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Abstract. This paper investigates a new subclass of multivalent analytic functions in the
open unit disk, characterized using Jackson’s derivative operator. Before obtaining coefficient
characterization, we examine certain sufficient requirements for the functions belonging to this
class. Several fascinating features, including coefficient estimates, the growth and distortion
theorem, extreme points, and the radius of starlikeness and convexity of functions belonging to
the subclass are shown using this technique.

1 Introduction and Definition

Let Â represent the set of all analytic functions defined on the open unit disk U = {z ∈ C : |z| < 1}
in the complex plane C, with the form f(z) = z+

∞∑
n=2

anz
n,where an is a complex number. Now,

lets Â(p) denote the class consisting of functions f that have a Taylor series expansion of the

form f(z) = zp +
∞∑

n=p+1
anz

n, where an is a complex number and p ∈ N = {1, 2, 3, ...}. These

functions are analytic and p-valent within the open unit disk U . We observe that Â(1) = Â.
Additionally, lets S(p) represent the subclass of Â(p) consisting of p-valent functions that are
univalent within U . Furthermore, we define S∗

p(α) and Cp(α) as the classes of p-valent functions
that are respectively starlike of order α and convex of order α, where 0 ≤ α < p. In particular,
the classes S∗

p(0) = S∗
p and Cp(0) = Cp correspond respectively to the familiar classes of star-

like and convex p-valent functions in U .

Let T (p), where p ∈ N = {1, 2, 3, ...}, be a subclass of S(p). It consists of functions with
the following form:

f(z) = zp −
∞∑

n=p+1

anz
n, an > 0, (1.1)

defined on the open unit disk U = {z ∈ C : |z| < 1} A function f belonging to T (p) is referred
to as a p-valent function with negative coefficients. We can define subclasses of T (p) denoted
by S∗

T ,p(α) and CT ,p(α) for 0 ≤ α < p. These subclasses consist of p-valent functions that are
respectively starlike of order α and convex of order α. The class T (1), denoted as T , was initially
introduced and studied by Silverman [23]. In his work, Silverman investigated the subclasses of
T (1) denoted by S∗

T ,1(α) = S∗
T (α), and CT ,1(α) = CT (α), where 0 ≤ α < 1. These subclasses

represent p-valent functions that are respectively starlike of order α and convex of order α. Let
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M(a, b, c) represent the subset of Â(1) comprising functions q ∈ Â(1) that satisfy the inequality:∣∣∣∣ zq′(z)− q(z)

azq′(z) + (1 − b)q(z)

∣∣∣∣ < c, where 0 ≤ a ≤ 1, 0 ≤ b < 1 and 0 < c ≤ 1,

for all z ∈ U . This particular of functions has been examined by Darus [9].

In this section, we review established concepts and fundamental findings of (r, q)-calculus.
Throughout this paper, we assume that r and q are constantly satisfying 0 < q < r ≤ 1. We
provide definitions and theorems related to (r, q)-calculus, which will be referenced in the fol-
lowing papers [18, 20, 21, 22, 24, 25, 26, 27] and [15].

For 0 < q < r ≤ 1 jackson‘s (r,q)-derivative of a function f ∈ Â(p) is, by definition, given
as follows

Dr,qf(z) :=


f(rz)− f(qz)

(r − q) z
, z ̸= 0,

f ′(0), z = 0.
(1.2)

From (1.2), we have

Dr,qf(z) = [p]r,q z
p−1 +

∞∑
n=p+1

[n]r,q an z
n−1 (0 < q < r ≤ 1),

where [p]r,q =
rp−qp

r−q and [n]r,q =
rn−qn

r−q .

Note that, for r = 1 the jackson (r, q)-derivative reduces to the jackson q-derivative operator
of the function f , Dqf(z) (refer to [1], [12], [13] and [14]). Note also that D1,qf(z) → f ′(z)
when q → 1−, where f ′ is the classical derivative of the function f .

