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Abstract In this paper, we provide new combinatorial and analytic expressions of the so-
lutions of the Pell equation x2 − dy2 = ±1. Our approach is based on some properties of
recurring sequences with periodic coefficients and continued fraction expansion of

√
d. Further-

more, using the established results, we build some algorithms to calculate the solutions. As an
application, we investigate some specific values of d, notably d = k2 ± l when l divides k. Yet,
to enhance our approach, some numerical examples are studied.

1 Introduction

Let d be a positive integer that is not a perfect square. The classical Pell equation is given by

x2 − dy2 = ±1 (1.1)

Several authors have extensively studied the Pell equation (1.1) (see, for instance, [3], [4], [8],
[13], [14]). We first recall some known facts from the fascinating history of Pell equations.
Ironically, Pell (1611-1685) was not the first to work on this problem, nor did he contribute to
our knowledge of solving it. It is said that Euler (1707-1783) mistakenly attributed Brouncher’s
work (1620-1684) on this equation to Pell, and the name stuck.
The Pell’s equation was first studied by Brahmagupta (598-670) and Bhaskara (1114-1185). Its
complete theory was worked out by Lagrange (1736-1813).
Recently, the method followed by Teckan in [11] depends essentially on continued fraction ex-
pansion of

√
d for some specific values of d. On the other hand, K. Conrad treated the problem

by the elementary method and triangular-square numbers (see, for instance, [10]).
Continued fractions play an important role in solutions to the Pell equation (1.1). That is, for

a non-square positive integer d, the continued fraction expansion of
√
d is a simple p-periodic

continued fraction defined by

√
d = [b0, b1, b2, · · · , bp] = b0 +

1

b1 +
1

b2 +
. . . +

1
bp + · · ·

, (1.2)

where the sequence eventually repeats, i.e bp+i = bi for all i ≥ 1, and b1, b2, ..., bp−1 is a
palindrome, namely √

d =
[
b0; b1, b2, ..., b2, b1, 2b0

]
.

We denote by An/Bn = [b0, b1, b2, · · · , bn] the nth convergent of the continued fraction (1.2)
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such that

An = bnAn−1 +An−2

Bn = bnBn−1 +Bn−2
(1.3)

where A−1 = 1, A0 = b0, B−1 = 0, B0 = 1.

It is well known in the literature that all positive integer solutions {(Xk, Yk)}k≥1 of the Pell
equation (1.1) are given by the following theorem.

Theorem 1.1. (see [12], Theorem A) Let d be a positive integer that is not a perfect square, and
let p be the minimal period length of the simple periodic continued fraction

√
d =

[
b0; b1, ..., bp

]
.

Let An/Bn be the nth convergent of this simple continued fraction. Then

(a) the positive solutions of the positive Pell’s equation x2 − dy2 = 1 are given by

(Xk, Yk) =

{
(Akp−1, Bkp−1) if p is even
(A2kp−1, B2kp−1) if p is odd

for all k = 1, 2, 3, ..

(b) the positive solutions of the negative Pell’s equation x2 − dy2 = −1 are given by

Xk = A(2k−1)p−1 k = 1, 2, 3, ...

Yk = B(2k−1)p−1 k = 1, 2, 3, ...

when p is odd, and there is no solution when p is even.

The solution (Xk, Yk) is called the kth solution, and the solution (X1, Y1) with the smallest
value among all solutions {(Xk, Yk)}k≥1 of Pell equation (1.1) is called fundamental solution.

Now, let us recall some properties on linearly recurring sequences (see for instance [1, 2, 6,
7]). A linear homogeneous difference equation of order r ≥ 2 with variable coefficients is given
by

Vn+r = c0(n)Vn+r−1 + · · ·+ cr−1(n)Vn, (1.4)

where cj(n) are real functions, and V0, · · · , Vr−1 are the initial values. When the coefficients are
constant, the sequence {Vn}n≥0 is nothing else but the linearly recurring sequence, also known
as the r-Generalized Fibonacci Sequence. Let’s elaborate further on this case. We consider the
polynomial P (X) = Xr − c0X

r−1 − · · · − cr−2X − cr−1, called the characteristic polynomial,
and its roots λ1, ..., λs with multiplicities m1, ...,ms respectively, called the characteristic roots.
The classical Analytic formula of the terms of {Vn}n≥0 (known also as Binet formula) is given
by

Vn =
s∑

i=1

mi−1∑
j=0

βi,jn
j

λn
i for n ≥ 0, (1.5)

where βi,j are determined uniquely from the initial conditions {Vj}0≤j≤r−1, by solving the
system of r linear equations

s∑
i=1

mi−1∑
j=0

βi,jn
j

λn
i = Vn, n = 0, 1, · · · , r − 1.

