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Abstract This paper introduces the finite element method (FEM) using the Galerkin method
with cubic and quintic B-splines as the basis functions for solving coupled systems of nonlinear
boundary value problems (BVPs). To linearize the nonlinear BVPs, the quasilinearization tech-
nique is employed to convert them into a sequence of linear BVPs. Quintic B-splines are used to
approximate variables with fourth-order derivatives, while cubic B-splines are used for variables
with second-order derivatives in the considered BVPs. The Galerkin method is then utilized to
obtain the results with these approximations. The effectiveness of the proposed method was eval-
uated by applying it to a specific problem from the literature. The numerically obtained solutions
with the proposed method were found to agree with those in the literature for the example tested.
Additionally, an error analysis technique involving residual functions is employed to enhance
the numerical solution.

1 Introduction

Several researchers have focused on the system of nonlinear BVPs that have arisen from the
mathematical modeling of many physical systems over the past several decades. The system of
BVPs with two or more unknowns is used in most mathematical modeling of physical systems.
The study is interesting from a mathematical perspective. Sheikholeslami et al. [1] have stud-
ied the coupled system of nonlinear BVPs solved by the fourth-order method of Runge-Kutta.
Bilal et al. [2] performed the partial differential equations (PDEs) corresponding to the forced
balanced law, energy equations, and concentration equations, which were transformed into a sys-
tem of nonlinear ordinary differential equations (ODEs) using appropriate techniques. The cash
and carp coefficients were used to improve the numerical solutions of the transformed nonlinear
systems. Furthermore, this problem was solved using the Runge-Kutta-Fehlberg (RKF) shooting
technique.

Makinde [3] investigated the set of governing PDEs along with the respective boundary
conditions, which were transformed into a system of nonlinear ODEs with the corresponding
boundary conditions and then solved by the Runge-Kutta integration technique and the Newton-
Raphson shooting method’s modified version. Seddeek et al. [4] have reported that the similarity
solution can be deployed to convert the set of PDEs into nonlinear ODEs together with boundary
conditions, after which an efficient numerically modified fourth-order Runge-Kutta method is
combined with the shooting algorithm. Pal [5] has used similarity transformations to transform
the system of nonlinear equations under boundary conditions to a system of nonlinear ODEs.
The implicit finite difference method is then used to integrate the differential equations. Pal
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and Mondal [6] have discussed the set of nonlinear ODEs with appropriate boundary conditions
that were numerically solved by a shooting algorithm with the Runge-Kutta Fehlberg integration
scheme. Hussain [7] found the solution by employing similarity transformations, which reduces
the problems governing a set of PDEs to a coupled system of nonlinear ODEs. The resulting
system of nonlinear ODEs is numerically solved using the shooting technique and continuous
Galerkin-Petrov discretization.

In a study by El-Dabe et al. [8] computed, the governing PDEs are transformed into non-
linear ODEs by similarity transformation and resolved via the finite difference method (FDM).
According to Idowu and Falodun [9], the governing coupled nonlinear PDEs were simplified
into nonlinear ODEs using appropriate similarity transformations. The modeled equations were
solved using the spectral homotopy analysis method (SHAM). Akinbo and Olajuwon [10] pro-
posed that the method of similarity is used to transform nonlinear PDEs into a system of coupled
nonlinear ODEs. Then, the resulting equation can then be solved using the homotopy analysis
method (HAM). Nadeem et al. [11] calculated the governing PDEs into a set of nonlinear ODEs
via similarity transformation. Then, it was solved numerically using the shooting method and
the Runge-Kutta-Fehlberg method. Eid and Mahny [12] focused on the nonlinear governing
equations, which were reduced to ODEs by a suitable similarity transform and then numerically
solved using the Runge-Kutta-Fehlberg 4th–5th order (RKF45) along with the shooting tech-
nique. Beg et al. [13] have obtained the numerical solutions to nonlinear ODEs by using the
technique of shooting with Runge-Kutta sixth-order. Viswanadham and Murali [14] depicted the
coupled system of BVPs solved by the Galerkin method along with the basis functions of cubic
B-splines. Dhivya and Murali [15] described the collocation method based on cubic and quartic
basis functions for solving a system of third-order nonlinear BVPs. Murali and Dhivya [16],
we investigated a Galerkin procedure with cubic and quartic B-splines for numerically solving
highly coupled systems of nonlinear BVPs.