Obviously, for a function g(z) = zn, we obtain

Dr,qg(z) = Dr,qz
n =

rn − qn

r − q
zn−1 = [n]r,q z

n−1.

And
lim

q→1−
D1,qg(z) = lim

q→1−

1 − qn

1 − q
zn−1 = nzn−1 = g′(z),

where g′ is the ordinary derivative.

The application of q-calculus extends to a wide range of fields within applied sciences, encom-
passing ordinary fractional calculus, quantum physics, optimal control, hypergeometric series,
operator theory, q-difference and q-integral equations, as well as geometric function theory in
complex analysis. The pioneering use of q-calculus was introduced by Jackson [13]. Addi-
tionally, Kanas and Raducanu [16] employed fractional q-calculus operators to explore distinct
categories of functions that exhibit analytic properties within the domain U . For comprehensive
information on q-calculus, references such as [6, 7, 10, 13, 16, 17, 19, 27], and the relevant cita-
tions therein can be consulted.

In addition to the advancement of q-calculus theory and its applications, the theory of (r, q)-
calculus, based on two parameters, has also gained significant attention in recent decades. In
1991, R. Chakrabarti and R. Jagannathan [8] introduced (r, q)-calculus, which was further stud-
ied by P. N. Sadjang [21], who investigated the fundamental theorem of (r, q)-calculus and
derived some (r, q)-Taylor formulas. More recently, M. Tunc¸ and E. G"ov [27] defined the
(r, q)-derivative and (r, q)-integral on finite intervals, along with studying various properties of
(r, q)-calculus and the (r, q)-analog of important integral inequalities. The (r, q)-derivative has
garnered significant attention and undergone rapid development during this period, with contri-
butions from multiple authors.



692 Ma’moun I. Y. Alharayzeh

The field of geometric function theory has explored various subclasses within the class Â(p)
using the (r, q)-calculus mentioned earlier. Ismail et al. [11] were pioneers in utilizing the
q-derivative operator Dq to investigate the q-calculus counterpart of the class S∗ of starlike func-
tions in U . This application of (r, q)-calculus has opened up new avenues for studying and un-
derstanding geometric function theory, providing valuable insights into specific subclasses and
their properties.

From now on we introduce some general subclass of analytic and multivalent functions asso-
ciated with (r, q)-derivative operator as follows.

Definition 1.1. For 0 ≤ h ≤ 1, 0 ≤ m < 1, 0 ≤ s < 1, k ≥ 0, 0 < q < r ≤ 1 and
p ∈ N = {1, 2, 3, ...}, we let ϒ(h,m, s, k, r, q, p) consist of functions f ∈ T (P ) satisfying the
condition

Re

(
z (Dr,qf(z))

′ −Dr,qf(z)

hz (Dr,qf(z))
′
+ (1 − s)Dr,qf(z)

)

> k

∣∣∣∣∣ z (Dr,qf(z))
′ −Dr,qf(z)

hz (Dr,qf(z))
′
+ (1 − s)Dr,qf(z)

− 1

∣∣∣∣∣+m. (1.3)

Our initial finding consists of coefficient inequalities for functions f ∈ ϒ(h,m, s, k, r, q, p).
Also, our results encompass the growth and distortion theorem, as well as the determination of
extreme points. Lastly, we establish the radius of starlikeness and convexity for functions be-
longing to the class ϒ(h,m, s, k, r, q, p). The technique which was studied by Aqlan et al. [5]
and also in [2][3][4].

Now, let’s delve into the coefficient inequalities.