Meanwhile, the combinatorial expression of the terms of {Vn}n≥0 was established in [5] as
follows:

Vn = ρ(n, r)w0 + ρ(n− 1, r)w1 + · · ·+ ρ(n− r + 1, r)wr−1, for n ≥ r, (1.6)

where ws = cr−1Vs + · · ·+ csVr−1 for s = 0, 1, · · · , r − 1 and ρ(n, r) is given by

ρ(n, r) =
∑

k0+2k1+...+rkr−1=n−r

(k0 + ...+ kr−1)!
k0!...kr−1!

ck0
0 ...c

kr−1
r−1 , for n ≥ r. (1.7)
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with ρ(r, r) = 1 and ρ(n, r) = 0 if n ≤ r − 1.

The novel method that we deal with in this paper is based on some recent results established
in [1] regarding the linear difference equations with periodic coefficients, where some initial con-
ditions are considered. The study of this paper is structured as follows: Section 2 involves two
parts. In the first one, we formulate the positive integer solutions emanating from combinatorial
expressions of the numerator An and denominator Bn of convergents of

√
d considered as two

difference equations with periodic coefficients by converting these equations to equivalent dif-
ference equations with constant coefficients. Moreover, we provide some algorithms constructed
from the established results that enable us to compute the solutions of the Pell equation (1.1).
Similarly, in the second part, we formulate the analytic expressions of solutions emanating from
the analytic formula (Binet formula) of An and Bn. In section 3, we give the continued fraction
expansion of

√
k2 ± l when l divides k, then we apply the results established in section 2 to solve

the Pell equation x2 − (k2 ± l)y2 = 1.

2 Combinatorial and analytic solutions of Pell equation x2 − dy2 = ±1

In this section, we study the recurrence relations of the sequences {An}n≥−1 and {Bn}n≥−1,
released from the continued fractions expansion of

√
d, to formulate combinatorial and analytic

expressions of solutions of the Pell equation (1.1), and we only consider positive integer solu-
tions.
Let An/Bn be the nth convergent of the continued fraction [b0, b1, ..., bp] such that (1.3) is satis-
fied. The fundamental recurrence formulas (1.3) can be viewed as two linear difference equations
of order 2 with periodic coefficients of period p.
First, let’s consider the sequence {An}n≥−1, then we have{

An = bnAn−1 +An−2, (n ≥ 1)

A−1 = 1 , A0 = b0

where bp+i = bi for all i ≥ 1, then(
An

An−1

)
=

(
bn 1
1 0

)(
An−1

An−2

)
, (n ≥ 1).

Put Un =

(
An

An−1

)
and Cn =

(
bn 1
1 0

)
, then we get

Up = CpCp−1...C1U0.

Put B = CpCp−1...C1, then for every k ≥ 1 and using the periodicity conditions of bn, we obtain

Ukp = BkU0

Now, we point out that CpCp−1...C1C0 =

(
Ap Bp

Ap−1 Bp−1

)
.

That is B =

(
Ap Bp

Ap−1 Bp−1

)
C−1

0 =

(
Ap Bp

Ap−1 Bp−1

)(
0 1
1 −b0

)
.

Hence

B =

(
Bp Ap − b0Bp

Bp−1 Ap−1 − b0Bp−1

)
Let PB(x) = x2 − c0x− c1 be the characteristic polynomial of the matrix B, we have

c0 = Bp +Ap−1 − b0Bp−1 (c0 ∈ N⋆)

c1 = ApBp−1 −BpAp−1 = (−1)p−1 (c1 ∈ {−1, 1})
(2.1)
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.
Furthermore, from [9], we can check that

Ap−1 = b0Bp−1 +Bp−2

Then we get

c0 = Bp +Ap−1 − b0Bp−1 = 2Ap−1 (2.2)

It follows from the Cayley-Hamilton Theorem that B2 − c0B − c1I2 = Θ2. Thereafter, for every
k ≥ 2 we have (

Bk − c0B
k−1 − c1B

k−2)( A0

A−1

)
=

(
0
0

)

and since

(
Akp

Akp−1

)
= Bk

(
A0

A−1

)
, we get for every k ≥ 2

Akp−1 = c0A(k−1)p−1 + c1A(k−2)p−1 (2.3)

We observe that {Akp−1}k≥0 is a linearly recurring sequence with constant coefficients c0, c1
and initial conditions A−1 = 1 and Ap−1. Similar reasoning can be used for the sequence
{Bkp−1}k≥0 (only the initial conditions are changed). Now, we are ready to exploit formulas
(1.5)-(1.6) in the aim to provide handled expressions of the solutions of the Pell equation (1.1).