According to Makinde et al. [17], a similarity transformation converts the governing PDEs
into ODEs, which are then solved numerically using the shooting quadrature. Vedavathi et al.
[18] investigated the numerical solutions of nonlinear ODEs with boundary conditions using a
shooting technique associated with the Runge-Kutta-4th order method. The equations of the
boundary layer were reduced into a system of ordinary nonlinear differential equations using
appropriate similarity transformations according to Sreedevi et al. [19]. Numerical solutions
were also obtained and graphically illustrated using the shooting method and the Runge-Kutta
fourth-order integration technique. The flow equations, which were solved by using the spec-
tral quasi-linearization method, with residual errors less than 10−08, are found in Dhlamini et
al. [20]. Dewasurendra and Vajravelu [21] extended the Liaos method to the coupled nonlinear
system from the three differential equations. Also, residual error versus the approximate values
of the plot is found. Khan et al. [22] analyzed the appropriate similarity transformations used
to transform the fluid flow velocity, temperature, and concentration into highly nonlinearly cou-
pled differential equations under physical conditions. The problem was solved by the Homotopy
Analysis Method (HAM). In addition, residual graphs and the residual error table demonstrate
the work’s authenticity.

Sithole et al. [23] examined and analyzed the method of spectral local linearization (SLLM)
used to resolve the system of ODEs with boundary conditions. In addition, residual errors and
error norms were evaluated to ensure the accuracy of the numerical scheme. The residual error
indicates how close the numerical solution is to the real solution. Motsa and Makukula [24], who
presented the bivariate spectral homotopy analysis method (BSHAM), which they used to solve
the system of nonlinear PDEs that modeled heat and mass transfer applications. The residual
error of the PDEs was used to observe convergence. As per Ferdows et al. [25], the specified
problem of the governing equations is nonlinear and complex; therefore, similarity transforma-
tions are used to obtain the simplest mathematical model in which the differential equations are
ordinary and asymmetric. This was performed using MATLAB software and the spectral relax-
ation technique (SRM). Residual errors versus number of iterations for several parameter rates
were also observed. Shah et al. [26] have examined how governing PDEs can be converted into
a system of ODEs. The HAM was used to solve the equation. The residual error was also found.
Saleem et al. [27] enhanced the presented governing problems by using the optimal homotopy
analysis method (OHAM). Moreover, as the order of approximation increases, the mean squared
residuals and the total mean squared residuals become increasingly smaller. Issa [37] has studied
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how the Reconstruction of Variational Iteration Method (RVIM) can be implemented to solve a
linear system of Volterra Integro-Differential Equations (VIDEs). Adibmanesh and Rashidinia
[38] have applied the time-fractional-convection-diffusion problem using a numerical technique
based on the Sinc function and B-spline scaling functions. Elomari et al. [39], examined the
solutions for coupled systems of time-fractional differential problems.

In this paper, we propose the Galerkin method with cubic and quintic B-splines to resolve the
following coupled system of fourth-order nonlinear BVPs.

NOLi(g, a, a
′
, a

′′
, a

′′′
, a

′v
, b, b

′
, b

′′
, c, c

′
, c

′′
, d, d

′
, d

′′
) = 0 (1.1)

along with the boundary conditions

a(gl0) = a0, a(grn) = a1, a
′
(gl0) = a2, a

′
(grn) = a3, b(gl0) = b0, b(grn) = b1,

c(gl0) = c0, c(grn) = c1, d(gl0) = d0, d(grn) = d1. (1.2)

Where NOL is denoted as the nonlinear operator, i = 1, 2, 3, 4, and a, b, c, and d are the
unknown variables in the coupled system. We used the quasilinearization technique Bellman
and Kalaba [28] to linearize the considered nonlinear BVPs, as given below.