2 Coefficient Inequalities

In this section, we establish a necessary and sufficient condition for a function f belonging to
the class ϒ(h,m, s, k, r, q, p). Our first result is presented below:

Theorem 2.1. Let 0 ≤ h ≤ 1, 0 ≤ m < 1, 0 ≤ s < 1, k ≥ 0, 0 < q < r ≤ 1, and
p ∈ N = {1, 2, 3, ...}. A function f defined by (1.1) is in the class ϒ(h,m, s, k, r, q, p) if and only
if

∞∑
n=p+1

µn an ≤ µp, (2.1)

where

µn =
∣∣(h (n− 1) + 1 − s) (2 + k −m) + (k + 1) (2 − n)

∣∣ (rn − qn) . (2.2)

Proof. We have f ∈ ϒ(h,m, s, k, r, q, p) if and only if the condition (1.3) is obtained.
Let

ϖ =
z (Dr,qf(z))

′ − (Dr,qf(z))

hz (Dr,qf(z))
′
+ (1 − s) (Dr,qf(z))

,

upon the fact that,

Re (ϖ ) ≥ k |ϖ − 1 | + m if and only if ( k + 1 ) |ϖ − 1 | ≤ 1 −m.
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Now

(k + 1) |ϖ − 1|

= (k + 1)

∣∣∣∣∣∣∣∣
(p− 2)[p]r,qz

p−1 +
∞∑

n=p+1
(2 − n) [n]r,qanz

n−1

(h(p− 1) + 1 − s) [p]r,qz
p−1 −

∞∑
n=p+1

(h(n− 1) + 1 − s) [n]r,qanz
n−1

− 1

∣∣∣∣∣∣∣∣
≤ 1 −m,

is equivalent to

(k + 1)

∣∣∣∣∣∣∣∣
(p− 2) [p]r,q +

∞∑
n=p+1

(2 − n) [n]r,q anz
n−p

(h(p− 1) + 1 − s) [p]r,q −
∞∑

n=p+1
(h(n− 1) + 1 − s) [n]r,q anz

n−p

− 1

∣∣∣∣∣∣∣∣ ⩽ 1 −m.

So

(k + 1)

∣∣∣∣∣∣∣∣
∞∑

n=p+1
(h(n− 1) + 1 − s+ 2 − n) [n]r,q anz

n−p − (h(p− 1) + 1 − s+ 2 − p) [p]r,q

(h(p− 1) + 1 − s) [p]r,q −
∞∑

n=p+1
(h(n− 1) + 1 − s) [n]r,q anz

n−p

∣∣∣∣∣∣∣∣
≤ 1 −m. (2.3)

The inequality can be simplified to,

(k + 1)

∞∑
n=p+1

|h (n− 1) + 1 − s+ 2 − n| [n]r,q an − |h(p− 1) + 1 − s+ 2 − p| [p]r,q

(h(p− 1) + 1 − s) [p]r,q −
∞∑

n=p+1
(h(n− 1) + 1 − s) [n]r,q an

≤ 1 −m. (2.4)

Then

(k + 1)

 ∞∑
n=p+1

|h (n− 1) + 1 − s+ 2 − n|[n]r,qan − |h(p− 1) + 1 − s+ 2 − p| [p]r,q


≤ (h (p− 1) + 1 − s) (1 −m) [p]r,q − (1 −m)

∞∑
n=p+1

(h(n− 1) + 1 − s) [n]r,q an. (2.5)

Thus

(k + 1)
∞∑

n=p+1

|h (n− 1) + 1 − s+ 2 − n|[n]r,qan + (1 −m)
∞∑

n=p+1

(h (n− 1) + 1 − s)[n]r,qan

≤ (h (p− 1) + 1 − s)(1 −m) [p]r,q + |h (p− 1) + 1 − s+ 2 − p|(k + 1) [p]r,q , (2.6)

then, we get

∞∑
n=p+1

|(2 + k −m) (h (n− 1) + 1 − s) + (k + 1) (2 − n)| [n]r,q an

≤ |(2 + k −m) (h (p− 1) + 1 − s) + (k + 1) (2 − p)| [p]r,q .

Which (2.1).
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Given that inequality (2.1) is satisfied, our objective is to prove the validity of (1.3). Impor-
tantly, it should be noted that the inequality described in (1.3) is equivalent to inequality (2.3).
From condition (2.1) we have (2.6) and then (2.5), after that (2.5) is equivalent to (2.4).

