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Abstract The objective of this paper is to explore certain properties involving the generalized
hypergeometric function uF

p,q;λ;σ,τ
v [z], as introduced by Khan et al. [27]. Several fractional

derivatives and integral formulas involving the generalized hypergeometric function are com-
puted. Further, we derive the solution of generalized fractional kinetic equations involving gen-
eralized hypergeometric function. The respective solution is given in terms of Mittag-Leffler
function.

1 Introduction

The study of special functions and their applications has increasingly grown in the last 50 years.
This comes together with the advent of powerful computation techniques and devices which have
allowed applied scientists to envision real-world applications to this class of functions. Even
though great work has been carried out in applying the existing theory of special functions to
physical and engineering problems, theoretical studies have also been taken into account. Gen-
eralized and multivariable forms of the special functions of mathematical physics have witnessed
a significant evolution during recent years. In particular, the special functions of more than one
variable provided new means of analysis for the solution of large classes of partial differential
equations often encountered in physical problems. The genesis of most special functions in
mathematical physics, along with their extensions, stems from the exploration of physical prob-
lems. In mathematics, the generalized hypergeometric function represents a modified version
of the confluent hypergeometric function of the first kind. Its applications span a wide array of
fields including mathematical physics and numerous research domains, attracting the attention
of mathematicians across various disciplines.

Lately, numerous authors have been providing extensions and generalizations for several
special functions, including the beta function, gamma function, hypergeometric function, and
confluent hypergeometric function (refer to [27] for details). Khan et al. [27] introduced novel
extended hypergeometric and confluent hypergeometric functions utilizing the extended beta
function. Inspired by the abovementioned work, in this paper, we investigate some properties of
the generalized hypergeometric function uF

p,q;λ;σ,τ
v [z]. Several fractional derivatives and inte-

gral formulas involving the generalized hypergeometric function are computed. Further, we ob-
tain the solution for generalized fractional kinetic equations incorporating the above-mentioned
generalized hypergeometric function and the solution is obtained in terms of Mittag-Leffler func-
tion. We remember below the following basic definition and extension of special function. Some
properties of the Mittag-Leffler function were considered in paper [8]. The Cauchy problem for
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matrix factorizations of the Helmholtz equation was addressed by approximating solutions using
the Mittag-Leffler function as the kernel of the Carleman matrix, as seen in references [5]-[7]
and [9]-[11].

Throughout the manuscript, let C, ℜ, ℜ+, Z and N be the sets of complex numbers, real num-
bers, positive real numbers, integers and positive integers, respectively, and let

R+
0 = R+ ∪ {0}, N0 = N ∪ {0}, Z−

0 = Z/N.

Euler introduced the beta function (see [13]) for a pair of complex numbers η1 and η2 with
positive real part through the integral

B(η1, η2) =

∫ 1

0
tη1−1 (1 − t)η2−1dt (1.1)

(
ℜ(η1) > 0 , ℜ(η2) > 0; η1, η2 /∈ Z−

0

)
.

The function of the form

2F1

[
α, β;
γ;

z

]
=

∞∑
k=0

(α)k (β)k
(γ)k

zk

Γ(k + 1)
(|z| < 1), (1.2)

is known as the Gauss’s hypergeometric function.

It has a more general form widely known as generalized hypergeometric series pFq (p, q ∈
N0) defined by

pFq

[
α1, . . . , αp;
β1, . . . , βq;

z

]
=

∞∑
k=0

∏p
j=1 (αj)k∏q
j=1(βj)k

zk

k!
,

where,

(α)k =
Γ(α+ k)

Γ(α)
(α ∈ C)

is the well known Pochhammer symbol (see [18, p. 21 etc.]).