2.1 Combinatorial expressions of solutions of Pell equation x2 − dy2 = ±1

Consider the linearly recurring sequence {Akp−1}k≥0 given by (2.3), with initial conditions
A−1 = 1 and Ap−1. It ensues from formula (1.6) that the combinatorial expression of {Akp−1}k≥0
is given by,

Akp−1 = ρ(k, 2)[c1A−1 + c0Ap−1] + ρ(k − 1, 2)c1Ap−1 (k ≥ 2)

where ρ(n, 2) is given by

ρ(n, 2) =
[n−2

2 ]∑
h=0

(
n− 2− h

h

)
cn−2−2h

0 ch1 (n > 2)

with ρ(1, 2) = 0 and ρ(2, 2) = 1. Making use of Theorem 1.1 and since the solutions of the
Pell equation x2 − dy2 = ±1 are expressed in terms of (p − 1)th convergent of

√
d, we get the

following result.

Proposition 2.1. Let [b0, b1, ..., bp] be the simple periodic continued fraction of
√
d and Ap−1/Bp−1

its (p−1)th convergent, then the combinatorial expressions of (Xk, Yk), solutions of Pell’s equa-
tion x2 − dy2 = 1, are given as follows:
• When p is even : {

Xk = −ρ(k, 2) +Ap−1ρ(k + 1, 2)

Yk = Bp−1ρ(k + 1, 2)
(k ≥ 1)

• When p is odd : {
Xk = ρ(2k, 2) +Ap−1ρ(2k + 1, 2)

Yk = Bp−1ρ(2k + 1, 2)
(k ≥ 1),

where ρ(1, 2) = 0, ρ(2, 2) = 1 and for n > 2,

ρ(n, 2) =
[n−2

2 ]∑
h=0

(
n− 2− h

h

)
(−1)h(p−1) (2Ap−1)

n−2−2h
.
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For the negative Pell’s equation x2 − dy2 = −1, the combinatorial solutions (Xk, Yk) are
given by {

Xk = ρ(2k − 1, 2) +Ap−1ρ(2k, 2)

Yk = Bp−1ρ(2k, 2)
(k ≥ 1)

when p is odd, and there is no solution when p is even.

To derive numerical formulas from the above proposition, which leads to the development
of algorithms for computing the solutions, straightforward calculations permit us to formulate
them as follows:

Corollary 2.2. Let [b0, b1, ..., bp] be the simple periodic continued fraction of
√
d and Ap−1/Bp−1

its (p − 1)th convergent. Suppose that p is even, then for n ≥ 2, the positive integer solutions
(Xn, Yn) of x2 − dy2 = 1 are given by :
Case n = 2j

X2j =
j−1∑
h=0

(−1)h
(

2j − 2− h

h

)[
2A2

p−1

(
1 +

h

2j − 1− 2h

)
− 1
]
(2Ap−1)

2j−2−2h

Y2j = Bp−1

j−1∑
h=0

(−1)h
(

2j − 1− h

h

)
(2Ap−1)

2j−1−2h

Case n = 2j + 1
X2j+1 = (−1)jAp−1 +

j−1∑
h=0

(−1)h
(

2j − 1− h

h

)[
2A2

p−1

(
1 +

h

2j − 2h

)
− 1
]
(2Ap−1)

2j−1−2h

Y2j+1 = Bp−1

j∑
h=0

(−1)h
(

2j − h

h

)
(2Ap−1)

2j−2h

Thus, according to Corollary 2.2, we construct the following algorithms.

Algorithm 1 : Calculate even solutions X2j and Y2j of Pell equation x2 − dy2 = 1 when p is
even.

Input : A positive integers Ap−1, Bp−1, N
Output : The values of X2j , Y2j

1: for j ← 0 To N do
2: X2j ← 0
3: Y2j ← 0
4: if j ≥ 1 then
5: for h← 0 To j − 1 do
6: X2j ← (−1)h(2j−2−h

h )
[
2A2

p−1

(
1 + h

2j−1−2h

)
− 1
]
(2Ap−1)2j−2−2h

7: Y2j ← Bp−1(−1)h(2j−1−h
h )(2Ap−1)2j−1−2h

8: X2j ← X2j + 0
9: Y2j ← Y2j + 0

10: h← h+ 1
11: end for
12: else
13: X2j ← 1
14: Y2j ← 0
15: end if
16: end for

Algorithm 2 : Calculate odd solutions X2j+1 and Y2j+1 of Pell equation x2 − dy2 = 1 when p
is even.