Now it is suffices to show that,∣∣∣∣∣∣∣∣
∞∑

n=p+1
(h (n− 1) + 1 − s+ 2 − n) [n]r,q anz

n−p − (h(p− 1) + 1 − s+ 2 − p) [p]r,q

(h(p− 1) + 1 − s) [p]r,q −
∞∑

n=p+1
(h(n− 1) + 1 − s) [n]r,q anz

n−p

∣∣∣∣∣∣∣∣
≤

∞∑
n=p+1

|h (n− 1) + 1 − s+ 2 − n| [n]r,q an − |h(p− 1) + 1 − s+ 2 − p| [p]r,q

(h(p− 1) + 1 − s) [p]r,q −
∞∑

n=p+1
(h(n− 1) + 1 − s) [n]r,q an

. (2.7)

Since, ∣∣∣∣∣∣(h(p− 1) + 1 − s) [p]r,q −
∞∑

n=p+1

(h(n− 1) + 1 − s) [n]r,q anz
n−p

∣∣∣∣∣∣
≥ |h(p− 1) + 1 − s| [p]r,q −

∣∣∣∣∣∣
∞∑

n=p+1

(h(n− 1) + 1 − s) [n]r,q anz
n−p

∣∣∣∣∣∣ ,
= (h(p− 1) + 1 − s) [p]r,q −

∞∑
n=p+1

(h(n− 1) + 1 − s) [n]r,q an, where |z| < 1,

and hence, we obtain (2.7).

Theorem 2.2. Let 0 ≤ h ≤ 1, 0 ≤ m < 1, 0 ≤ s < 1, k ≥ 0, 0 < q < r ≤ 1, and
p ∈ N = {1, 2, 3, ...}. If the function f defined by (1.1) be in the class ϒ(h,m, s, k, r, q, p) then

an ≤ µp

µn
, n = p+ 1, p+ 2, p+ 3, ..., (2.8)

where µn is given by (2.2).

Equality achieved for the following functions,

f(z) = zP − µp z
n

µn
. (2.9)

Proof. Since f ∈ ϒ(h,m, s, k, r, q, p) Theorem 2.1 holds.

Now

∞∑
n=p+1

µnan ≤ µp,

we have,
an ≤ µp

µn
.

It is evident that the function defined in equation (2.9) fulfills the condition stated in equation
(2.8). Consequently, the function f defined in (2.9) belongs to the class ϒ(h,m, s, k, r, q, p). For
this particular function, it is evident that the obtained result is sharp.
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3 Growth and Distortion Theorems for the Subclass Υ(h,m, s, k, r, q, p)

In the following section, we will examine the growth and distortion theorem along with the
covering property of functions belonging to the class ϒ(h,m, s, k, r, q, p).

Theorem 3.1. Let 0 ≤ h ≤ 1, 0 ≤ m < 1, 0 ≤ s < 1, k ≥ 0, 0 < q < r ≤ 1, and
p ∈ N = {1, 2, 3, ...}. If the function f defined by (1.1) be in the class ϒ(h,m, s, k, r, q, p) then
for 0 < |z| = l < 1, we have

lp − µp

µp+1
lp+1 ⩽ |f(z)| ⩽ lp +

µp

µp+1
lp+1. (3.1)

Equality achieved for the function,

f(z) = zp − µp

µp+1
zp+1, (z = ±l, ±il),

where µp and µp+1 are found by (2.2).

Proof. We will focus our proof on establishing the inequality on the right-hand side of inequality
(3.1), and Using similar arguments, we can derive the other inequality.

Since f ∈ ϒ(h,m, s, k, r, q, p) by Theorem 2.1, we have,

∞∑
n=p+1

µnan ≤ µp.

Now

µp+1

∞∑
n=p+1

an =
∞∑

n=p+1

µp+1an ≤
∞∑

n=p+1

µn an ≤ µp.

And therefore
∞∑

n=p+1

an ⩽
µp

µp+1
, (3.2)

since

f(z) = zp −
∞∑

n=p+1

anz
n,

we have,

|f(z)| =

∣∣∣∣∣∣ zp −
∞∑

n=p+1

anz
n

∣∣∣∣∣∣ ≤ |z|p + |z|p+1
∞∑

n=p+1

an |z|n−(p+1) ≤ lp + lp+1
∞∑

n=p+1

an.