5∑
k=1

uik(g)a(5−k) +
5∑

k=3

vik(g)b(5−k) +
5∑

k=3

wik(g)c(5−k)

+
5∑

k=3

yik(g)d(5−k) = Bi(g), i = 1, 2, 3, 4 (1.3)

together with the boundary conditions

a(gl0) = a0, a(grn) = a1, a
′
(gl0) = a2, a

′
(grn) = a3, b(gl0) = b0, b(grn) = b1,

c(gl0) = c0, c(grn) = c1, d(gl0) = d0, d(grn) = d1. (1.4)

Where ai(i = 0, 1, 2, 3) and bi, ci, di(i = 0, 1) are real constants. In addition, gl0 denotes the
boundary points on the left, and grn denotes the boundary point on the right. Here uik, vik, wik, yik
are continuous functions in interval [gl0,grn]. On the interval [gl0,grn], Bi is assumed to be con-
tinuous. This study presents a simple FEM for solving the coupled system of nonlinear BVPs
using the Galerkin approach with B-splines as basis functions. The study structure is described
below. Section 2 explains the implementation of the Galerkin method. Section 3 expresses the
Galerkin technique and the basis functions of cubic and quintic B-splines. Section 4 evaluates
the proposed method on a coupled system of fourth-order nonlinear BVPs. In addition, residual
graphs are found. Section 5 summarizes the findings and discussion. Finally, the conclusions are
presented in the last section.

2 Justification for the use of the Galerkin method

The approximate solution in the FEM is a linear combination of the basis functions, which
form the basis for an approximation space. Using this method, a weak form of a solution of
the approximation for a differential equation exists and is unique under suitable conditions, as
discussed in Bers et al. [29] and Lions and Magenes [30] regardless of the properties of a given
differential operator. Furthermore, if the boundary conditions are considered, the weak solution
tends to be the classical solution of a given differential equation in Mitchel [31] and Reddy [32].
Where the Dirichlet-type boundary conditions are mentioned, the basis functions must vanish on
the boundary; those details are presented in Murali and Dhivya [16].

3 Explanation of the methodology

The B-splines are defined in Cox [33], Carl [34], and Prenter [35]. The cubic B-splines are
defined in Murali and Dhivya [16], introduces six additional knots C3,−3, C3,−2, C3,−1, C3,n+1,



B-SPLINES WITH THE GALERKIN METHOD 85

C3,n+2, C3,n+3 in such a way that g−3 < g−2 < g−1 < g0 and gn < gn+1 < gn+2 < gn+3.
Schoenberg [36] demonstrated that cubic B-splines are only nonzero splines with the smallest
compact support with the knots at g−3 < g−2 < g−1 < g0 < ... < gn < gn+1 < gn+2 < gn+3.
The cubic B-splines C3,i(g) are now defined by

C3,i(g) =


r=i+2∑
r=i−2

[
(gr−g)3

+

Π′(gr)

]
if g ∈ [gi−2,gi+2]

0 otherwise
(3.1)

where Π(g) = (g− gi−2)(g− gi−1)(g− gi)(g− gi+1)(g− gi+2) and (gr − g)3
+ is the function

of the positive part.
And C3,−1(g), C3,0(g), C3,1(g), ..., C3,n−1(g), C3,n(g), C3,n+1(g) forms the basis for a space of
cubic polynomial splines defined on the given interval.

In a similar manner, quintic B-splines are defined by C5,i(g)

C5,i(g) =


r=i+3∑
r=i−3

[
(gr−g)5

+

Π′(gr)

]
if g ∈ [gi−3,gi+3]

0 otherwise
(3.2)

where Π(g) = (g − gi−3)(g − gi−2)(g − gi−1)(g − gi)(g − gi+1)(g − gi+2)(g − gi+3) and
(gr − g)5

+ is the function of the positive part.
And C5,−2(g), C5,−1(g), C5,0(g), C5,1(g), ..., C5,n−1(g), C5,n(g), C5,n+1(g), C5,n+2(g) forms the
basis for a space of quintic polynomial splines with the addition of four additional knots are
g−5,g−4,gn+4,gn+5. Schoenberg [36] demonstrated the quintic B-splines are only nonzero
splines with the smallest compact support and the knots at g−5 < g−4 < g−3 < g−2 < g−1 <
g0 < ... < gn < gn+1 < gn+2 < gn+3 < gn+4 < gn+5.

