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Abstract In this paper, we study the Ulam stability and hyperstability of a functional equa-
tion in m-Banach spaces. Multi-additive and multi-Jensen functions are particular cases of this
functional equation. We also improve the main result of [Ciepliński, K. On Ulam Stability of a
Functional Equation. Results Math. 2020, 75, Paper No. 151, 11 pp.] and its consequences..

1 Introduction

Assume that X is a linear space over the field F, and Y is a linear space over the field K. Let
a11, a12, . . . , an1, an2 ∈ F and Ai1,...,in ∈ K for i1, . . . , in ∈ {1, 2} be given scalars. Ciepliński
[6] studied the Ulam stability of the following quite general functional equation

f(a11x11 + a12x12, . . . , an1xn1 + an2xn2) =

∑
i1,...,in∈{1,2} Ai1,...,inf(x1i1 , . . . , xnin).

(1.1)

in m-Banach spaces. Some special cases of the functional equation have been investigated by
some authors (see for example [2, 5, 9]). Functional equation (1.1) with a11 = a12 = · · · =
an1 = an2 = 1 and Ai1,...,in = 1 for i1, . . . , in ∈ {1, 2} gives the multi-additive functional
equation

f(x11 + x12, · · · , xn1 + xn2) =
∑

i1,...,in∈{1,2}

f(x1i1 , . . . , xnin).

The multi-Jensen functional equation

f

(
x11 + x12

2
, · · · , xn1 + xn2

2

)
=

1
2n

∑
i1,...,in∈{1,2}

f(x1i1 , . . . , xnin),

is a special case of (1.1) with a11 = a12 = · · · = an1 = an2 = 1
2 and Ai1,...,in = 1

2n for
i1, . . . , in ∈ {1, 2}. In this note, we prove the stability and hyperstability of the functional
equation (1.1) which improve Ciepliński’s result [6, Theorem 7] and its consequences.

First, let us recall some basic definitions and facts concerning m-normed spaces (see for
instance [3, 8, 10]).

Definition 1.1. Let m ∈ N be such that m ≥ 2 and Y be an at least m-dimensional real linear
space. A function ∥· , . . . , ·∥ : Ym → R is called a m-norm on Ym if it fulfils the following four
conditions:
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(i) ∥x1, . . . , xm∥ = 0 if and only if x1, . . . , xm are linearly dependent;

(ii) ∥x1, . . . , xm∥ is invariant under permutation;

(iii) ∥αx1, . . . , xm∥ = |α|∥x1, . . . , xm∥;

(iv) ∥x+ y, x2, . . . , xm∥ ≤ ∥x, x2, . . . , xm∥+ ∥y, x2, . . . , xm∥,

for any α ∈ R and x, y, x1, . . . , xm ∈ Y . The pair (Y, ∥·, . . . , ·∥) is called an m-normed space.

It follows from (i), (iii) and (iv) that the function ∥·, . . . , ·∥ is non-negative.
We say that a sequence {yn}n of elements of an m-normed space (Y, ∥·, . . . , ·∥) is Cauchy

sequence provided

lim
n,k→∞

∥yn − yk, x2, . . . , xm∥ = 0, x2, . . . , xm ∈ Y.

The sequence {yn}n is called convergent if there is a y ∈ Y such that

lim
n→∞

∥yn − y, x2, . . . , xm∥ = 0, x2, . . . , xm ∈ Y.

In this case we say that y is the limit of {yn}n and it is denoted by limn→∞ yn = y.
By an m-Banach space we mean an m-normed space such that each its Cauchy sequence is

convergent.

Example 1.2. Let R be the set of real numbers and X = R3. For x = (a1, b1, c1) and y =
(a2, b2, c2) in X , define

∥x, y∥ :=
√
(b1c2 − b2c1)2 + (a1c2 − a2c1)2 + (a1b2 − a2b1)2.

Then (X, ∥., .∥) is a 2-Banach space.

Example 1.3. For x = (a1, b1, c1) and y = (a2, b2, c2) in R3, define

∥x, y∥ := |b1c2 − b2c1|+ |a1c2 − a2c1|+ |a1b2 − a2b1|.