Input : A positive integers Ap−1, Bp−1, N
Output : The values of X2j+1, Y2j+1
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1: for j ← 0 To N do
2: sum← 0
3: Y2j+1 ← 0
4: if j ≥ 1 then
5: for h← 0 To j − 1 do
6: sum← (−1)h(2j−1−h

h )
[
2A2

p−1

(
1 + h

2j−2h

)
− 1
]
(2Ap−1)2j−1−2h

7: X2j+1 ← sum+ (−1)jAp−1
8: X2j+1 ← X2j+1 + 0
9: h← h+ 1

10: end for
11: for h← 0 To j do
12: Y2j+1 ← (−1)hBp−1(

2j−h
h )(2Ap−1)2j−2h

13: Y2j+1 ← Y2j+1 + 0
14: h← h+ 1
15: end for
16: else
17: X2j+1 ← Ap−1
18: Y2j+1 ← Bp−1
19: end if
20: end for

Example 2.3. Our purpose here is to find the 20th until 29th solutions of the Pell equation
x2 − 15y2 = 1 via Corollary 2.2.
We have

√
15 = [3, 1, 6], A1 = 4 and B1 = 1. To facilitate the calculations we will use the

Python code A constructed from Algorithm 1, and we will give some even solutions in the fol-
lowing table.

j X2j Y2j

10 418558976041008000 108071462907496880
11 25943903806170873856 6698687158460467200
12 1608103477006553055232 415210532361641459712
13 99676471670600118566912 25736354319263309234176
14 6178333140100200867561472 1595238757261963530600448

For n = 2j + 1, using the Python code B constructed from Algorithm 2, we get the odd so-
lutions given in the following table.

j X2j+1 Y2j+1

10 3295307847776485376 850844827670995456
11 25943903806170873856 52738652440012742656
12 12660571893450835755008 3268945606453119418368
13 784751201471350242803712 202621888947653389058048
14 48641913919330265287622656 12559288169148054989963264

Corollary 2.4. Let [b0, b1, ..., bp] be the simple periodic continued fraction of
√
d and Ap−1/Bp−1

its (p − 1)th convergent. Suppose that p is odd, then for n ≥ 1, the positive integer solutions
(Xn, Yn) of x2 − dy2 = 1 are given by

Xn =
n−1∑
h=0

(
2n− 2− h

h

)[
2A2

p−1

(
1 +

h

2n− 1− 2h

)
+ 1
]
(2Ap−1)

2n−2−2h

Yn = Bp−1

n−1∑
h=0

(
2n− 1− h

h

)
(2Ap−1)

2n−1−2h

In this case, we provide the following iterative Algorithm 3 to calculate the solutions Xn and
Yn for n = 1, ..., N .
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Algorithm 3 : Calculate solutions Xn and Yn of Pell equation x2 − dy2 = 1 when p is odd.
Input : A positive integers Ap−1, Bp−1, N

Output : The values of Xn, Yn

1: for n← 0 To N do
2: Xn ← 0
3: Yn ← 0
4: if n ≥ 2 then
5: for h← 0 To n− 1 do
6: Xn ← (2n−2−h

h )
[
2A2

p−1

(
1 + h

2n−1−2h

)
+ 1
]
(2Ap−1)2n−2−2h

7: Yn ← Bp−1(
2n−1−h

h )(2Ap−1)2n−1−2h

8: Xn ← Xn + 0
9: Yn ← Yn + 0

10: h← h+ 1
11: end for
12: else if n=1 then
13: Xn ← 2A2

p−1 + 1
14: Yn ← 2Ap−1Bp−1
15: else
16: Xn ← 1
17: Yn ← 0
18: end if
19: end for

Example 2.5. The case when p is odd will be treated in this example.
Let us consider the Pell equation x2 − 29y2 = 1. Since

√
29 = [5, 2, 1, 1, 2, 10], a simple calcu-

lation shows that A4 = 70 and B4 = 13. Using the Python code C emanated from Algorithm 3,
we classify the 5th until 8th solutions of x2 − 29y2 = 1 in the following table

n Xn Yn

5 1447011301184484147200 268703252919468621824
6 28364315451998685504733184 5267121150019473374183424
7 555997310043066925865366454272 103246108513978474817640202240
8 10898659243099883877320527020294144 2023830213823884979276957714743296

Pursuing the same method as described above, we establish the combinatorial solutions of
the negative Pell equation x2 − dy2 = −1 as follows:

Corollary 2.6. Let [b0, b1, ..., bp] be the simple periodic continued fraction of
√
d and Ap−1/Bp−1

its (p−1)th convergent. Then, for all n ≥ 2, the positive integer solutions (Xn, Yn) of x2−dy2 =
−1 are given by

Xn = Ap−1 +
n−2∑
h=0

(
2n− 3− h

h

)[
2A2

p−1

(
1 +

h

2n− 2− 2h

)
+ 1
]
(2Ap−1)

2n−3−2h

Yn = Bp−1

n−1∑
h=0

(
2n− 2− h

h

)
(2Ap−1)

2n−2−2h

When p is odd and there is no solution when p is even.

The following iterative Algorithm 4 constructed from Corollary 2.6 gives us the solutions Xn

and Yn for n = 1, ..., N of Pell equation x2 − dy2 = −1 when the period length of continued
fraction expansion of

√
d is odd since it has no solutions when p is even.