The confluent hypergeometric function (see [13]) is defined by the series

1F1(α;β; z) =
∞∑
k=0

(α)k
(β)k

zk

k!
. (1.3)

Chaudhry et al. [23] defined the extended form of beta function by introducing a parameter p

B(η1, η2; p) =
∫ 1

0
(1 − t)η2−1 tη1−1 e

[
− p

t(1−t)

]
dt (0 < ℜ(η1) , (0 < ℜ(η2)), (1.4)

where, ℜ(p) > 0 and parameters η1 and η2 are arbitray complex numbers,
and applied the definition (1.4) to obtain the extended hypergeometric function as

Fp

[
α, β;
γ;

z

]
=

1
B(β, γ − β)

∞∑
k=0

B(β + k, γ − β; p) (α)k
zk

k!
(1.5)

(
|z| < 1; p ≧ 0; 0 > ℜ(β) > ℜ(γ)

)
.

Shadab et al. [26] introduced

Bλ
p (η1, η2) =

∫ 1

0
tη1−1 (1 − t)η2−1 Eλ

(
− p

t(1 − t)

)
dt

(
0 < ℜ(η1) , 0 < ℜ(η2)

)
, (1.6)
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where, Eλ(z) is the long-familiar Mittag-Leffler function (see, [15, also Eq. (1.10)]) given in
(1.10). In terms of (1.6), they also defined

Fp,λ

[
α, β;
γ;

z

]
=

1
B(β, γ − β)

∞∑
k=0

(α)k B
p
λ (β + k, γ − β)

zk

k!
(1.7)

and

Φp,λ(β, γ; z) =
1

B(β, γ − β)

∞∑
k=0

Bp
λ (β + k, γ − β)

zk

k!
. (1.8)

Recently, Khan et al. [27] introduced and investigated a new generalization of beta function
as

Bλ;σ,τ
p,q (η1, η2) =

∫ 1

0
tη1−1 (1 − t)η2−1 Eλ

(
− p

tσ

)
Eλ

(
− q

(1 − t)τ

)
dt (1.9)(

λ, σ, τ > 0; ℜ(p) ≥ 0, ℜ(q) ≥ 0; ℜ(η1) > 0, ℜ(η2) > 0
)
,

where, Eλ (see [15]) is the Mittag-Leffler function

Eµ(z) =
∞∑
k=0

zk

Γ(1 + µk)
(1.10)

(
ℜ(µ) > 0; z, µ ∈ C; |z| < 0

)
,

introduced by the swedish mathematician Mittag-Leffler (see also, application section) and its
extension Eµ,η(x) was studied later by Wiman [4] which has the form

Eµ,η(z) =
∞∑
k=0

zk

Γ(η + µk)
(1.11)

(µ, η ∈ C; ℜ(µ) > 0,ℜ(η) > 0).
In terms of (1.9), they also defined the generalized Gauss’s hypergeometric function

2F
p,q;λ;σ,τ
1 (α, β; γ; z) =

1
B(β, γ − β)

∞∑
k=0

Bλ;σ,τ
p,q (β + k, γ − β) (α)k

zk

k!
(1.12)

(
min{ℜ(p), ℜ(q), ℜ(σ), ℜ(τ)} ≧ 0; λ > 0; |z| < 1; 0 < ℜ(β) < ℜ(γ)

)
.

Now in view of the definition (1.9) and (1.12), we introduce a generalized hypergeometric
function:

uF
p,q;λ;σ,τ
v

[
α1, . . . , αu;
β1, . . . , βv;

z

]
=

∞∑
k=0

∏u
j=1 (αj)k∏v
j=1(βj)k

zk

k!
=

∞∑
k=0

Ω
p,q;λ;σ,τ
k

zk

k!
(1.13)

(
min{ℜ(σ),ℜ(τ)} ≧ 0; λ > 0; ℜ(p) ≥ 0, ℜ(q) ≥ 0

)
,

where, the coefficients Ω
p,q;λ;σ,τ
k are given by

Ω
p,q;λ;σ,τ
k :=



(α1)k
v∏

j=1

Bλ;σ,τ
p,q (αj+1+k,βj−αj+1)