We define the approximation for a(g), b(g), c(g), and d(g) to solve BVPs (1.1) - (1.2) using
the Galerkin method with cubic, quintic B-splines.

a(g) =
n+2∑
k=−2

akC5,k(g) (3.3)

b(g) =
n+1∑
k=−1

bkC3,k(g) (3.4)

c(g) =
n+1∑
k=−1

ckC3,k(g) (3.5)

d(g) =
n+1∑
k=−1

dkC3,k(g) (3.6)

where the parameters to be determined are ak, bk, ck, dk.
The basis functions in the Galerkin method must vanish on the boundary on which the type

of Dirichlet boundary condition is defined. As a result, the basis functions must be redefined into
a new form of a set of basis functions that vanish on the boundary, where the type of Dirichlet
boundary condition is specified. Because cubic and quintic B-splines polynomials have been
used to approximate the system of fourth-order BVPs, we redefine the basis functions into a
new form of a set of basis functions that vanish on the boundary in which the type of Dirichlet
boundary conditions are specified. We obtain an approximate solution at the boundary points
using cubic and quintic B-spline definitions and the type of Dirichlet boundary conditions de-
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scribed in (1.2). We get

a(gl0) = a0

⇒ a−2C5,−2(gl0) + a−1C5,−1(gl0) + a0C5,0(gl0) + a1C5,1(gl0) + a2C5,2(gl0) = a0

⇒ a−2 =
1

C5,−2(gl0)

{
a0 − [a−1C5,−1(gl0) + a0C5,0(gl0) + a1C5,1(gl0) + a2C5,2(gl0)]

}
(3.7)

a(grn) = a1

⇒ an−2C5,n−2(grn) + an−1C5,n−1(grn) + a0C5,n(grn) + an+1C5,n+1(grn) + an+2C5,n+2(grn) = a1

⇒ an+2 =
1

C5,n+2(grn)

{
a1 − [an−2C5,n−2(grn) + an−1C5,n−1(grn) + a0C5,n(grn) + an+1C5,n+1(grn)]

}
(3.8)

b(gl0) = b0

⇒ b−1C3,−1(gl0) + b0C3,0(gl0) + b1C3,1(gl0)

⇒ b−1 =
1

C3,−1(gl0)

{
b0 − [b0C3,0(gl0) + b1C3,1(gl0)]

}
(3.9)

b(grn) = b1

⇒ bn−1C3,n−1(grn) + bnC3,n(grn) + bn+1C3,n+1(grn) = b1

⇒ bn+1 =
1

C3,n+1(grn)

{
b1 − [bn−1C3,n−1(grn) + bnC3,n(grn)]

}
(3.10)

c(gl0) = c0

⇒ c−1C3,−1(gl0) + c0C3,0(gl0) + c1C3,1(gl0) = c0

⇒ c−1 =
1

C3,−1(gl0)

{
c0 − [c0C3,0(gl0) + c1C3,1(gl0)]

}
(3.11)

c(grn) = c1

⇒ cn−1C3,n−1(grn) + cnC3,n(grn) + cn+1C3,n+1(grn) = c1

⇒ cn+1 =
1

C3,n+1(grn)

{
c1 − [cn−1C3,n−1(grn) + cnC3,n(grn)]

}
(3.12)

d(gl0) = d0

⇒ d−1C3,−1(gl0) + d0C3,0(gl0) + d1C3,1(gl0) = d0

⇒ d−1 =
1

C3,−1(gl0)

{
d0 − [d0C3,0(gl0) + d1C3,1(gl0)]

}
(3.13)

d(grn) = d1

⇒ dn−1C3,n−1(grn) + dnC3,n(grn) + dn+1C3,n+1(grn) = d1

⇒ dn+1 =
1

C3,n+1(grn)