Algorithm 4 : Calculate solutions Xn and Yn of Pell equation x2 − dy2 = −1 when p is odd.
Input : A positive integers Ap−1, Bp−1, N

Output : The values of Xn, Yn
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1: for n← 1 To N do
2: sum← 0
3: Yn ← 0
4: if n ≥ 2 then
5: for h← 0 To n− 2 do
6: sum← (2n−3−h

h )
[
2A2

p−1

(
1 + h

2n−2−2h

)
+ 1
]
(2Ap−1)

2n−3−2h

7: sum← sum+ 0
8: Xn ← sum+Ap−1
9: h← h+ 1

10: end for
11: for h← 0 To n− 1 do
12: Yn ← Bp−1(

2n−2−h
h )(2Ap−1)2n−2−2h

13: Yn ← Yn + 0
14: h← h+ 1
15: end for
16: else
17: sum← 0
18: Xn ← sum+Ap−1
19: Yn ← Bp−1
20: end if
21: end for

Example 2.7. In this example, we aim to determine positive integer solutions of the Pell equa-
tion x2 − 41y2 = −1.
We have

√
41 = [6, 2, 2, 12], A2 = 32 and B2 = 5. Using the Python code D constructed from

Algorithm 4, we calculate the 5th until 9th solutions of x2 − 41y2 = −1

n Xn Yn

5 9027004963488032 1409781323735045
6 36992664137590767616 5777283520649277440
7 151595928608841991716864 23675306457839414804480
8 621240078446370327829151744 97021400086942409591619584
9 2545841689877297610151216283648 397593673880983491558577799168

2.2 Analytic expressions of solutions of Pell equation x2 − dy2 = ±1

In the aim to solve the Pell equation x2 − dy2 = ±1, we provide here a different method by
using the analytic formula (Binet formula) of the linearly recurring sequences {Akp−1}k≥0 and
{Bkp−1}k≥0.
Let PB(x) = x2 − c0x − c1 be the characteristic polynomial of the matrix B = CpCp−1...C1
given by (2.1). We point out that PB has always two distinct quadratic irrational roots λ1 ̸= λ2.
This reality comes from the fact that the discriminant ∆ = c2

0 + 4(−1)p−1 of PB is a strictly
positive integer, not a perfect square, namely, we distinguish two cases.

(i) If p is even, ∆ = c2
0 − 4 and since Tr (C2C1) = b1b2 + 2, where b1 ≥ 1 and b2 ≥ 1, then

Tr (C2C1)2 > 4. By induction, we get Tr (Ck...C2C1) increases when k increases.

(ii) If p is odd, ∆ = Tr (B)2 + 4 > 0.

Thence PB(x) = x2 − c0x − c1 admits two distinct real roots λ1 and λ2. Furthermore, since
c0 = 2Ap−1 and c1 = (−1)p−1, we get

λ1 = Ap−1 +
√
A2

p−1 + (−1)p−1

λ2 = Ap−1 −
√
A2

p−1 + (−1)p−1
(2.4)

Consider the linearly recurring sequence {Akp−1}k≥0 given by (2.3), namely

Akp−1 = c0A(k−1)p−1 + c1A(k−2)p−1 (k ≥ 2)
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with initial conditions A−1 = 1 and Ap−1. The associated characteristic polynomial is PB(x) =
x2 − c0x− c1 = (x− λ1)(x− λ2). Then the analytic formula of {Akp−1}k≥0 is given by

Akp−1 = β1λ
k
1 + β2λ

k
2 (k ≥ 0)

where β1 and β2 are determined from the initial conditions, by solving the system{
β1 + β2 = 1

β1λ1 + β2λ2 = Ap−1

Therefore we get β1 = β2 =
1
2

.
Similarly, we consider {Bkp−1}k≥0 as a linearly recurring sequence of order 2 with initial con-
ditions B−1 = 0 and Bp−1. Furthermore, from [9] we have

A2
p−1 + (−1)p−1 = dB2

p−1.

Summarizing, we obtain the following results.

Proposition 2.8. Let [b0, b1, ..., bp] be the simple periodic continued fraction of
√
d and Ap−1/Bp−1

its (p − 1)th convergent. Then, for all k ≥ 1, the analytic expressions of solutions (Xk, Yk) of
Pell equation x2 − dy2 = 1 are given as follows:
• When p is even :

Xk =
1
2

[(
Ap−1 +Bp−1

√
d
)k

+
(
Ap−1 −Bp−1

√
d
)k]

Yk =
1

2
√
d

[(
Ap−1 +Bp−1

√
d
)k
−
(
Ap−1 −Bp−1

√
d
)k]

• When p is odd :
Xk =

1
2

[(
Ap−1 +Bp−1

√
d
)2k

+
(
Ap−1 −Bp−1

√
d
)2k
]

Yk =
1

2
√
d

[(
Ap−1 +Bp−1

√
d
)2k
−
(
Ap−1 −Bp−1

√
d
)2k
]

For the negative Pell equation x2− dy2 = −1, the analytic expressions of solutions (Xk, Yk) are
given by 

Xk =
1
2

[(
Ap−1 +Bp−1

√
d
)2k−1

+
(
Ap−1 −Bp−1

√
d
)2k−1

]
Yk =

1
2
√
d

[(
Ap−1 +Bp−1

√
d
)2k−1

−
(
Ap−1 −Bp−1

√
d
)2k−1

]
when p is odd, and there is no solution when p is even.