B(αj+1;βj−αj+1)

(u = v + 1;ℜ(βj) > ℜ(αj+1) > 0; |z| < 1)

v∏
j=1

Bλ;σ,τ
p,q (αj+k,βj−αj)

B(αj ;βj−αj)

(u = v; ℜ(βj) > ℜ(αj) > 0; z ∈ C)

1
(β1)k···(βr)k

u∏
j=1

Bλ;σ,τ
p,q (αj+k,βr+j−αj)

B(αj ;βr+j−αj)

(r = v − u < 0; ℜ(βr+j) > ℜ(αj) > 0; z ∈ C).

(1.14)
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For u−1 = v = 1 in (1.13), the definition corresponds to the generalized Gauss’s hypergeometric
function in (1.12).

Remark 1.1. Former definitions of the gauss hypergeometric function and generalized hyperge-
ometric function defined by other authors carry over naturally to our generalization and can be
recovered from them as special cases of our definitions. To mention a few, we have:

For
σ = τ = λ = 1, p = q and u− 1 = v = 1,

the definition in (1.13) coincides with (1.5) .

The definition in (1.13) when

σ = τ = λ = 1 and u− 1 = v = 1,

coincides with the corresponding definition defined by Choi et. al. in [21, Eq. 7.1].

The case when
λ = 1, p = q, u− 1 = v = 1 and σ = τ

in (1.13), the corresponding definition in [12, Eq. 6.1] can be retrieved.

The Hadamard product for the power series

f(z) :=
∞∑
k=0

ak z
k (|z| < Rf ) and g(z) :=

∞∑
k=0

bk z
k (|z| < Rg), (1.15)

with radii of convergence RF and Rg, respectively, can be defined by the series:

(f ∗ g)(z) =
∞∑
k=0

ak bk z
k (|z| < R),

where
R := lim

k→∞

∣∣∣ akbk
ak+1bk+1

∣∣∣ = ( lim
k→∞

∣∣∣ ak
ak+1

∣∣∣) ( lim
k→∞

∣∣∣ bk
bk+1

∣∣∣) =: Rf .Rg,

thereby, we have (see [33])
R ≧ Rf .Rg.

The Hadamard product, particularly, for an entire function can be written as: (see [17, Definition
6])

uF
p,q;λ;σ,τ
r+u

[
α1, . . . , αu;
β1, . . . , βr+u;

z

]
= 1Fr

[
1;

β1, . . . , βr;
z

]

×uF
p,q;λ;σ,τ
u

[
α1, . . . , αu;

βr+1, . . . , βr+u;
z

]
(|z| < ∞).

(1.16)

2 Operators of Fractional calculus and Generalized hypergeometric function

Here, we consider the compositions of certain fractional derivative formulas (see, for details,
[25, 33]) with the generalized hypergeometric function (1.13).

For convenience, we dentote the left-sided hypergeometric fractional integral operator Iw,µ,ζ
0+

and hypergeometric fractional derivative operator Dw,µ,ζ
0+ by LHFI and LHFD.

They are defined, respectively, by(
Iw,µ,ζ
0+ f

)
(x) :=

x−w−µ

Γ(w)∫ x

0
(x− t)w−1

2F1

[
w + µ, −ζ;
w;

x− t

x

]
f(t)dt

(2.1)
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(
ℜ(w) > 0

)
and (

Dw,µ,ζ
0+ f

)
(x) =

(
d

dx

)k {(
I−w+ζ,−µ−ζ,w+ζ−k
0+ f

)
(x)
}

=
(

I−w,−µ,w+ζ
0+ f

)
(x)

(2.2)

(
x > 0; w, µ, ζ ∈ C; ℜ(w) ≧ 0; k = [ℜ(w)] + 1

)
.

