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Abstract In this paper, we study the Ulam stability and hyperstability of a functional equa-
tion in m-Banach spaces. Multi-additive and multi-Jensen functions are particular cases of this
functional equation. We also improve the main result of [Cieplifiski, K. On Ulam Stability of a
Functional Equation. Results Math. 2020, 75, Paper No. 151, 11 pp.] and its consequences..

1 Introduction

Assume that X is a linear space over the field I, and Y is a linear space over the field K. Let
ai1,a12,.--,0n1,0n2 € Fand 4;, ., € Kforiy,... i, € {1,2} be given scalars. Cieplifiski
[6] studied the Ulam stability of the following quite general functional equation

flanzi + anzi, ..., anZn1 + ApTn2) =
(1.1
Zil,...,ine{l,Z} Ail,...,inf(xlilv cee 7xnin)~

in m-Banach spaces. Some special cases of the functional equation have been investigated by
some authors (see for example [2, 5, 9]). Functional equation (1.1) with a); = aj = -+ =
anl = app = land A4, _; = 1foriy,... i, € {1,2} gives the multi-additive functional
equation

f(‘rll+‘rl27"' »xnl+wn2): Z f(x1i17"'axnin)~
i1yin €{1,2}

The multi-Jensen functional equation

T T T Ty, 1
f(n;_nv""l_;z>_2n_ Z fii, i),
ilyein€{1,2}
is a special case of (1.1) with a;; = app = -+ = a1 = apy = % and A;, ;. = 2% for
i1,...,9n € {1,2}. In this note, we prove the stability and hyperstability of the functional
equation (1.1) which improve Ciepliniski’s result [6, Theorem 7] and its consequences.
First, let us recall some basic definitions and facts concerning m-normed spaces (see for

instance [3, 8, 10]).

Definition 1.1. Let m € N be such that m > 2 and ) be an at least m-dimensional real linear
space. A function ||-,...,-|| : Y™ — Ris called a m-norm on Y™ if it fulfils the following four
conditions:
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(1) ||z1,...,2m] = 0if and only if z1, ..., x,, are linearly dependent;
(#3) |lz1, ..., x|l is invariant under permutation;
(751) |loxy, ... zm| = lalllz1, - 2wl
() ||z 4y, 22,y x| < |2y m2s - 2|l + lys 225 - s Tl
forany a € Rand z,y,z1,...,2, € Y. The pair (Y, ||, ..., -||) is called an m-normed space.
It follows from (7), (¢i7) and (iv) that the function ||-,...,-|| is non-negative.
We say that a sequence {yy, },, of elements of an m-normed space (), ||, ...,||) is Cauchy

sequence provided

lim Hyn_ylwxb-”vxm“:o; T2, ., Ty, €.
n,k— o0

The sequence {yy, }., is called convergent if there is a y € ) such that

lim ||yn_y’x27""znl||:07 zz?"')zmey'
n—oo
In this case we say that y is the limit of {y,},, and it is denoted by lim,,_,c ¥, = ¥.
By an m-Banach space we mean an m-normed space such that each its Cauchy sequence is
convergent.

Example 1.2. Let R be the set of real numbers and X = R3. For z = (aj,b1,¢;) and y =
(az, b2, ) in X, define

llz, y|| := \/(blcz —bye1)? + (a1ea — azxer)? + (arby — axby )2
Then (X, ||, .]|) is a 2-Banach space.
Example 1.3. For z = (a;, by, ¢;) and y = (ay, by, c2) in R?, define
|z, y|| := |bica — baci| + |arca — azer] + |arba — azby|.
Then (X, ||.,.||) is a 2-Banach space.