Example 2.9. Consider the Pell equation x2 − 13y2 = ±1, we have
√

13 = [3, 1, 1, 1, 1, 6]
(p = 5) and A4 = 18, B4 = 5. By Proposition 2.8, the analytic expressions of solutions of
x2 − 13y2 = 1 are given as follows:

Xk =
1
2

[
(18− 5

√
13)2k + (18 + 5

√
13)2k

]
Yk =

1
2
√

13

[
(18 + 5

√
13)2k − (18− 5

√
13)2k

] (k ≥ 1)

For the negative Pell equation x2 − 13y2 = −1, we get
Xk =

1
2

[
(18− 5

√
13)2k−1 + (18 + 5

√
13)2k−1

]
Yk =

1
2
√

13

[
(18 + 5

√
13)2k−1 − (18− 5

√
13)2k−1

] (k ≥ 1)
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3 Solving the Pell equation x2 − (k2 ± l)y2 = 1

Continued fractions are essential tools for many authors who have dealt with positive solutions
of the Pell equation x2 − dy2 = ±1 for some specific values of d. For example, in [11], the
author considers the continued fraction expansion of

√
d for d = k2 ± 1, k2 ± 2 and k2 ± k,

where k is a positive integer. In this section, as an application of Section 2, we give the continued
fraction expansion of

√
k2 ± l where l divides k, then we consider the combinatorial expressions

of solutions of the Pell equation x2 − (k2 ± l)y2 = 1.

Theorem 3.1. Let k > 1 and l ≥ 1 be integers such that l divides k. Then

(i) The continued fraction expansion of
√
k2 + l is

√
k2 + l =

[
k,

2k
l
, 2k

]

(ii) The fundamental solution of x2 − (k2 + l)y2 = 1 is (X1, Y1) =

(
2k2

l
+ 1,

2k
l

)
. Moreover,

for n ≥ 2, the combinatorial expressions of the solutions (Xn, Yn) of x2 − (k2 + l)y2 = 1
are given by
⋆ case 1: n = 2j

X2j =
j−1∑
h=0

(−1)h
(

2j − 2− h

h

)[
4j − 2− 2h
2j − 1− 2h

(
2k2

l
+ 1
)2

− 1

](
4k2

l
+ 2
)2j−2−2h

Y2j =
2k
l

j−1∑
h=0

(−1)h
(

2j − 1− h

h

)(
4k2

l
+ 2
)2j−1−2h

⋆ case 2: n = 2j + 1
X2j+1 = (−1)j

(
2k2

l + 1
)
+

j−1∑
h=0

(−1)h(2j−1−h
h )

[
4j−2h
2j−2h

(
2k2

l + 1
)2
− 1
](

4k2

l + 2
)2j−1−2h

Y2j+1 =
2k
l

j∑
h=0

(−1)h
(

2j − h

h

)(
4k2

l
+ 2
)2j−2h

Proof.

(i) Let k > 1 and l ≥ 1 be integers such that l divides k. Then, after a simple calculation, we
get √

k2 + l = k + (
√

k2 + l − k) = k +
1√

k2 + l+ k

l

= k +
1

2k
l
+

1
2k + (

√
k2 + l − k)

Then
√
k2 + l =

[
k,

2k
l
, 2k

]
.

(ii) Since the period p = 2, it is given by Theorem 1.1 that the fundamental solution of equation
x2 − (k2 + l)y2 = 1 is (X1, Y1) = (A1, B1). Therefore, using (1.3) we get (X1, Y1) =(

2k2

l
+ 1,

2k
l

)
. For n ≥ 2, the combinatorial expressions of the solutions are derived

directly from Corollary 2.2.
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Example 3.2. In this example, we aim to find the consecutive combinatorial expressions of so-
lutions (X5, Y5) and (X6, Y6) of x2 − 39y2 = 1.