In particular, the operator Dw,µ,ζ
0+ (LHFD) is related to the Riemann-Liouville fractional

derivative operator RLDw
0+ (RLFD) and the left-sided Erdélyi-Kober fractional derivative op-

erator EKDw,ζ
0+ (EKFD) as:

RLDw
0+ = Dw,−w,ζ

0+ and EKDw,ζ
0+ = Dw,0,ζ

0+ , (2.3)

where, (see [3, Chapter 13])

(RLDw
0+ f) (x) :=

(
d

dx

)k { 1
Γ(k − w)

∫ x

0
f(t) (x− t)k−w−1 dt

}
(2.4)

(
ℜ(w) ≧ 0; [ℜ(w)] = k − 1; x > 0

)
and (

EKDw,ζ
0+ f

)
(x) := xζ

(
d

dx

)k { 1
Γ(k − w)

∫ x

0

tw+ζ f(t)

(x− t)w−k+1 dt

}
(2.5)(

k = [ℜ(w)] + 1; ℜ(w) ≧ 0; x > 0
)
.

We denote the right sided hypergeometric fractional integral operator and hypergeometric
fractional derivative operator by RHFI and RHFD, respectively. For x > 0, w, µ, ζ ∈ C, the
(RHFI) operator Iw,µ,ζ

∞− and the (RHFD) opeartor Dw,µ,ζ
∞− are

(Iw,µ,ζ
∞− ) (x) :=

1
Γ(w)

∫ ∞

x

(t− x)w

tw+µ

. 2F1

[
µ+ w, −ζ;
w;

1 − t

x

]
f(t)dt (0 < ℜ(w))

(2.6)

and
(Dw,µ,ζ

∞− ) (x) =(I−w−µ,w+ζ
∞− ) (x)

=

(
− d

dx

)k {
I−w+ζ,−µ−ζ,w+ζ−k
∞− ) (x)

}
(
k = [ℜ(w)] + 1; 0 < ℜ(w)

)
,

(2.7)

where, 2F1[.] is given by (1.2).

The unfication of both the Weyl fractional derivative operator W Dw
∞− and the Erdélyi-Kober

fractional derivative operator EKDw,ζ
∞− (right-sided) by the operator (RHFD) in (2.7) is given as:

W Dw
∞− = Dw,−w,ζ

∞− and EKDw,ζ
∞− = Dw,0,ζ

∞− , (2.8)

where, (see [2, Chapter 13])

(
W Dw

∞− f
)
(x) :=

(
− d

dx

)k { 1
Γ(k − w)

∫ x

0
(t− x)k−w−1 f(t) dt

}
(2.9)
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and

(
EKDw

∞− f
)
(x) := xw+ζ

(
d

dx

)k { 1
Γ(k − w)

∫ ∞

x

t−ζ (t− x)k−w−1 f(t) dt

}
(2.10)

(
k = [ℜ(w)] + 1; ℜ(w) ≧ 0; x > 0

)
Lemma 2.1. The undermentioned hypergeometric fractional derivative formulas are true:(

Dw,µ,ζ
0+ tδ−1

)
(x) =

Γ(δ)Γ(δ + w + µ+ ζ)

Γ(δ + µ)Γ(δ + ζ)
xδ+µ−1 (2.11)

(
x > 0; ℜ(w) ≧ 0; ℜ(δ) + min{ℜ(0,ℜ(w + µ+ ζ))} > 0

)
and (

Dw,µ,ζ
∞− tδ−1

)
(x) =

Γ(1 − δ − µ)Γ(1 − δ + w + ζ)

Γ(1 − δ)Γ(1 − δ + ζ − µ)
xδ+µ−1 (2.12)

(
x > 0; ℜ(w) ≧ 0; ℜ(δ)− min{ℜ(−µ− ζ), ℜ(w + ζ)} < 1

)
.

