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Abstract Discussion related to exact sequences is an essential tool in module theory. The
exact sequences are generalized to U-exact sequences, and X -sub-exact sequences. The concept
of X -sub-exact sequences can be used to generalize basis and free modules. Besides, the rough
set theory is a mathematical tool for dealing with uncertainty and vagueness problems. The
advancement of the algebraic concept into the rough set theory is expeditious. Several struc-
tures are developed in rough set theory, such as groups, semigroups, rings, and modules. In
this research, we provide a rough X -sub-exact sequence of a rough module over a rough ring.
Furthermore, we investigate the properties related to the intersection of a finite number of rough
modules over the rough ring.

1 Introduction

The concept of exact sequences is an essential meaning in module theory. Exact sequences are
used in defining projective and injective modules [17]. The quasi-exact sequence is a genera-
lization of exact sequences ([4], [6]). Several concepts related to exact sequences are generalized
into quasi-exact sequences. Anvariyeh and Davvaz [16] use the quasi-exact sequence to inves-
tigate the connection between U-split-sequence and the projective module. Moreover, in [15],
Anvariyeh and Davvaz generalize Schanuel’s Lemma. They obtain the connection between su-
perfluous submodules and quasi-exact sequences [15]. In addition, Davvaz and Shabani-Solt [5]
provide the concepts of U-exact sequences in homological algebra.

Based on the definition of a quasi-exact sequence, Fitriani et al. [9] define an X-sub-exact
sequence as a generalization of the exact sequence. Moreover, in [10], they define an X-sub-
linearly independent module, a generalization of a linearly independent module. In addition,
to generalize the generator concept, in [11], Fitriani et al. provide the Uy -generator using the
V-coexact sequence. In the same year, they combine the concept of the Uy -generator and the
X -sub-linear independent module family to define (X, V)-basis and U-free modules [12].

The Rough Set Theory is a mathematical tool for dealing with vagueness and uncertainty
problems. Some researchers give some algebraic structures in rough set theory. In [13], Ba-
gismaz and Ozcan introduce rough semigroups on approximation spaces. Moreover, Nelima and
Isaac [14] give an anti-homomorphism in the rough group, Wang and Chen [8] obtain the pro-
perties of the rough group and its application to computers, and Sinha and Prakash [2] investigate
the properties of the rough projective module. In [3], Sinha and Prakash introduce the injective
module based on rough set theory. Furthermore, in [1], they give the rough exact sequence of the
modules, and hence, there is an opportunity to develop the X -sub exact sequence into the rough
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set theory.

In this paper, we define a rough sub-exact sequence of a rough module over a rough ring.
Then, we give examples of rough sub-exact sequences of a rough module over a rough ring.
Moreover, we provide some properties of a rough sub-exact sequence of the rough module.

2 Prelimineries

In this section, we give basic notions of rough set, rough group, rough ring, rough module, rough
module homomorphism, and rough exact sequence of a rough module over a rough ring. We use
these concepts to define a rough sub exact sequence of rough modules over rough rings.

Definition 2.1. [18] Let S be a non-empty set and o an equivalence relation on S. The pair (S, o)
is called an approximation space.

An example of an approximation space can be seen as follows:

Example 2.2.Let S = Zg, and H = {0,2,4} a subgroup of Z¢ under addition modulo 6.
We define a6b if and only if ab~' € H, for all a,b € Z¢s. We can show that 6 is reflexive,
simmetric, and transitive. Hence, 6 is an equivalence relation on Zg. Therefore, a pair (Zg, 0) is
an approximation space.

Definition 2.3. ([7], [13]) Let (S, o) be an approximation space. A mapping:
Apr: P(S) — P(S) x P(S)

defined by Apr(Y) = (Y,Y), forevery Y € P(S), where:
(i) Y ={ylly]s € Y}, Y is called under approximation of Y in (S, o);

(i) X = {y|[ylo N X # 0}, Y is called upper approximation of Y in approximation space
(S,0);

(iii) RBN(Y) =Y — Y, RBN(Y) is called boundary region of Y in (S, o).

Definition 2.4. [13] Let (S, o) be an approximation space. A set Y C S is called a rough set if
and only if RBN(Y') # ().

For the illustration, we give an example of a rough set in an approximation space as follows.

Example 2.5. Let S = {uy, uy, us, us, us, ug, u7, ug, ug } and o an equivalence relation on (S, o)
with the following equivalence classes:

Cy = {ui,u3,us},
Cs = {u4, ue},
Cs = {u, u7},
04 = {Ug,’lw}.