Then (X, ∥., .∥) is a 2-Banach space.

Example 1.4. A trivial example of an m-normed space is Rm equipped with the following m-
norm:

∥x1, · · · , xm∥ =

∣∣∣∣∣∣∣∣∣∣∣∣
det


x11 . . . x1m

. . . . .

. . . . .

. . . . .

xm1 . . . xmm



∣∣∣∣∣∣∣∣∣∣∣∣
,

where xi = (xi1, · · · , xim) ∈ Rm for all i = 1, · · · ,m.

We will use the following lemmas.

Lemma 1.5. Let (Y, ∥·, . . . , ·∥) be an (m + 1)-normed space and x ∈ Y . If ∥x, y∥ = 0 for all
y ∈ Ym, then x = 0.

Proof. Let y, z ∈ Y be linearly independent elements. Since ∥x, x, · · · , x, y∥ = 0 and ∥x, x, · · · , x, z∥ =
0, there exist scalars λ, µ such that x = λy and x = µz. Then λy − µz = 0, and we conclude
that λ = µ = 0. Hence x = 0.

By Lemma 1.5 and (iv), it is obvious that each convergent sequence has exactly one limit
and the standard properties of the limit of a sum and a scalar product hold true.

Finally, it should be noted that more information on m-normed spaces as well as on some
problems investigated in them can be found for example in [1, 3, 4, 7, 8, 10].



740 Abbas Najati and Choonkil Park

2 Main Results

For convenience, we set

Df(x11, x12, · · · , xn1, xn2) : = f(a11x11 + a12x12, . . . , an1xn1 + an2xn2)

−
∑

i1,...,in∈{1,2} Ai1,...,inf(x1i1 , . . . , xnin).

The following theorem presents a more general result than Theorem 7 of [6]. Indeed, Theorem
7 of [6] states the Ulam stability of functional equation (1.1) in (m + 1)-Banach spaces. Now,
we prove the Ulam hyperstability of functional equation (1.1) in (m+ 1)-normed spaces, where
m ∈ N.

Theorem 2.1. Assume that Y is an (m + 1)-normed space. Let φ : X2n → [0,+∞) and f :
Xn → Y be functions such that

∥Df(x11, x12, · · · , xn1, xn2), z∥ ⩽ φ(x11, x12, · · · , xn1, xn2) (2.1)

for x11, x12, . . . , xn1, xn2 ∈ X and z ∈ Ym. Then f fulfills equation (1.1).

Proof. Replacing z by kz in (2.1) and dividing the resultant inequality by km, we obtain

∥Df(x11, x12, · · · , xn1, xn2), z∥ ⩽ 1
kmφ(x11, x12, · · · , xn1, xn2) (2.2)

for x11, x12, . . . , xn1, xn2 ∈ X, z ∈ Ym and k ∈ N. Allowing k tending to infinity, we get

∥Df(x11, x12, · · · , xn1, xn2), z∥ = 0

for x11, x12, . . . , xn1, xn2 ∈ X and z ∈ Ym. Hence by Lemma 1.5, f satisfies (1.1).

Corollary 2.2. [6, Theorem 7] Assume ε > 0 and Y is an (m+1)-normed space. If f : Xn → Y
is a function satisfying

∥Df(x11, x12, · · · , xn1, xn2), z∥ ⩽ ε (2.3)

for x11, x12, . . . , xn1, xn2 ∈ X and z ∈ Ym, then f fulfills equation (1.1) for x1, . . . , xn ∈ X .

Proof. The result follows from Theorem 2.1 by letting φ(x11, x12, · · · , xn1, xn2) = ε.

It should be noted that Corollary 2.2 proves the Ulam hyperstability of functional equation
(1.1), which improves Theorem 7 of [6].

In the following results, X is a normed linear space.