Since 39 = 62 + 3 and 3 divides 6 then
√

39 =
[
6, 4, 12

]
. It follows that A1 =

2k2

l
+ 1 = 25

and B1 =
2k
l

= 4. Thus


X5 = 25 +

1∑
h=0

(
3− h

h

)[
8− 2h
4− 2h

× 252 − 1
]
(−1)h 503−2h

Y5 = 4×
2∑

h=0

(
4− h

h

)
(−1)h 504−2h

and 
X6 =

2∑
h=0

(
4− h

h

)[
10− 2h
5− 2h

× 252 − 1
]
(−1)h 504−2h

Y6 = 4×
2∑

h=0

(
5− h

h

)
(−1)h 505−2h

Hence (X5, Y5) = (155937625, 24970004) and (X6, Y6) = (7793761249, 1248000600)

Now, we give the consecutive combinatorial expressions of solutions of x2 − (k2 − l)y2 = 1
in the following theorem;

Theorem 3.3. Let k > 1 and l ≥ 1 be integers such that l divides k and l ̸= k. Then

(i) The continued fraction expansion of
√
k2 − l is

√
k2 − l =

[
k − 1, 1,

2(k − l)

l
, 1, 2(k − 1)

]

(ii) The fundamental solution of x2 − (k2 − l)y2 = 1 is (X1, Y1) =

(
2k2

l
− 1,

2k
l

)
. Moreover,

for n ≥ 2, the combinatorial expressions of the solutions (Xn, Yn) of x2 − (k2 − l)y2 = 1
are given by
⋆ case 1: n = 2j

X2j =
j−1∑
h=0

(−1)h
(

2j − 2− h

h

)[
4j − 2− 2h
2j − 1− 2h

(
2k2

l
− 1
)2

− 1

](
4k2

l
− 2
)2j−2−2h

Y2j =
2k
l

j−1∑
h=0

(−1)h
(

2j − 1− h

h

)(
4k2

l
− 2
)2j−1−2h

⋆ case 2: n = 2j + 1
X2j+1 = (−1)j

(
2k2

l − 1
)
+

j−1∑
h=0

(−1)h(2j−1−h
h )

[
4j−2h
2j−2h

(
2k2

l − 1
)2
− 1
](

4k2

l − 2
)2j−1−2h

Y2j+1 =
2k
l

j∑
h=0

(−1)h
(

2j − h

h

)(
4k2

l
− 2
)2j−2h

Proof.

(i) Let k > 1 and l ≥ 1 be integers such that l divides k and l ̸= k. Then, a straightforward
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computation gives√
k2 − l = k − 1 + (

√
k2 − l − (k − 1)) = k − 1 +

1√
k2 − l+ (k − 1)

2k − l − 1

= k − 1 +
1

1 +
1

2(k − l)

l
+

1

1 +
1

2(k − 1) +
√
k2 − l − (k − 1)

Thus
√
k2 − l =

[
k − 1, 1,

2(k − l)

l
, 1, 2(k − 1)

]
(ii) Since the period p = 4, then it is given by Theorem 1.1 that the fundamental solution

of equation x2 − (k2 − l)y2 = 1 is (X1, Y1) = (A3, B3). Therefore, using (1.3) we get

(X1, Y1) =

(
2k2

l
− 1,

2k
l

)
. For n ≥ 2, the combinatorial expressions of the solutions are

derived directly from Corollary 2.2.

Example 3.4. Using Theorem 3.3, we give the consecutive combinatorial expressions of solu-
tions (X3, Y3) and (X4, Y4) of Pell equation x2 − 14y2 = 1. Since 14 = 42 − 2 and 2 divides 4,
we get

√
14 =

[
3, 1, 2, 1, 6

]
.

From (1.3) we can see that A3 = 15 and B3 = 4. Thence,
X3 = −15 +

[
2× 152 − 1

]
× 30

Y3 = 4×
1∑

h=0

(
2− h

h

)
(−1)h × 302−2h

and 
X4 =

1∑
h=0

(
2− h

h

)[
6− 2h
3− 2h

× 152 − 1
]
(−1)h 302−2h

Y4 = 4×
1∑

h=0

(
3− h

h

)
(−1)h 303−2h

Therefore, (X3, Y3) = (13455, 3596) and (X4, Y4) = (403201, 107760).

A Python code of solutions to Pell equation x2 − dy2 = 1 when n = 2j

1 im por t math as m
2 numbers =[10 ,11 ,12 ,13 ,14]
3 A_p1 = i n t ( i n p u t ( " E n t e r A_p−1 : " ) )
4 B_p1 = i n t ( i n p u t ( " E n t e r B_p−1 : " ) )
5 f o r j in numbers :
6 X2j = 0
7 Y2j = 0
8 i f j >= 1 :
9 f o r h in range ( 0 , j ) :

10 X2j+= m. comb (2* j −2−h , h ) * m. pow (2* A_p1 , 2 * j −2−2*h )
* m. pow ( −1 , h ) * ( A_p1 * 2*A_p1 * ( ( 2 * j −1−h )