Example 1.4. A trivial example of an m-normed space is R equipped with the following m-

norm:
I11 e T1im
||.131,"',.Tm||: det . .. . R
Im1 . e o Tmm
where z; = (21, ,®im) € R™foralli =1,--- ,m.
We will use the following lemmas.
Lemma 1.5. Let (), ||, ...,-||) be an (m + 1)-normed space and x € Y. If ||x,y| = 0 for all
y e YV™, thenx =0.
Proof. Lety, z € Y belinearly independent elements. Since ||z, z,--- ,z,y|| =0and ||z, z, -+ ,z, 2| =
0, there exist scalars A, u such that x = Ay and = pz. Then \y — uz = 0, and we conclude
that A = = 0. Hence = = 0. O

By Lemma 1.5 and (iv), it is obvious that each convergent sequence has exactly one limit
and the standard properties of the limit of a sum and a scalar product hold true.

Finally, it should be noted that more information on m-normed spaces as well as on some
problems investigated in them can be found for example in [1, 3, 4, 7, 8, 10].
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2 Main Results

For convenience, we set

Df(xi,z12, -, Tn1,Tn2) 0 = flanzi + antin, ..., aniTn1 + an2®n2)

=i it oy i f (@105 T, )

The following theorem presents a more general result than Theorem 7 of [6]. Indeed, Theorem
7 of [6] states the Ulam stability of functional equation (1.1) in (m + 1)-Banach spaces. Now,
we prove the Ulam hyperstability of functional equation (1.1) in (m + 1)-normed spaces, where
m € N.

Theorem 2.1. Assume that Y is an (m + 1)-normed space. Let ¢ : X*™ — [0,+oc) and f :
X™ — Y be functions such that

IDf(x11, 212, Tnt, Tn2)s 2| < @(T11,T12,+ , Tnl, Tn2) (2.1
forxi,xi, ... a1, 20 € X and z € Y™. Then f fulfills equation (1.1).
Proof. Replacing z by kz in (2.1) and dividing the resultant inequality by k™, we obtain
IDf(z11, 212, Tt Tn2), 2| < (@11, @125+ T, Tn2) (2.2)
for x11,x12,. .., xn1, T2 € X, z € Y™ and k € N. Allowing & tending to infinity, we get
IDf(z11, 212, s Tn1,n2), 2| =0
for xy1,x12,...,2n1, 22 € X and z € V™. Hence by Lemma 1.5, f satisfies (1.1). O

Corollary 2.2. [6, Theorem 7] Assume ¢ > 0 and Y is an (m+ 1)-normed space. If f : X™ — Y
is a function satisfying
HDf(xlha?lZ?”' 7In1)xn2)az“ <€ (23)

forxi,xn, ... a1, 200 € X and z € Y™, then f fulfills equation (1.1) for xy, ..., x, € X.
Proof. The result follows from Theorem 2.1 by letting ©(x11, Z12,** , Tnl, Tn2) = €. O

It should be noted that Corollary 2.2 proves the Ulam hyperstability of functional equation
(1.1), which improves Theorem 7 of [6].
In the following results, X is a normed linear space.

Theorem 2.3. Assume that £,0 > 0 and Y is an (m + 1)-Banach space. Let g : X — Y™ be a
surjective function and

S Ay > L (2.4)
i1y, in€{l,2}
If f : X™ — Y is a function satisfying
IDf(x11, 212, Tn1, Tn2), 9(2)|| < € + 02| (2.5)
forxi1, T2, .., Tn1, Tn2, 2 € X, then there is a unique function F : X™ — Y fulfilling equation

(1.1) and

e+ 0|zl
\Zil,...,ine{l,z} Aiy,in| =1

”f(l'lv"'vxn)_F(xlw'wxn)?g(z)”< (26)

forxy,... x,, 2z € X.
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Proof. Put

A= E Ai],...,i”a a; ;= a;1 +ap, € {17,’[7,}
i1yein €{1,2}

Let us first note that (2.5) with 2, = z;; fori € {1,...,n} gives
||f(a]x]], e '7a’nxn1> - Af(,I]],. e azn])vg<z)” < 5+0||ZH3 (:Ellv s 71‘7117'2) S Xn+l7

and consequently

Hf(a{‘+lm1],...7aﬁ+]m7”) . f(a{“w”,...,aﬁxnl) Q(Z)H < e+0] 2|
b)