Theorem 2.2. The undermentioned formula for LHFD holds true:(
Dw,µ,ζ

0+ tδ−1
uF

p,q;λ;σ,τ
v

[
α1, . . . , αu;
β1, . . . , βv;

zt

])
(x) = xδ+µ−1 Γ(δ)Γ(δ + w + µ+ ζ)

Γ(δ + µ)Γ(δ + ζ)

.uF
p,q;λ;σ,τ
v

[
α1, . . . , αu;
β1, . . . , βv;

zx

]
∗ 2F2

[
δ, δ + w + µ+ ζ;
δ + µ, δ + ζ;

zx

] (2.13)

(
x > 0; ℜ(w) ≧ 0; ℜ(δ) + min{0,ℜ(w + µ+ ζ)} > 0

)
,

provided that the conditions with (1.13) and the formula in (2.13) exists.

Proof. The hypergeometric fractional derivative formula (2.13) is easily derivable with the help
of the result in (2.11) and (1.13). We omit the details of the proof.

By using the fractional derivative formula (2.12), Theorem 2.3 can easily be proved with
similar approach as in Theorem 2.2. So we choose to skip all details.

Theorem 2.3. The undermentioned formula for RHFD holds true:(
Dw,µ,ζ

∞− tδ−1
uF

p,q;λ;σ,τ
v

[
α1, . . . , αu;
β1, . . . , βv;

z

t

])
(x) = xδ+µ−1 Γ(1 − δ − µ)Γ(1 − δ + w + ζ)

Γ(1 − δ)Γ(1 − δ − µ+ ζ)

.uF
p,q;λ;σ,τ
v

[
α1, . . . , αu;
β1, . . . , βv;

z

x

]
∗ 2F2

[
1 − δ − µ, 1 − δ + w + ζ;

1 − δ, 1 − δ − µ+ ζ;
z

x

]
(2.14)(

x > 0; ℜ(w) ≧ 0; min{ℜ(−µ− ζ),ℜ(w + ζ)} > ℜ(δ)− 1
)
,

provided that the conditions with (1.13) and the formula in (2.13) exists.

On setting µ = −w and µ = 0 in formula (2.13) and in view of the relationships in (2.3), we
construct below the following consequences of Theorem 2.2.
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Corollary 2.4. There holds the undermentioned Riemann-Liouville fractional derivative for-
mula: (

RLDw
0+ tδ−1

uF
p,q;λ;σ,τ
v

[
α1, . . . , αu;
β1, . . . , βv;

zt

])
(x) = xδ−w−1 Γ(δ)

Γ(δ − w)

.uF
p,q;λ;σ,τ
v

[
α1, . . . , αu;
β1, . . . , βv;

zx

]
∗ 1F1

[
δ;

δ − w;
zx

] (2.15)

(
x > 0; ℜ(w) ≧ 0; ℜ(δ) > 0

)
.

Corollary 2.5. There holds the undermentioned left-sided Erdélyi-Kober fractional derivative
formula:(

EKDw,ζ
0+ tδ−1

uF
p,q;λ;σ,τ
v

[
α1, . . . , αu;
β1, . . . , βv;

zt

])
(x) = xδ−1 Γ(δ + w + ζ)

Γ(δ + ζ)

.uF
p,q;λ;σ,τ
v

[
α1, . . . , αu;
β1, . . . , βv;

zx

]
∗ 1F1

[
δ + w + ζ;
δ + ζ;

zx

] (2.16)

(
0 < x; ℜ(w) ≧ 0; ℜ(δ) + min{0,ℜ(ζ)} > 0

)
.

On setting µ = −w and µ = 0 in formula (2.14) and in view of the relationships in (2.8), we
deduce the following consequences of Theorem 2.3.

Corollary 2.6. There holds the undermentioned Weyl fractional derivative formula:(
W Dw

∞− tδ−1
uF

p,q;λ;σ,τ
v

[
α1, . . . , αu;
β1, . . . , βv;

z

t

])
(x) = xδ−w−1 Γ(1 − δ + w)

Γ(1 − δ)

.uF
p,q;λ;σ,τ
v

[
α1, . . . , αu;
β1, . . . , βv;

z

x

]
∗ 1F1

[
1 − δ + w;

1 − δ;
z

x

] (2.17)

(
x > 0; ℜ(w) ≧ 0; ℜ(w) > ℜ(δ)− 1

)
.