LetY = {ul,’LLz,Ug,U9}. Then Y = {u8,U9}, and Y = {ul,UQ,U3,U5,U7,u8,UQ}. We have
RBN(Y) = {uy,uz,u3,us,u7} # (). Therefore Y is a rough set.

Now, we recall the definition of rough group as follows.

Definition 2.6. [1] Let (S, o) be an approximation space and H a non-empty subset of S. H is
called a rough group if Apr(H) = (H, H) the following conditions hold:

(i) xy € H, forevery z,y € H;
(i) (zy)z = x(yz), forall z,y,z € H,;
(iii) there exists e in H such that ex = xe = x, for every x € H;

(iv) for every x € H, there exists y € H such that xy = yx = e.

A rough group H is commutative if xy = yu, for every =,y € H. Furthermore, we give an
example of a rough group as follows.
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Example 2.7. Let U = Zg and H = {0, 2,4} a subset of U. We define an equivalence relation
on U as follows. a#b if and only if ab~! € H. Hence, we have two equivalence classes on U

(i) E; ={0,2,4}, and
(i) B> ={1,3,5}.
Choose X = {2,4}. Wehave X = () and X = {0,2,4}. Since RBN(X) =X - X # (), X isa
rough set on approximation space (U, ). B
Then we define addition modulo 6 (+) as a binary operation on U. Since 0 is not in X as an
identity element, we get that X is not a group under this binary operation. But, 0 is in the upper

approximation of X, i.e. 0 € X. Furthermore X satisfies all conditions in Definition 2.6. So, X
is a rough group even though X is not a group.

Then, we define a rough ring, a rough module, and a rough exact sequence of the rough
module as follows.

Definition 2.8. [1] Let (S, o) be an approximation space, and let R C S. R is called a rough ring
if:

(1) (R, +) is a rough commutative group;
(i) (R,.)is a rough semigroup;
(ili) (z +y)z = 2z +yzand x(y + 2) = 2y + 2z, for every z,y, 2 € R.
Definition 2.9. [1] Let R be a rough ring and M a rough commutative group. If there is a

mapping: -
tRxM— M,

where (r,m) — rm such that:
@) r(m+n)=rm+rn;
@) (r+s)m=rm+ sm;

(iii) (rs)m =r(sm);

@iv) Im=m,

for every r,s € R,m,n € M, then M is called rough left module over rough ring R.

We give the definition of a rough right module in a similar way. Now, we define a rough exact
sequence of the rough module.

Definition 2.10. [1] A sequence
VRS VN v
of homomorphisms of the rough module over a rough ring R is called a rough exact if im(f) =
ker(g).
3 MAIN RESULT
Now, we give a definition of a rough X -sub-exact sequence of rough modules as follows:

Definition 3.1. L/et M, M ,M" be rough modules over rough ring R, and X a rough submodule
of M. Tripel (M , M, M ") is called a rough X -sub-exact if

M X 5
is rough exact sequence.

We give an example of a rough module and a rough sub-exact sequence of a rough module
over a rough ring.
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Example 3.2. Consider the ring Z,, and subring H in Z,,, where H # {0}. We collect all left
cosets of H as follows:

Zo/H = {a+ Hla € Z,}.

The set Z,,/ H form the equivalence classes and give a partition in Z,,. We chooce X = H —{0}.
Then, we have X = H, and X = ). Hence X is a rough module over itself. Besides that, for all
Y C X such that:

(i) IfaeY,then —a €Y,
(ii) abe Y, foralla,b €Y,
is a rough module over itself.
Example 3.3. Based on Example 3.2, we choose K = Z,, — {0}. Then we have K = Z,, and

K is a rough ring. Hence, we have the following rough exact sequence of rough modules over
rough ring K:

05X 57X,

where 1 is identity function. So, the triple (0, K, X) is a rough X-sub-exact sequence of rough
modules over a rough ring K.

Then, we give some properties of a rough X-sub-exact sequence of rough modules over a
rough ring.

Proposition 3.4. Let (S, al be an approximation space, K, L, M rough modules, and Y1,Y>, ..., Yy,
submodules of M, where Y1 =Y, = ... = Y,,. Triple (K, L, M) is a rough Y;-sub-exact sequence
if and only if the triple (K, L, M) is rough Y;-sub-exact sequence, where i,j = 1,2,...,n, i # j.