{
d1 − [dn−1C3,n−1(grn) + dnC3,n(grn)]

}
(3.14)

Substituting the values of each parameter in the approximations yields the revised approxima-
tions for our unknown variables as follows:

a(g) = aw(g) +
n+1∑
k=−1

akP5,k(g) (3.15)
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b(g) = bw(g) +
n∑

k=0

bkQ3,k(g) (3.16)

c(g) = cw(g) +
n∑

k=0

ckQ3,k(g) (3.17)

d(g) = dw(g) +
n∑

k=0

dkQ3,k(g) (3.18)

where

aw(g) =
a0

C5,−2(gl0)
C5,−2(g) +

a1

C5,n+2(grn)
C5,n+2(g) (3.19)

bw(g) =
b0

C3,−1(gl0)
C3,−1(g) +

b1

C3,n+1(grn)
C3,n+1(g) (3.20)

cw(g) =
c0

C3,−1(gl0)
C3,−1(t) +

c1

C3,n+1(grn)
C3,n+1(g) (3.21)

dw(g) =
d0

C3,−1(gl0)
C3,−1(g) +

d1

C3,n+1(grn)
C3,n+1(g) (3.22)

and

P5,k(g) =


C5,k(g)−

[
C5,k(gl0)
C5,−2(gl0)

]
C5,−2(g), for k = −1, 0, 1, 2;

C5,k(g), for k = 3, ..., n− 3;

C5,k(g)−
[

C5,k(grn)
C5,n+2(grn)

]
C5,n+2(g), for k = n− 2, n− 1, n, n+ 1.

(3.23)

Q3,k(g) =


C3,k(g)−

[
C3,k(gl0)
C3,−1(gl0)

]
C3,−1(g), for k = 0, 1;

C3,k(g), for k = 2, 3, ..., n− 2;

C3,k(g)−
[

C3,k(grn)
C3,n+1(grn)

]
C3,n+1(g), for k = n− 1, n.

(3.24)

We now have n + 3 basis functions in a and n + 1 functions in b, c, and d. By applying the
Galerkin method to the system of equations (1.3) with the new basis functions, we obtain the
following system of algebraic equations with unknown parameters: ak, bk, ck and dk.

E11a+E12b+E13c+E14d = K1

E21a+E22b+E23c+E24d = K2

E31a+E32b+E33c+E34d = K3

E41a+E42b+E43c+E44d = K4 (3.25)

where a = [a−1 a0 a1... an+1]T , b = [b0 b1... bn]T , c = [c0 c1... cn]T and d = [d0 d1... dn]T .
Each entry of the matrices Eik is shown below. For the first row, we have the following expres-
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sion:

(e11)ik =

∫ grn

gl0

{{
−
[
um1(g)P

′′′

5,i(g)
]
− 3

[
u

′

m1(g)P
′′

5,i(g)
]
− 3

[
u

′′

m1(g)P
′

5,i(g)
]

−
[
u

′′′

m1(g)P5,i(g)
]
+

[
um2(g)P

′′

5,i(g)
]
+ 2

[
u

′

m2(g)P
′

5,i(g)
]
+

[
u

′′

m2(g)P5,i(g)
]

−
[
um3(g)P

′

5,i(g)
]
−
[
u

′

m3(g)P5,i(g)
]
+ [um4(g)P5,i(g)]

}
P

′

5,k(g)

+ [um5(g)P5,i(g)]
}
P5,k(g)dg −

[
um1(grn)P

′

5,i(grn)
]
P

′′

5,k(grn)

+
[
um1(gl0)P

′

5,i(gl0)
]
P

′′

5,k(gl0) i = −1, ..., n+ 1; k = −1, ..., n+ 1

(e12)ik =

∫ grn

gl0

{{
−
[
vm3(t)P5,i

′
(g)

]
−
[
v

′

m3(g)P5,i(g)
]
+ [vm4(g)P5,i(g)]

}
Q3,k

′
(g)