Theorem 2.3. Assume that ε, θ ⩾ 0 and Y is an (m+ 1)-Banach space. Let g : X → Ym be a
surjective function and ∣∣∣∣∣∣

∑
i1,...,in∈{1,2}

Ai1,...,in

∣∣∣∣∣∣ > 1. (2.4)

If f : Xn → Y is a function satisfying

∥Df(x11, x12, · · · , xn1, xn2), g(z)∥ ⩽ ε+ θ∥z∥ (2.5)

for x11, x12, . . . , xn1, xn2, z ∈ X , then there is a unique function F : Xn → Y fulfilling equation
(1.1) and

∥f(x1, . . . , xn)− F (x1, . . . , xn), g(z)∥ ⩽
ε+ θ∥z∥

|
∑

i1,...,in∈{1,2} Ai1,...,in | − 1
(2.6)

for x1, . . . , xn, z ∈ X .
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Proof. Put

A :=
∑

i1,...,in∈{1,2}

Ai1,...,in , ai := ai1 + ai2, i ∈ {1, . . . , n}.

Let us first note that (2.5) with xi2 = xi1 for i ∈ {1, . . . , n} gives

∥f(a1x11, . . . , anxn1)−Af(x11, . . . , xn1), g(z)∥ ⩽ ε+ θ∥z∥, (x11, . . . , xn1, z) ∈ Xn+1,

and consequently ∥∥∥ f(ak+1
1 x11,...,a

k+1
n xn1)

Ak+1 − f(ak
1 x11,...,a

k
nxn1)

Ak , g(z)
∥∥∥ ⩽ ε+θ∥z∥

|A|k+1 ,

(x11, . . . , xn1, z) ∈ Xn+1, k ∈ N0.

(2.7)

Fix l, p ∈ N0 such that l < p. Then∥∥∥ f(ap
1 x11,...,a

p
nxn1)

Ap − f(al
1x11,...,a

l
nxn1)

Al , g(z)
∥∥∥ ⩽

∑p−1
j=l

ε+θ∥z∥
|A|j+1 ,

(x11, . . . , xn1, z) ∈ Xn+1,

(2.8)

and thus for each (x11, . . . , xn1) ∈ Xn, the sequence
{

f(ak
1 x11,...,a

k
nxn1)

Ak

}
k∈N0

is a Cauchy se-

quence. Using the fact that Y is a Banach space we conclude that this sequence is convergent,
which allows us to define

F (x11, . . . , xn1) := lim
k→∞

f(ak1x11, . . . , a
k
nxn1)

Ak
, (x11, . . . , xn1) ∈ Xn. (2.9)

Putting now l = 0 and letting p → ∞ in (2.8) we see that

∥f(x11, . . . , xn1)− F (x11, . . . , xn1), g(z)∥ ⩽
ε+ θ∥z∥
|A| − 1

, (x11, . . . , xn1, z) ∈ Xn+1,

i.e., condition (2.6) is satisfied.
Let us next observe that from (2.5) we get∥∥∥ f(ak

1 (a11x11+a12x12),...,a
k
n(an1xn1+an2xn2))

Ak −

∑
i1,...,in∈{1,2} Ai1,...,in

f(ak
1 x1i1 ,...,a

k
nxnin )

Ak , g(z)
∥∥∥ ⩽ ε+θ∥z∥

|A|k

for x11, x12, . . . , xn1, xn2, z ∈ X and k ∈ N0. Letting now k → ∞ and applying definition (2.9)
we deduce that ∥∥∥F (a11x11 + a12x12, . . . , an1xn1 + an2xn2)−

∑
i1,...,in∈{1,2} Ai1,...,inF (x1i1 , . . . , xnin), g(z)

∥∥∥ = 0

for x11, x12, . . . , xn1, xn2, z ∈ X . Since g is surjective, we infer that the function F : Xn → Y is
a solution of functional equation (1.1).

The uniqueness of F is easily follows from (2.6).

Theorem 2.4. Assume that m ∈ N, ε ⩾ 0 and Y is an (m+1)-normed space. Let {αi}ni=1, {βi}ni=1
and {ri}ni=1 be nonnegative real numbers with max1⩽i⩽n ri < 1, and f : Yn → Y be a function
such that

∥Df(x11, x12, · · · , xn1, xn2), z∥ ⩽ ε+
∑n

i=1 [αi∥xi1, z∥ri + βi∥xi2, z∥ri ] (2.10)

for x11, x12, . . . , xn1, xn2 ∈ Y and z ∈ Ym. Then f satisfies (1.1).
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Proof. Replacing z by kz in (2.10) and dividing the resultant inequality by km, we obtain

∥Df(x11, x12, · · · , xn1, xn2), z∥ ⩽
ε

km
+

n∑
i=1

(
kri

k

)m

[αi∥xi1, z∥ri + βi∥xi2, z∥ri ] .