Proof. Let the triple (K, L, M) be a rough Y;-sub-exact sequence, for i = 1,2,...,n. Then
we have a rough exact sequence as follows:

KLY %5

Choose j € {1,2,...,n}, where i # j. By assumption, the upper approximation of Y; is equal to
the upper approximation of Y; even though the set Y; # Y;. Hence, we have the following rough
exact sequence:

KLY, 401
So, the triple (K, L, M) is a rough Y;-sub-exact sequence at L. [

Proposition 3.5. Let (S, o) be an approximation space, M a rough module over a rough ring
R, and Y1,Y3, ..., Y, rough submodules of M. If Y1 NY,N..NY, =Y NY,N..NY,, then
Y1 NY2N...NY, is a rough submodule of M over a rough ring R in approximation space (S, o).

Proof. Suppose Y1,Y>,.., Y, are rough submodules of M. Then Y NY,N..NY, C M.
Consider a,b € Y1 N X, N...N X,,. This implies a,b € Y;, forall i = 1,2,...,n. We have
a+bey, foralli = 1,2,...n. Beside that —x € Y, foralli = 1,2,...,n. Hence —z €
YiNY,N..NnY, =Y NY>,N..NY,. Therefore Y] N Y, N...NY,, is a rough subgroup of M.
Considera € YINY,N..NY,. Soa € Y;, foralli = 1,2,...,n. Hence, for every r € R,
ra € Yy, foralli = 1,2,...,n. Itimplies ra € Y1NY>N...NY, = Y NY,N..NY,. Since
Y1 NY,N...NY, satisfies all conditions in Definition 2.9, Y} N Y, N...NY,, is a rough submodule
of a rough ring R. ]

Let (S, 0) be an approximation space, K, L, M rough modules over a rough ring R. We define
the set

o(K,L,M)={Y < M|(K, L, M) rough Y — sub- exact at M }.

Proposition 3.6. Let (S, 0) be an approximation space, L, M rough modules over a rough ring
R.IfY; €5(0,L,M), foralli =1,2,...,n, then(;—, Y; € a(0, L, M).
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Proof. Consider Y; € 5(0, L, M), foralli = 1,2, ..., n. Then we have a rough exact sequence
as follows.
0-Y, 177,

where f; is a monomorphism, for all i = 1,2, ...,n. Hence we can define f = fi|y,nv,n..ny,-
Based on Proposition 3.5, ﬂ?zl Y; is a rough submodule of M. Since f; a monomorphism, we
have f is also a monomorphism. Therefore, we have a rough exact sequence:

i=1

Therefore, N, Y; € 5(0, L, M). |

Proposition 3.7. Let (S, 0) be an approximation space, K;, L;, M; rough modules over a rough
ring R and X; a submodules of L;, forall i = 1,2,...,n, in (U,0). IfY; € 5(K;, L;, M), then
I[= Y e oI Ko [Ty Li, Ty Ma).
Proof. Consider Y; € 7(K;, L;, M;), for all i € {1,2,..,n}. Then we have a rough exact
sequence:
K, 45X 20T

Therefore, we can define = [[;", f; and ¢ = [[;", ¢; so that the following sequence

n n

[Ix: & I]v i>1£[Mi.
=1

i=1 i=1
is rough exact. Hence, [}, Y; € o([1;", K;, [1i— Li, [ 1) M;). |
Proposition 3.8. Let (S,0) be an approximation space, K, L, M rough modules over a rough

ring R, Y1,Y, submodules of M in approximation (S,0). If Y1 € 7(K,L,M) and Y, C Y},
where Y, is a direct summand Y1, then'Y, € (K, L, M).

Proof. Consider Y € (K, L, M). Then the following sequence:
KLvisar

is rough exact. By assumption, Y> C Y, where Y5 is a direct summand Y;. Based on [9], we
have the following rough exact sequence:

K—Y,— M.

It implies Y, € o(K, L, M). |

4 Conclusion remarks

A rough X -sub-exact sequence is a generalization of rough exact sequence of rough module over
rough ring. If K, L, M rough modules over the rough ring R and (K, L, M) is the set of all
submodules X of L, such that the triple (K, L, M) is rough sub-exact sequence, then (0, L, M)
is closed under intersection, i.e. if X; € o(0,L,M), forall i = 1,2,...,n, then (_, X; €
(0, L, M). Moreover, if X; € (K;, L;, M;), then [[\, X; € (T, K, [T, Li, [ 11—y M;).
Furthermore, if X € o(K,L,M) and Y C X, where Y is a direct summand X, then Y €
o(K,L,M).
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