By utilizing inequality (3.2), we obtain the right-hand side inequality in (3.1).

Theorem 3.2. If the function f defined by (1.1) belongs to the class ϒ(h,m, s, k, r, q, p) for 0 <
|z| = l < 1, then the following holds:

p lp−1 − (p+ 1)µp

µp+1
lp ⩽ |f ′ (z)| ⩽ p lp−1 +

(p+ 1)µp

µp+1
lp. (3.3)

Equality satisfied for the function f given by

f(z) = zp − µp

µp+1
zp+1, (z = ±l, ±il),

where µp and µp+1 are given by (2.2).
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Proof. Since f ∈ ϒ(h,m, s, k, r, q, p) by Theorem 2.1 we have

∞∑
n=p+1

µn an ≤ µp.

Now,

µp+1

∞∑
n=p+1

nan ≤ (p+ 1)
∞∑

n=p+1

µnan ≤ (p+ 1)µp.

Hence
∞∑

n=p+1

nan ⩽
(p+ 1)µp

µp+1
, (3.4)

since

f ′(z) = pzp−1 −
∞∑

n=p+1

nan z
n−1.

Then, we have

p |z|p−1 − |z|p
∞∑

n=p+1

nan |z|n−1−p ⩽ |f ′(z)| ⩽ p |z|p−1 + |z|p
∞∑

n=p+1

nan |z|n−1−p
, where |z| < 1.

Applying inequality (3.4), we obtain Theorem 3.2, thus concluding the proof.

Theorem 3.3. If the function f defined by (1.1) belongs to the class ϒ(h,m, s, k, r, q, p), then f
is starlike of order δ, where

δ = 1 − µpp

−µp + µp+1
.

The result is sharp with
f(z) = zp − µp

µp+1
zp+1,

where µp and µp+1 are found by (2.2).

Proof. It is enough to establish that (2.1) implies the following.

∞∑
n=p+1

an(n− δ) ≤ 1 − δ. (3.5)

That is,

n− δ

1 − δ
≤ µn

µp
, n ≥ p+ 1. (3.6)

From (3.6) we have the inequality

δ ⩽ 1 − µp(n− 1)
−µp + µn

= ψ(n),

where n ≥ p + 1. And ψ(n) ≥ ψ(p + 1), (3.6) holds for any 0 ≤ h ≤ 1, 0 ≤ m < 1, 0 ≤
s < 1, k ≥ 0, 0 < q < r ≤ 1 and p ∈ N = {1, 2, 3, ...}. This completes the proof of Theorem
3.3.
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4 Extreme Points of the Class Υ(h,m, s, k, r, q, p)

The extreme points of the class ϒ(h,m, s, k, r, q, p) is determined by the following theorem.

Theorem 4.1. Let fp(z) = zp,
and

fn(z) = zp − µp

µn
zn, n = p+ 1, p+ 2, p+ 3, ...,

where µn is given by (2.2).

Then f ∈ ϒ(h,m, s, k, r, q, p) if and only if it can be expressed in the following form:

f(z) =
∞∑
n=p

ynfn(z) (4.1)

where yn ≥ 0 and
∞∑
n=p

yn = 1.

Proof. Suppose f can be expressed as in (4.1). Our goal is to show that f ∈ ϒ(h,m, s, k, r, q, p).

By (4.1) we have

f(z) =
∞∑
n=p

yn

{
zp − µpz

n

µn

}
.

Then

f(z) = zp −
∞∑

n=p+1

anz
n = zp −

∞∑
n=p+1

µpyn
µn

zn.

So that
an =

µp yn
µn

, n ⩾ p+ 1.

Now, we have
∞∑

n=p+1

yn = 1 − yp ≤ 1.