+ [vm5(g)P5,i(g)]Q3,k(g)
}
dg i = −1, ..., n+ 1; k = 0, ..., n

(e13)ik =

∫ grn

gl0

{{
−
[
wm3(g)P5,i

′
(g)

]
−
[
w

′

m3(g)P5,i(g)
]
+ [wm4(g)P5,i(g)]

}
Q3,k

′
(g)

+ [wm5(g)P5,i(g)]Q3,k(g)
}
dg i = −1, ..., n+ 1; k = 0, ..., n

(e14)ik =

∫ grn

gl0

{{
−
[
ym3(g)P5,i

′
(g)

]
−
[
y

′

m3(g)P5,i(g)
]
+ [ym4(g)P5,i(g)]

}
Q3,k

′
(g)

+ [ym5(g)P5,i(g)]Q3,k(g)
}
dg i = −1, ..., n+ 1; k = 0, ..., n

(k1)i =

∫ grn

gl0

{{
km(g)P5,i(g) + um1(g)P5,i

′′′
(g) + 3u

′

m1(g)P5,i
′′
(g) + 3u

′′

m1(g)P5,i
′
(g)

+ u
′′′

m1(g)P5,i(g)− um2(g)P5,i
′′
(g)− 2u

′

m2(g)P5,i
′
(g)− u

′′

m2(g)P5,i(g) + um3(g)P5,i
′
(g)

+ u
′

m3(g)P5,i(g)− um4(g)P5,i(g)
}
aw

′
(g)− um5(g)P5,i(g)aw(g) +

{
vm3(g)P5,i

′
(g)

+ v
′

m3(g)P5,i(g)− vm4(g)P5,i(g)
}
bw

′
(g)− vm5(g)P5,i(g)bw(g) +

{
wm3(g)P5,i

′
(g)

+ w
′

m3(g)P5,i(g)− wm4(g)P5,i(g)
}
cw

′
(g)− wm5(g)P5,i(g)cw(g) +

{
ym3(g)P5,i

′
(g)

+ y
′

m3(g)P5,i(g)− ym4(g)P5,i(g)
}
dw

′
(g)− ym5(g)P5,i(g)dw(g) +

{
zm3(g)P5,i

′
(g)

+ z
′

m3(g)P5,i(g)− zm4(g)P5,i(g)
}
ew

′
(g)− zm5(g)P5,i(g)ew(g)

}
dg

+
[
um1(grn)P5,i

′
(grn)

]
aw

′′
(grn)−

[
um1(gl0)P5,i

′
(gl0)

]
aw

′′
(gl0)−

[
um1(grn)P5,i

′′
(grn)

]
a3

+
[
um1(gl0)P5,i

′′
(gl0)

]
a2 − 2

[
u

′

m1(grn)P5,i
′
(grn)

]
a3 + 2

[
u

′

m1(gl0)P5,i
′
(gl0)

]
a2

+
[
um2(grn)P5,i

′
(grn)

]
a3 −

[
um2(gl0)P5,i

′
(gl0)

]
a2 i = −1, ..., n+ 1;
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The expressions for the second through fourth rows are as follows: For m = 2, 3, and 4, each
matrix entry is given below.

(em1)ik =

∫ grn

gl0

{{
−
[
um1(g)Q

′′′

3,i(g)
]
− 3

[
u

′

m1(g)Q
′′

3,i(g)
]
− 3

[
u

′′

m1(g)Q
′

3,i(g)
]
−

[
u

′′′

m1(g)Q3,i(g)
]

+
[
um2(g)Q

′′

3,i(g)
]
+ 2

[
u

′

m2(g)Q
′

3,i(g)
]
+

[
u

′′

m2(g)Q3,i(g)
]
−
[
um3(g)Q

′

3,i(g)
]

−
[
u

′

m3(g)Q3,i(g)
]
+ [um4(g)Q3,i(g)]

