ−conservation law.
The 3-dimensional, contour, and density figures of the reached solutions were drawn with the
aid of the Mathematica package program. The accuracy of the solutions obtained was tested and
verified in the Maple package program.
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E-mail: bkopcasz@gmail.com
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