Letting now k → ∞, we get

∥Df(x11, x12, · · · , xn1, xn2), z∥ = 0, x11, . . . , xn2 ∈ Y, z ∈ Ym.

Hence by Lemma 1.5, f satisfies (1.1).

Theorem 2.5. Assume that m ∈ N and Y is an (m+ 1)-normed space. Let {αi}ni=1, {βi}ni=1 and
{ri}ni=1 be nonnegative real numbers with min1⩽i⩽n ri > 1, and f : Yn → Y be a function such
that

∥Df(x11, x12, · · · , xn1, xn2), z∥ ⩽
∑n

i=1 [αi∥xi1, z∥ri + βi∥xi2, z∥ri ] (2.11)

for x11, x12, . . . , xn1, xn2 ∈ Y and z ∈ Ym. Then f satisfies (1.1).

Proof. By replacing z by z
k in (2.11) and applying a similar argument as in the proof of Theorem

2.4, the result is achieved.

Theorem 2.6. Assume that ε ⩾ 0 and Y is an (m+ 1)-Banach space. Let {αi}ni=1and{βi}ni=1 be
nonnegative real numbers and f : Yn → Y be a function such that

∥Df(x11, x12, · · · , xn1, xn2), z∥ ⩽ ε+
∑n

i=1

[
αi∥xi1, z∥+ βi∥xi2, z∥

]
, (2.12)

for x11, x12, . . . , xn1, xn2 ∈ Y and z ∈ Ym. Suppose∣∣∣∣∣∣
∑

i1,...,in∈{1,2}

Ai1,...,in

∣∣∣∣∣∣ > max
1⩽j⩽n

{|aj1 + aj2|}.

Then there is a unique function F : Yn → Y fulfilling equation (1.1) and

∥f(x1, . . . , xn)− F (x1, . . . , xn), z∥ ⩽
n∑

i=1

αi + βi

|A| − |ai1 + ai2|
∥xi1, z∥ (2.13)

for x11, x12, . . . , xn1, xn2 ∈ Y and z ∈ Ym, where A :=
∑

i1,...,in∈{1,2} Ai1,...,in .

Proof. Replacing z by kz in (2.12) and dividing the resultant inequality by km, we obtain

∥Df(x11, x12, · · · , xn1, xn2), z∥ ⩽
ε

km
+

n∑
i=1

[
αi∥xi1, z∥+ βi∥xi2, z∥

]
,

for x11, x12, . . . , xn1, xn2 ∈ Y and z ∈ Ym. Letting k → ∞, we get

∥Df(x11, x12, · · · , xn1, xn2), z∥ ⩽
∑n

i=1

[
αi∥xi1, z∥+ βi∥xi2, z∥

]
, (2.14)

x11, x12, . . . , xn1, xn2 ∈ Y and z ∈ Ym. Put ai := ai1 + ai2 for i ∈ {1, . . . , n}. Letting xi2 = xi1
for i ∈ {1, . . . , n} in (2.14), we get

∥f(a1x11, . . . , anxn1)−Af(x11, . . . , xn1), z∥ ⩽
n∑

i=1

(αi + βi)∥xi1, z∥,

for all x11, x12, . . . , xn1, xn2 ∈ Y and z ∈ Ym. Then∥∥∥∥f(ap1x11, . . . , a
p
nxn1)

Ap
−

f(al1x11, . . . , a
l
nxn1)

Al
, z

∥∥∥∥
⩽

n∑
i=l

(αi + βi)∥xi1, z∥
p−1∑
j=l

|ai|j

|A|j+1 ,

for all x11, x12, . . . , xn1, xn2 ∈ Y and z ∈ Ym. The rest of the proof is similar to the proof of
Theorem 2.3.
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In 2-normed spaces, we have the following theorem.