}
P

′

5,k(g) + [um5(g)Q3,i(g)]
}
P5,k(g)dg

−
[
um1(grn)Q

′

3,i(grn)
]
P

′′

5,k(grn) +
[
um1(gl0)Q

′

3,i(gl0)
]
P

′′

5,k(gl0)

i = 0, ..., n; k = −1, ..., n+ 1

(em2)ik =

∫ grn

gl0

{{
−
[
vm3(g)Q3,i

′
(g)

]
−
[
v

′

m3(g)Q3,i(g)
]
+ [vm4(g)Q3,i(g)]

}
Q3,k

′
(g)

+ [vm5(g)Q3,i(g)]Q3,k(g)
}
dg i = 0, ..., n; k = 0, ..., n

(em3)ik =

∫ grn

gl0

{{
−
[
wm3(g)Q3,i

′
(g)

]
−
[
w

′

m3(g)Q3,i(g)
]
+ [wm4(g)Q3,i(g)]

}
Q3,k

′
(g)

+ [wm5(g)Q3,i(g)]Q3,k(g)
}
dg i = 0, ..., n; k = 0, ..., n

(em4)ik =

∫ grn

gl0

{{
−
[
ym3(g)Q3,i

′
(g)

]
−
[
y

′

m3(g)Q3,i(g)
]
+ [ym4(g)Q3,i(g)]

}
Q3,k

′
(g)

+ [ym5(g)Q3,i(g)]Q3,k(g)
}
dg i = 0, ..., n; k = 0, ..., n

(km)i =

∫ grn

gl0

{{
km(g)Q3,i(g) + um1(g)P5,i

′′′
(g) + 3u

′

m1(g)Q3,i
′′
(g) + 3u

′′

m1(g)Q3,i
′
(g)

+ u
′′′

m1(g)Q3,i(g)− um2(g)Q3,i
′′
(g)− 2u

′

m2(g)Q3,i
′
(g)− u

′′

m2(g)Q3,i(g)

+ um3(g)Q3,i
′
(g) + u

′

m3(g)Q3,i(g)− um4(g)Q3,i(g)
}
aw

′
(g)− um5(g)Q3,i(g)aw(g)

+

{
vm3(g)Q3,i

′
(g) + v

′

m3(g)Q3,i(g)− vm4(g)Q3,i(g)
}
bw

′
(g)− vm5(g)Q3,i(g)bw(g)

+

{
wm3(g)Q3,i

′
(g) + w

′

m3(g)Q3,i(g)− wm4(g)Q3,i(g)
}
cw

′
(g)− wm5(g)Q3,i(g)cw(g)

+

{
ym3(g)Q3,i

′
(g) + y

′

m3(g)Q3,i(g)− ym4(g)Q3,i(g)
}
dw

′
(g)− ym5(g)Q3,i(g)dw(g)

+

{
zm3(g)Q3,i

′
(g) + z

′

m3(g)Q3,i(g)− zm4(g)Q3,i(g)
}
ew

′
(g)− zm5(g)Q3,i(g)ew(g)

}
dg

+
[
um1(grn)Q3,i

′
(grn)

]
aw

′′
(grn)−

[
um1(gl0)Q3,i

′
(gl0)

]
aw

′′
(gl0)

−
[
um1(grn)Q3,i

′′
(grn)

]
a3 +

[
um1(gl0)Q3,i

′′
(gl0)

]
a2 − 2

[
u

′

m1(grn)Q3,i
′
(grn)

]
a3
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Figure 1. Variation in f with increasing values of Reynolds number in Sheikholeslami et al. [1]
and proposed method.

+ 2
[
u

′

m1(gl0)Q3,i
′
(gl0)

]
a2 +

[
um2(grn)Q3,i

′
(grn)

]
a3 −

[
um2(gl0)Q3,i

′
(gl0)

]
a2

i = 0, ..., n;

Evaluation of each integration from (e11)ik, (e12)ik, (e13)ik, (e14)ik, and (k1)i, as well as for
m = 2 to 4, the integration (em1)ik, (em2)ik, (em3)ik, (em4)ik and (km)i. We use the Gauss-
Legendre quadrature formula to obtain the nodal parameter vectors ak, bk, ck and dk. After
determining the nodal parameters ak, bk, ck, and dk’s, we can use the approximation formula to
approximate each unknown variable. The residual error was also developed to test accuracy. The
error is obtained after approximate solutions of the proposed method’s approximate solutions.
The proposed method was used to solve the system of fourth-order BVPs (1.3) and (1.4) using a
computer program written in MATLAB.