/ ( 2 * j −1−2*h ) ) −1)
11 Y2j+= B_p1 * m. comb (2* j −1−h , h ) * m. pow (2* A_p1 , 2 *

j −1−2*h ) * m. pow ( −1 , h )
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12 e l s e :
13 X2j = 1
14 Y2j = 0
15
16 p r i n t ( " t h e v a l u e o f X" ,2* j , " i s : " , i n t ( X2j ) )
17 p r i n t ( " t h e v a l u e o f Y" ,2* j , " i s : " , i n t ( Y2 j ) )

B Python code of solutions to Pell equation x2 − dy2 = 1 when n = 2j + 1

1 im por t math as m
2 numbers =[10 ,11 ,12 ,13 ,14]
3 A_p1 = i n t ( i n p u t ( " E n t e r A_p−1 : " ) )
4 B_p1 = i n t ( i n p u t ( " E n t e r B_p−1 : " ) )
5 f o r j in numbers :
6 sum = 0
7 Y2j1 = 0
8 i f j >= 1 :
9 f o r h in range ( 0 , j ) :

10 sum += m. comb (2* j −1−h , h ) * m. pow (2* A_p1 , 2 * j −1−2*h )
* m. pow ( −1 , h ) * (2*m. pow ( A_p1 , 2 ) * ( ( 2 * j −h ) / ( 2 * j −2*
h ) ) −1)

11 X2j1 = sum + A_p1 * m. pow ( −1 , j )
12 e l s e :
13 X2j1 = 0
14 i f j >= 1 :
15 f o r h in range ( 0 , j +1) :
16 Y2j1 += B_p1 * m. comb (2* j −h , h ) * m. pow (2* A_p1 , 2 * j

−2*h ) * m. pow ( −1 , h )
17 e l i f j == 0 :
18 Y2j1 = B_p1
19 e l s e :
20 Y2j1 = 0
21 p r i n t ( " t h e v a l u e o f X" ,2* j +1 , " i s : " , i n t ( X2j1 ) )
22 p r i n t ( " t h e v a l u e o f Y" ,2* j +1 , " i s : " , i n t ( Y2 j1 ) )

C Python code of solutions to Pell equation x2 − dy2 = 1 when p is odd

1 im por t math as m
2 numbers = [ 5 , 6 , 7 , 8 ]
3 A_p1 = i n t ( i n p u t ( " E n t e r A_p−1 : " ) )
4 B_p1 = i n t ( i n p u t ( " E n t e r B_p−1 : " ) )
5 f o r n in numbers :
6 Xn =0
7 Yn = 0
8 i f n >= 2 :
9 f o r h in range ( 0 , n ) :

10 Xn+= m. comb (2* n−2−h , h ) * m. pow (2* A_p1 , 2 * n−2−2*h )
* (2*m. pow ( A_p1 , 2 ) * ( ( 2 * n−1−h ) / ( 2 * n−1−2*h ) )

+1)
11 Yn+= B_p1 * m. comb (2* n−1−h , h ) * m. pow (2* A_p1 , 2 * n

−1−2*h )
12 e l i f n == 1:
13 Xn = 2*m. pow ( A_p1 , 2 ) + 1
14 Yn = 2*A_p1 * B_p1
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15 e l s e :
16 Xn = 1
17 Yn = 0
18 p r i n t ( " t h e v a l u e o f X" , n , " i s : " , i n t ( Xn ) )
19 p r i n t ( " t h e v a l u e o f Y" , n , " i s : " , i n t ( Yn ) )

D Python code of solutions to Pell equation x2 − dy2 = −1 when p is odd

1 im por t math as m
2 numbers = [ 5 , 6 , 7 , 8 , 9 ]
3 A_p1 = i n t ( i n p u t ( " E n t e r A_p−1 : " ) )
4 B_p1 = i n t ( i n p u t ( " E n t e r B_p−1 : " ) )
5 f o r n in numbers :
6 sum =0
7 Yn = 0
8 i f n >= 2 :
9 f o r h in range ( 0 , n −1) :

10 sum += m. comb (2* n−3−h , h ) * m. pow (2* A_p1 , 2 * n−3−2*h )
* (2* m. pow ( A_p1 , 2 ) * ( ( 2 * n−2−h ) / ( 2 * n−2−2*h ) )

+1)
11 e l i f n == 1:
12 sum = 0
13 e l s e :
14 p r i n t ( " There i s no s o l u t i o n " )
15 i f n >= 2 :
16 f o r h in range ( 0 , n ) :
17 Yn += B_p1 * m. comb (2* n−2−h , h ) * m. pow (2* A_p1 , 2 * n

−2−2*h )
18 e l i f n == 1:
19 Yn = B_p1
20 e l s e :
21 p r i n t ( " There i s no s o l u t i o n " )
22 Xn = sum + A_p1
23 p r i n t ( " t h e v a l u e o f X" , n , " i s : " , i n t ( Xn ) )
24 p r i n t ( " t h e v a l u e o f Y" , n , " i s : " , i n t ( Yn ) )
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