Theorem 2.7. Assume that ε ⩾ 0 and Y is a 2-normed space. Let {αi}ni=1, {βi}ni=1 be nonneg-
ative real numbers and {ri}ni=1 be real numbers with max1⩽i⩽n ri < 1. Suppose f : Yn → Y
satisfies

∥Df(x11, x12, · · · , xn1, xn2), z∥ ⩽ ε+
∑n

i=1

[
αi∥xi1, z∥ri + βi∥xi2, z∥ri

]
(2.15)

for x11, x12, . . . , xn1, xn2 ∈ Y \ {0} and z ∈ Y with ∥xij , z∥ ̸= 0 for 1 ⩽ i ⩽ n and j = 1, 2.
Then f satisfies (1.1) for x11, x12, . . . , xn1, xn2 ∈ Y \ {0}.

Proof. Let x11, x12, . . . , xn1, xn2 ∈ Y \ {0}. By a similar argument as in the proof of Theorem
2.4, we get

∥Df(x11, x12, · · · , xn1, xn2), z∥ = 0

for all z ∈ Ym with ∥xij , z∥ ̸= 0 for 1 ⩽ i ⩽ n, j = 1, 2. Now, we can choose linearly
independent elements y, z ∈ Y such that

∥xij , y∥ ≠ 0 and ∥xij , z∥ ≠ 0, 1 ⩽ i ⩽ n, j = 1, 2.

Thus

∥Df(x11, x12, · · · , xn1, xn2), y∥ = 0 and ∥Df(x11, x12, · · · , xn1, xn2), z∥ = 0.

Then there exist scalars λ, µ such that

Df(x11, x12, · · · , xn1, xn2) = λy and Df(x11, x12, · · · , xn1, xn2) = µz.

So, λy − µz = 0, and we conclude that λ = µ = 0. Therefore

Df(x11, x12, · · · , xn1, xn2) = 0.

3 A special case of (1.1)

In this section, we deal with the following functional equation

f(ax+ by, cz + dw) = A1f(x, z) +A2f(x,w) +A3f(y, z) +A4f(y, w), (3.1)

which is a special case of (1.1). For convenience, we put

∆f(x, y, z, w) := f(ax+ by, cz + dw)−A1f(x, z)−A2f(x,w)−A3f(y, z)−A4f(y, w).

In what follows Y is a 2-normed space.

Theorem 3.1. Let δ, θ ⩾ 0, p, q, r, s ∈ R+ with p+ q > 1, r + s > 1 and f : Y → Y satisfy

∥∆f(x, y, z, w), t∥ ⩽ δ∥x, t∥p∥y, t∥q + θ∥z, t∥r∥w, t∥s, (3.2)

for all x, y, z, w, t ∈ Y . Then f satisfies (3.1).

Proof. Replacing t by t
n in (3.2), we infer that

∥∆f(x, y, z, w), t∥ ⩽
nδ

np+q
∥x, t∥p∥y, t∥q + nθ

nr+s
∥z, t∥r∥w, t∥s, (3.3)

for all x, y, z, w, t ∈ Y and all positive integer n. Letting n → ∞ in (3.3), we get

∥∆f(x, y, z, w), t∥ = 0, (3.4)

for all x, y, z, w, t ∈ Y . Then f fulfills (3.1).



744 Abbas Najati and Choonkil Park

Theorem 3.2. Let ε, δ, θ ⩾ 0, p, q, r, s ∈ R with p+ q < 1, r + s < 1 and f : Y → Y satisfy

∥∆f(x, y, z, w), t∥ ⩽ ε+ δ∥x, t∥p∥y, t∥q + θ∥z, t∥r∥w, t∥s, (3.5)

for all x, y, z, w, t ∈ Y with ∥x, t∥.∥y, t∥.∥z, t∥.∥w, t∥ ≠ 0. Then f satisfies (3.1) for all x, y, z, w ∈
Y \ {0}.