ARTI Ak [A[RFL
2.7)
(xlla"wxnlaz) € XnJrl’ ke NO'
Fix [, p € Ny such that [ < p. Then
flalzi,.aban)  flalzn,....al @, —1e46
H 1 llAp 1) (alwnAla z 1)7g(z> < Z?:l 8|A|;|f]”’
(2.8)
($11,...,:En1,2’) c Xn+l,
k k
and thus for each (xyy,...,2,1) € X", the sequence{%} . is a Cauchy se-
keNy

quence. Using the fact that ) is a Banach space we conclude that this sequence is convergent,
which allows us to define

. abxyy, ..., dkx,
F(I]],...,Im)iz klglgo f( 1 “Ak l), (ZEH,...,In1>€Xn. 2.9)
Putting now [ = 0 and letting p — oo in (2.8) we see that
e+ 0|z
||f(x117~--;xnl) - F(l‘lla" ,.’I}nl),g(Z)H g M7 (xlla"'axnlaz) S Xn+17

i.e., condition (2.6) is satisfied.
Let us next observe that from (2.5) we get

H f(a{c(lll19111+a12w12)7m,aﬁ(an1$n1+an2$n2))
Ak

flafziiy,....alzni,) c+0]12
Dirine 12y Airin — g, 9(2) || < T

for zy1,z12,...,Tn1, Tn2, 2 € X and k € Ny. Letting now & — oo and applying definition (2.9)
we deduce that

HF(GUCEU + a2, ..., 1Tl + Gn2Tp2)—

Zil=-~~7i71€{172} Ai],...,inF(mlim’ .- axnin)vg(Z)H =0

for x11,x12, ..., 201, Tn2, 2 € X. Since g is surjective, we infer that the function F' : X" — Y is
a solution of functional equation (1.1).
The uniqueness of F' is easily follows from (2.6). O

Theorem 2.4. Assume thatm € N, ¢ > 0and Y is an (m~+1)-normed space. Let {c;}? |, {Bi}}-,
and {r;}!'_, be nonnegative real numbers with maxi<,<, 7 < 1, and f : Y™ — Y be a function
such that

IDf(@i1, 12, @ty Tn2), 2] <€+ Dy [al|@in, 2| + Billzaz, 2]|™7] (2.10)

forxy,x12,. .., Tp1,Tn2 € Y and z € Y™. Then f satisfies (1.1).
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Proof. Replacing z by kz in (2.10) and dividing the resultant inequality by £™, we obtain

IDf(z11,z12, Tt Tn2), 2| < e +Z( > [aillza, 2l + Billwz, 2] -

Letting now k£ — oo, we get
IDf(zi1, 212, s Tn1, Zn2), 2| =0, Zi1,...,2p2 €Y, z€ Y™,
Hence by Lemma 1.5, f satisfies (1.1). O

Theorem 2.5. Assume that m € N and Y is an (m + 1)-normed space. Let {c;},{B:}, and
{ri}I_, be nonnegative real numbers with min<;<,, 7; > 1, and f : Y™ — Y be a function such
that

T4 Billxin, 2

IDf(z11, 212, s Tnt, Tn2), 2|| < 2or ) [vil|@in, 2 i (2.11)
forxi,xp, ..., Tu1, 20 € Y and z € Y. Then f satisfies (1.1).

Proof. By replacing z by 7 in (2.11) and applying a similar argument as in the proof of Theorem
2.4, the result is achieved. O