Setting
∞∑

n=p+1

yn
µp

µn
× µn

µp
=

∞∑
n=p+1

yn = 1 − yp ⩽ 1.

By applying Theorem 2.1, we can conclude that the function f belongs to the class ϒ(h,m, s, k, r, q, p).

Conversely, it is enough to show that

an =
µp

µn
yn.

Now we have f ∈ ϒ(h,m, s, k, r, q, p) then by previous Theorem 2.2.

an ⩽
µp

µn
, n ⩾ p+ 1.

That is,
µnan
µp

⩽ 1,

but yn ≤ 1.
Setting,

yn =
µnan
µp

, n ⩾ p+ 1.

This leads to the desired outcome, thereby concluding the proof of the theorem.



698 Ma’moun I. Y. Alharayzeh

Corollary 4.2. The extreme point of the class ϒ(h,m, s, k, r, q, p) are the function

fp(z) = zp,

and

fn(z) = zp − µp

µn
zn, n = p+ 1, p+ 2, p+ 3, ...,

where µn is given by (2.2).

Finally, in this paper, we study the radius of starlikeness and convexity.

5 Radius of Starlikeness and Convexity

The theorems presented below provide the radius of starlikeness and convexity for the class
ϒ(h,m, s, k, r, q, p).

Theorem 5.1. If the function f defined by (1.1) belongs to the class ϒ(h,m, s, k, r, q, p), then f
is starlike of order δ ( 0 ≤ δ < p), within the disk |z| < R where

R = inf
[
µn

µp
×
(
p− δ

n− δ

)] 1
n−p

, n = p+ 1, p+ 2, p+ 3, ..., (5.1)

where µn is given by (2.2).

Proof. Here (5.1) implies

µp (n− δ) |z|n−P ≤ µn (p− δ) .

It suffices to show that ∣∣∣∣zf ′(z)f(z)
− p

∣∣∣∣ ≤ p− δ,

for |z| < R, we have

∣∣∣∣zf ′(z)f(z)
− p

∣∣∣∣ ≤

∞∑
n=p+1

(n− p)an |z|n−p

1 −
∞∑

n=p+1
an |z|n−p

. (5.2)

By aid of (2.8), we have

∣∣∣∣zf ′(z)f(z)
− p

∣∣∣∣ ⩽
∞∑

n=p+1

µp(n−p)|z|n−p

µn

1 −
∞∑

n=p+1

µp|z|n−p

µn

.

The last expression is bounded above by p− δ if.

∞∑
n=p+1

µp (n− p) |z|n−p

µn
≤

1 −
∞∑

n=p+1

µp |z|n−p

µn

 (p− δ) ,

and it follows that

|z|n−p ⩽
[
µn

µp

(
p− δ

n− δ

)]
, n ⩾ p+ 1,

the given expression is equivalent to our condition stated in (5.1) of the theorem.



SUBCLASS OF MULTIVALENT FUNCTIONS INVOLVING 699

Theorem 5.2. If the function f defined by (1.1) belongs to the class ϒ(h,m, s, k, r, q, p), then f
is convex of order ε ( 0 ≤ ε < p ), within the disk |z| < w where

w = inf
[
µn

µp
×
(
p (p− ε)

n (n− ε)

)] 1
n−p

, n = p+ 1, p+ 2, p+ 3, ...,

and µn is given by (2.2).

Proof. By employing the same methodology utilized in the proof of Theorem 5.1, we can es-
tablish that within the region |z| ≤ w, and with the assistance of inequality (2.8), the following
inequality holds: ∣∣∣∣zf ′′(z)f ′(z)

− (p− 1)
∣∣∣∣ ≤ p− ε.

Hence, we can conclude the statement of Theorem 5.2.

6 Conclusion

The primary objective of this article is to discover a novel subclass of multivalent analytic func-
tions within the open unit disk. These functions are characterized using Jackson’s derivative
operator. Additionally, the article explores specific sufficient conditions that must be satisfied by
functions belonging to this class, focusing on coefficient characterization. This approach offers
numerous fascinating features and potential implications.
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