Corollary 2.7. There holds the undermentioned right-sided Erdélyi-Kober fractional derivative
formula:(

EKDw,ζ
∞− tδ−1

uF
p,q;λ;σ,τ
v

[
α1, . . . , αu;
β1, . . . , βv;

z

t

])
(x) = xδ−1 Γ(1 − δ + w + ζ)

Γ(1 − δ + ζ)

.uF
p,q;λ;σ,τ
v

[
α1, . . . , αu;
β1, . . . , βv;

z

x

]
∗ 1F1

[
1 − δ + w + ζ;

1 − δ + ζ;
z

x

] (2.18)

(
x > 0; ℜ(w) ≧ 0; min{ℜ(−η),ℜ(ω + η)} > ℜ(ρ)− 1

)
,

3 Fractional kinetic equations (FKE) with generalized hypergeometric
function uF

p,q;λ;σ,τ
v

Here we compute the solution of generalized FKE involving the hypergeometric function in
(1.13) (see also, [24, 31]). The results are derived using Laplace trnasform method and contains
Mittag-leffler function (1.11) of two complex paramters and Bessel-Maitland function (see [14]).
We need to recall the following definitions for our investigation:



718 T. Usman, N.U. Khan, O. Khan, D. A. Juraev

For any measurable function f : [0,∞) → R, the Laplace transform (see, [20]) is defined by:

L[f(t); s] :=
∫ ∞

0
e−st f(t) dt. (3.1)

The RL fractional integral operator (see, e.g., [1, 22]) is given by

(
0D−ν

t f
)
(t) =

1
Γ(ν)

∫ t

0
(t− p)ν−1f(p) dp

(
ℜ(ν) > 0

)
(3.2)

and its Laplace transform was studied in (see, [2, 19]) as

L{0D−ν
t f(t); s} = s−ν F (s) (3.3)

where, F (s) is the laplace transform given by (3.1).

The roots of the FKE were explored by Haubold and Mathai [16] during the study of bio-
chemical reaction concerning the rate of change of production, destruction and reaction, which
was:

dN

dt
= pN(t)− dN(t), (3.4)

where, d = d(N) denotes the destruction rate, p = p(N) denotes the production rate, N = N(t)
is the rate of reaction and Nt denotes the function:

Nt(t∗) = Nt(t− t∗) (t > 0).

Specific case of (3.4), for inhomogeneities or fluctuations in quantity N(t), given by the equation

dNi

dt
= −ci Ni(t), (3.5)

where, at time t = 0, (N0 = Ni(0)) trace the number of density of species i (ci > 0).
Neglecting the index i and integrating (3.5), we have

N(t)−N0 = −c0 0D−1
t N(t), (3.6)

where 0D−1
t is the standard fractional integral operator.

A generalization of (3.6) introduced by Haubold and Mathai [16] is:

N(t)−N0 = −cν0D−ν
t N(t), (3.7)

where 0D−ν
t is given by (3.2).

Further, Saxena and Kalla [31] studied the equation

N(t)−N0f(t) = −cν .D−ν
t N(t) (ℜ(ν) > 0, c > 0), (3.8)

Theorem 3.1. Let c, t, ν > 0, c ̸= t; λ, σ, τ ∈ R+; then the equation

N(t)−N0 uF
p,q;λ;σ,τ
v

[
α1, . . . , αu;
β1, . . . , βv;

tν

]
:= −cν 0D−ν

t N(t) (3.9)

has the solution

N(t) = N0

∞∑
k=0

Ω
p,q;λ;σ,τ
k (t)n Eν,k+1(−cνtν). (3.10)

Proof. Applying above, the Laplace transform (3.1) and using (3.3) and (1.13), gives

N∗(s) = N0

(∫ ∞

0
e−st

∞∑
k=0

Ω
p,q;λ;σ,τ
k

tk

k!