Theorem 2.6. Assume that e > 0 and Y is an (m + 1)-Banach space. Let {c;}! jand{f;}I, be

nonnegative real numbers and f : Y™ — Y be a function such that

IDf(zi1, 212, s Tnts Tn2), 2] <€+ Yy [azlll‘zl,zll + Billzio, 2||{ (2.12)

forxy,x10, ..., Tp1,Tn2 € Y and z € Y. Suppose

X A > max o +agl)
i1, €{1,2}

Then there is a unique function F : Y" — Y fulfilling equation (1.1) and

a; + Bi
If(z1,. .. an) — F(z1,...,20), 2| < Z A ‘Hx“,zH (2.13)

|az] +CI,1

forxi,xin, ..., 1, xn € Y and z € Y™, where A := Zil,...,ine{l,Z} Aiy i

Proof. Replacing z by kz in (2.12) and dividing the resultant inequality by £, we obtain
n
€
IDS (s o ana) 2l < g+ 3 [eullzan, 2l + Billaia, 11,

for x11,x12,...,%p1, 2 € Y and z € Y™. Letting k — oo, we get

IDf(zi1, 212, s Tty Tn2), 2] < Yoy [ai||$i17z|| ‘|’6i||$i27z||}7 (2.14)

11, T12, -« -y Enl, Tn € Y and z € Y™, Put a; := a;) + ap fori € {1,... n}. Letting 2, = x4
fori e {1,...,n}in (2.14), we get

n

If(arzrn,. o anzn) = Af (@in, o), 2 (0w + Bi)llza, 2],

i=1

forall z11,T12,...,%n1,Tn2 € Y and z € Y™. Then

flafzy,. .., aBxny) B flatzyy, ... ak2n)
Ap Al '

n
a
<3 (ot ) a2 Z |L|;H,
1=l

for all x11,212,...,2n1,Tn2 € YV and z € V™. The rest of the proof is similar to the proof of
Theorem 2.3. O
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In 2-normed spaces, we have the following theorem.

Theorem 2.7. Assume that ¢ > 0 and Y is a 2-normed space. Let {c;}" |, {5}, be nonneg-
ative real numbers and {r;}}" | be real numbers with maxi<;<, 7; < 1. Suppose f : Y" =Y
satisfies

IDf(zi1, 212, s Tl Tn2), 2|] <€+ iy ||z, 2|7 + ﬁiniz,ZH”} (2.15)

for zi,x12, ..., Tn1, T2 € Y\ {0} and z € Y with ||z;;,2|| # 0for 1 <i<nandj=1,2
Then f satisfies (1.1) for 11,212, ..., Tn1, Tn2 € Y\ {0}

Proof. Let xy1,212,...,%n1,Zn2 € Y \ {0}. By a similar argument as in the proof of Theorem
2.4, we get

”Df(l'llaxlb e ;xnlaan)vzH =0
for all z € Y™ with |lz;;,2|| # O0for 1 < ¢ < n, j = 1,2. Now, we can choose linearly

independent elements y, z € ) such that
llzij, yll #0 and ||l@ij, 2] #0, 1<i<n, j=1,2.
Thus
IDf(x11, 212, Tn1,%Tn2),y] =0 and  ||Df(x11, 212, , Tnl, Tn2), 2| = 0.
Then there exist scalars A, 1 such that
Df(zi, 12, ,Zn1,Zn2) = Ay and  Df(xi1, 212, , Tnl, Tn2) = p2.
So, Ay — uz = 0, and we conclude that A = y = 0. Therefore

Df(zi1, 12, -+, &n1, Tn2) = 0.

3 A special case of (1.1)
In this section, we deal with the following functional equation

flaz + by, cz + dw) = Ay f(x,2) + Ao f (x,w) + A3 f(y, 2) + Asf (y, w), 3.1
which is a special case of (1.1). For convenience, we put

Af(z,y,z,w) := f(ax + by, cz + dw) — A1 f(, 2) — Ao f (2, w) — A3 f(y, 2) — Aaf(y, w).
In what follows ) is a 2-normed space.
Theorem 3.1. Let 6,0 > 0, p,q,r,s e Rt withp+q> 1,r+s> land f : Y — Y satisfy
1A (2, y, 2, w), ¢l < Ol tl1Plly, e + Oz, ] [|w, £]|*, (3.2)

forall x,y,z,w,t € Y. Then f satisfies (3.1).
Proof. Replacing t by % in (3.2), we infer that

no nb

1A (@, w), 8] < e, Py, 17 +

12, 2" [w, 2%, (3.3)

nrts
for all z,y, z, w,t € ) and all positive integer n. Letting n — oo in (3.3), we get
Af(2,y,2,w),t]| =0, (3.4)

for all z,y, z,w,t € Y. Then f fulfills (3.1). O
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Theorem 3.2. Let£,6,0 > 0, p,q,r,s e Rwithp+q< l,r+s<land f:Y — Y satisfy