4 Numerical Example

Here, we demonstrate how well the proposed method can be used to solve coupled systems of
fourth-order nonlinear BVPs of types (1.1) and (1.2). The numerical solutions for the examples
are represented graphically and are compared to existing published work by Sheikholeslami et
al. [1]. Consider the following example:

(1 +N1)f
IV −N1g −Re(ff

′′′
− f

′
f

′′
) = 0,

N2g
′′
+N1(f

′′
− 2g)−N3Re(fg

′
− f

′
g) = 0,

θ
′′
+ Pehf

′
θ − Pehfθ

′
= 0,

φ
′′
+ Pemf

′
φ− Pemfφ

′
= 0, (4.1)

with the boundary conditions

f
′
= 0, f = 0, g = 0, θ = 1, φ = 1 at η = −1,

f
′
= −1, f = 0, g = 1, θ = 0, φ = 0 at η = +1. (4.2)

The maximum value of η+1 is determined for each parameter N1, N2, N3, Re, Peh and Pem.
Using the quasilinearization technique Bellman and Kalaba [28], the nonlinear system of equa-
tions (4.1) can be converted to a sequence of linear systems of differential equations. The pro-
posed method solved this example, and we obtained solutions for each unknown part of the
example.
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Figure 2. Variation in g with increasing values of Reynolds number in Sheikholeslami et al. [1]
and proposed method.
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Figure 3. Variation in g with increasing values of coupling parameter in Sheikholeslami et al.
[1] and proposed method.
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Figure 4. Variation in f with the increasing values of spin gradient viscosity parameter in Sheik-
holeslami et al. [1] and proposed method.
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Figure 5. Variation in g with the increasing values of spin gradient viscosity parameter in Sheik-
holeslami et al. [1] and proposed method.
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Figure 6. Variation in g with increasing values of angular velocity in Sheikholeslami et al. [1]
and proposed method.
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Figure 7. Variation in θ with increasing values of the Peclet number for the heat diffusion in
Sheikholeslami et al. [1] and proposed method.
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Figure 8. Variation in φ with increasing values of the Peclet number for the mass diffusion in
Sheikholeslami et al. [1] and proposed method.
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Figure 9. Residual errors for fluid temperature and concentration profile.

5 Results and Discussion

The coupled system of ODEs (4.1) with boundary conditions (4.2) was solved using the Galerkin
technique together with the cubic and quintic B-splines schemes. The proposed method gener-
ates numerical solutions for unknown parameters with high accuracy and few computational
steps. The behaviour of f as Reynolds number increases is illustrated in Figure 1. Figure 2
illustrates the variation in g with increasing Reynolds number. Figure 3 illustrates the variation
in g as the coupling parameter increases. Figure 4 elucidates the stimulus of the variation of
f as the spin-gradient viscosity parameter increases. Figure 5 presents the behaviour of g with
an increasing spin gradient viscosity parameter. Figure 6 depicts the impact of g as the angular
velocity increases. Figure 7 illustrates the influence of θ as the liquid temperature increases. Fig-
ure 8 outlines the effect of φ on increasing the concentration profile. Figure 9 presents residual
errors in the fluid temperature and concentration profiles with residual errors less than 10−8.

6 Conclusions

This study has developed Galerkin’s method using cubic and quintic B-splines to solve the cou-
pled system of fourth-order nonlinear BVPs. The cubic and quintic B-splines basis functions
were reformulated into a new form of the set of basis functions that vanish at the boundary
where the type of Dirichlet boundary conditions are given. This method was applied to solve the
numerical example and then compared to the literature. The obtained results are in good agree-
ment with the literature results. Furthermore, residual error was computed to demonstrate the
validity of the study. This paper presents an accurate technique for solving the coupled system
of fourth-order nonlinear BVPs.
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