)
dt− cν s−νN∗(s), (3.11)
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where, N∗(s)=L {N(t); s}.
Under the given assumption, integrating the integral in (3.11) term by term and using L

{
tλ; s

}
=

Γ(λ+1)
sλ+1 , we have (

1 +
( c
s

)ν)
N∗(s) = N0

∞∑
k=0

Ω
p,q;λ;σ,τ
k

1
k!

Γ(1 + k)

s1+k
.

Employing the geometric series expansion of
(
1 +

(
c
s

)ν)−1
for c < |s|, we have

N∗(s) = N0

∞∑
k=0

Ω
p,q;λ;σ,τ
k

×
∞∑
r=0

(−1)r (c)νr (s)−(νr+k+1). (3.12)

Applying inverse Laplace transform and the relation

L−1{s−ν ; t} =
tν−1

Γ(ν)
, ℜ(ν) > 0,

gives

N(t) = L−1 {N∗(s); t}

= N0

∞∑
k=0

Ω
p,q;λ;σ,τ
k tk

{ ∞∑
r=0

(−1)r(ct)νr

Γ(νr + 1 + k)

}
.

= N0

∞∑
k=0

Ω
p,q;λ;σ,τ
k tk Eν,k+1(−cνtν), (3.13)

where, the coefficients Ω
p,q;λ;σ,τ
k are given by (1.14).

Alternatively, we can also express (3.13) as

N(t) = N0

∞∑
k=0

uF
p,q;λ;σ,τ
v

[
α1, . . . , αu;
β1, . . . , βv;

t

]
Wν,k+1(−cνtν), (3.14)

where, Wν,k+1(t) is the Wright function (also known as Bessel Maitland function) [14] given by

Wα,β(t) =
∞∑
k=0

zk

Γ(αk + β)
(β ∈ C;α > −1). (3.15)

In view of relation (1.7), we straightforwardly deduce the following consequence of Theorem
3.1.

Corollary 3.2. Let c, t, ν > 0, c ̸= t; λ, p ∈ R+; then the equation

N(t)−N0 Fp,λ

[
α, β;
γ;

tν

]
:= −cν 0D−ν

t N(t) (3.16)

has the solution

N(t) =N0
1

B(β, γ − β)

∞∑
k=0

(α)n Bp
λ (β + k, γ − β) tk Eν,k+1(−cνtν)

=N0
1

B(β, γ − β)
Fp,λ

[
α, β;
γ;

t

]
Wν,k+1(−cνtν).

(3.17)
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We now obtain the following result, which is more interesting and general in nature and can
be derived using the similiar approach used in the proof of Theorem (3.1).

Theorem 3.3. For all ν > 0, c > 0; λ, σ, τ ∈ R+; then the equation the equation

N(t)−N0 uF
p,q;λ;σ,τ
v

[
α1, . . . , αu;
β1, . . . , βv;

cνtν

]
:= −cν 0D−ν

t N(t) (3.18)

has the solution

N(t) = N0

∞∑
k=0

Ω
p,q;λ;σ,τ
k

(ct)νk Γ(νk + 1)
k!

Eν,νk+1(−cνtν), (3.19)

where the coefficients Ω
p,q;λ;σ,τ
k are given by (1.14).

4 Conclusion

In this paper, we investigate some important properties involving the generalized hypergeomet-
ric function uF

p,q;λ;σ,τ
v [z] such as fractional derivatives and integral formulas. Further, we have

derived the solution of generalized fractional kinetic equations involving generalized hyperge-
ometric function and the solution is obtained in terms of the Mittag-Leffler function. The ex-
tent to which beta and hypergeometric functions and their generalizations have contributed in
mathematical physics and other fields have been a constant source of knowledge and help for
researchers.
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