1Af (2, y, 2, w), t] < &+l tl|Plly, ¢|* + 0|z, ¢]|"[Jw, 2], (3.5)
Sforallz,y,z,w,t € Ywith ||z, t|.|ly, t]].]|z t]].|w, ]| # 0. Then f satisfies (3.1) forall x,y, z,w €
Y\ {0}.
Proof. Replacing t by nt in (3.5), we infer that

T+s

n . ;
Oz, " [|w, t]1°, (3.6)
n

< nPta
1AF (2,9, 2,0) ] < — 4 b ][ ly, ]| +

for all z,y, z,w,t € Y with ||z, t||.||y, t||].|z, ¢]|.||w, t]| # O and all positive integer n. Letting
n — oo in (3.6), we get

||Af(x7y7 Z7w)’t|| = 07 (3'7)
forall z,y, z,w,t € Y with ||z, t||.||y, t||.]|z, t]|.||w, t|| # 0. By a similar argument as in the proof
of Theorem 3.1, it is concluded that f fulfills (3.1) for all z,y, z,w € Y \ {0}. O

The proof of the following theorem is almost similar to the proof of Theorem 3.2 and we
leave its proof.

Theorem 3.3. Let,6 > 0, p,q,r,s € Rand f : Y — Y satisfy

e+ 8l tPlly, el |z, el [lw, tll®, - prgtres<i;
|Af (z,y, 2,w), t]| < (3.8)
S|, tl1Plly, e[ 1z, el [, 21* prq+rs>1.
Sforallxz,y,z,w,t € Ywith ||x,t|.|ly, t]|.]|z, t]|].|w, t]| # 0. Then f satisfies (3.1) forall x,y, z,w €
YA\ {0}

For the case p + ¢ = r + s = 1, we have the following stability theorem. It should be noted
that in what follows ) is a 2-Banach space.

Theorem 3.4. Let£,5,0 >0, p,q,r,s CR T withp+q=r+s=1and f:Y — Y satisfy (3.5)
forall x,y,z,w,t € Y. Suppose that
|A; + Ay + Az + As4| > max{|a + b, |c + d|}.
Then there is a unique function F : Y*> — Y fulfilling equation (3.1) and
O|, ¢ 0|z, ¢l

F ) - ) vt < ’
1B 2) = fe Dl S A+ A —Ja v 0 A+ Aat As + As— e+ 4

forall x,z,t € ).
Proof. Replacing t by nt in (3.5), we infer that
1Af (2, y, 2,w), t]| < % + Ol tl[Plly, e + Oz, ¢|" [[w, £[}°,
forall z,y, z,w,t € Y. Then
IAf (2, 2,w), ¢l < Olla, ¢l [ly, e + Oz, ] [|w, ¢]|°, 3.9)

forall z,y,z,w,t € Y. Puta:=a+b, f:=c+dand A:= A+ A, + A3+ A4. Lettingy =z
and w = z in (3.9), we get

1f(aw, B2) = Af (@, 2), tl] < dllw, tl| + Ol t]l, 2,y 2,w,t €.

Then
fla™z, pnlz)  fla™a, f"2
‘ An+1 - Am Ak+1 Ak+1 [z, (3.10)
for all z,y,z,w,t € Y and n > m > 0. Hence the sequence {%}n is Cauchy, and we

can define ’
fla"z, "z)

An

F:Y* =Y, F(z,2):=lim

The rest of the proof is similar to the proof of Theorem 2.3. O
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