Proof. Replacing t by nt in (3.5), we infer that

∥∆f(x, y, z, w), t∥ ⩽
ε

n
+

np+q

n
δ∥x, t∥p∥y, t∥q + nr+s

n
θ∥z, t∥r∥w, t∥s, (3.6)

for all x, y, z, w, t ∈ Y with ∥x, t∥.∥y, t∥.∥z, t∥.∥w, t∥ ̸= 0 and all positive integer n. Letting
n → ∞ in (3.6), we get

∥∆f(x, y, z, w), t∥ = 0, (3.7)
for all x, y, z, w, t ∈ Y with ∥x, t∥.∥y, t∥.∥z, t∥.∥w, t∥ ≠ 0. By a similar argument as in the proof
of Theorem 3.1, it is concluded that f fulfills (3.1) for all x, y, z, w ∈ Y \ {0}.

The proof of the following theorem is almost similar to the proof of Theorem 3.2 and we
leave its proof.

Theorem 3.3. Let ε, δ ⩾ 0, p, q, r, s ∈ R and f : Y → Y satisfy

∥∆f(x, y, z, w), t∥ ⩽


ε+ δ∥x, t∥p∥y, t∥q∥z, t∥r∥w, t∥s, p+q+r+s<1;

δ∥x, t∥p∥y, t∥q∥z, t∥r∥w, t∥s, p+q+r+s>1.
(3.8)

for all x, y, z, w, t ∈ Y with ∥x, t∥.∥y, t∥.∥z, t∥.∥w, t∥ ≠ 0. Then f satisfies (3.1) for all x, y, z, w ∈
Y \ {0}.

For the case p+ q = r + s = 1, we have the following stability theorem. It should be noted
that in what follows Y is a 2-Banach space.

Theorem 3.4. Let ε, δ, θ ⩾ 0, p, q, r, s ∈ R+ with p+ q = r+ s = 1 and f : Y → Y satisfy (3.5)
for all x, y, z, w, t ∈ Y . Suppose that

|A1 +A2 +A3 +A4| > max{|a+ b|, |c+ d|}.

Then there is a unique function F : Y2 → Y fulfilling equation (3.1) and

∥F (x, z)− f(x, z), t∥ ⩽
δ∥x, t∥

|A1 +A2 +A3 +A4| − |a+ b|
+

θ∥z, t∥
|A1 +A2 +A3 +A4| − |c+ d|

,

for all x, z, t ∈ Y .

Proof. Replacing t by nt in (3.5), we infer that

∥∆f(x, y, z, w), t∥ ⩽
ε

n
+ δ∥x, t∥p∥y, t∥q + θ∥z, t∥r∥w, t∥s,

for all x, y, z, w, t ∈ Y . Then

∥∆f(x, y, z, w), t∥ ⩽ δ∥x, t∥p∥y, t∥q + θ∥z, t∥r∥w, t∥s, (3.9)

for all x, y, z, w, t ∈ Y . Put α := a+ b, β := c+ d and A := A1 +A2 +A3 +A4. Letting y = x
and w = z in (3.9), we get

∥f(αx, βz)−Af(x, z), t∥ ⩽ δ∥x, t∥+ θ∥z, t∥, x, y, z, w, t ∈ Y.

Then∥∥∥∥f(αn+1x, βn+1z)

An+1 − f(αmx, βmz)

Am
, t

∥∥∥∥ ⩽ δ

n∑
k=m

∣∣∣∣ αk

Ak+1

∣∣∣∣ ∥x, t∥+ θ

n∑
k=m

∣∣∣∣ βk

Ak+1

∣∣∣∣ ∥z, t∥, (3.10)

for all x, y, z, w, t ∈ Y and n ⩾ m ⩾ 0. Hence the sequence { f(αnx,βnz)
An }n is Cauchy, and we

can define

F : Y2 → Y, F (x, z) := lim
n

f(αnx, βnz)

An
.

The rest of the proof is similar to the proof of Theorem 2.3.
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[3] J. Brzdȩk and K. Ciepliński, A fixed point theorem in n-Banach spaces and Ulam stability, J. Math. Anal.
Appl., 470, 632–646, (2019).

[4] X. Y. Chen and M. M. Song, Characterizations on isometries in linear n-normed spaces, Nonlinear Anal.,
72, 1895–1901, (2010).
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