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Abstract A Diophantine equation of the form x2 −Dy2 = ±N , where D is a positive non-
square integer and N is any fixed positive integer, is referred to as Pell’s equation. In this article,
we search for a non-trivial integer solution to the equation x2 − 97y2 = −53t,∀t ∈ N. Here we
choose D and N to be the Self primes 97 and 53 respectively and then look for solutions to the
equation for various values of (i) t = 1, (ii) t = 3, (iii) t = 5, (iv) t = 2k, (v) t = 2k+5, ∀k ∈ N.
Finally the recurrence relations on the solutions are discovered.

1 Introduction

Number theory is a branch of pure mathematics devoted primarily to the study of the integers and
integer-valued functions. A Diophantine equation is an equation, typically a polynomial equa-
tion in two or more unknowns with integer coefficients, such that the only solutions of interest
are the integer ones. The sum of two or more degree one monomials is a constant in a linear
Diophantine equation.

The Pell’s equation, a kind of Diophantine equation, which takes the form x2 − Dy2 = 1,
where x and y are integers, D is a positive non-square integer. The negative Pell’s equation is a
specific type of Diophantine equation that has the form x2 −Dy2 = −1, where D is a positive
non-square integer, and x and y are integers [3]. Many researchers have studied about such kind
of Pell’s equation [3, 4, 5, 6, 7, 8, 12] and still work is undergoing in this type of equations.

In this paper, we search for a non-trivial integer solution to the equation of the form x2 −
Dy2 = −N , where D and N to be the Self primes 97 and 53 respectively. That is we have the
Pell’s equation x2 − 97y2 = −53t,∀t ∈ N and then look for solutions to the equation for various
values of (i) t = 1, (ii) t = 3, (iii) t = 5, (iv) t = 2k, (v) t = 2k + 5, ∀k ∈ N .

Self prime number is a self number that is a prime. A Self number in a given number base b is
a natural number that cannot be written as the sum of any other natural number n and the individ-
ual digits of n. The first few self primes in base 10 are 3, 5, 7, 31, 53, 97, 211, 233, 277, 367, 389,
457, 479, 547, 569, 613, 659, 727, ....

2 Preliminaries

Theorem 2.1. [2] If (x1, y1) is the fundamental solution of x2 − Dy2 = 1, then every positive
solutions of the equation is given by (xn, yn) where xn and yn are the integers determined from

xn + yn
√
D = (x1 + y1

√
D)n.,n = 1, 2, 3, ...
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Theorem 2.2. [5] Let p be a prime. The negative Pell’s equation x2 + py2 = −1 is solvable if
and only if p = 2 or p ≡ 1 (mod 4).

Testing the solubility of the negative Pell’s equation:

Suppose D is a positive integer, not a perfect square. Then the negative Pell equation x2−Dy2 =
−1 is soluble if and only if D is expressible as D = a2 + b2; gcd(a; b) = 1: a and b are positive
integers, b odd and the Diophantine equation −bV 2+2aVW +bW 2 = 1 has a solution(The case
of solubility occurs for exactly one such (a; b)).
The Algorithm

(i) Find all expressions of D as a sum of two relatively-prime squaresusing Cornacchia’s
method. If none, exist - the negative Pell equation is not solvable.

(ii) For each representation , D = a2 + b2; gcd(a; b) = 1: a and b is positive, b odd , test
the solubility of −bV 2 + 2aVW + bW 2 = 1 using the Lagrange-Matthews algorithm. If
solution exist then the negative Pell equation is solvable.

(iii) If each representation yields no solution, then the negative Pell equation is insolvable.

This paper deals with a negative Pell’s equation

x2 − 97y2 = −53t,∀t ∈ N
For this particular equation, we consider the prime p = 97, which satisfies the conditions of
Theorem 2.2. Therefore, we can substantiate the proof that the negative Pell’s equation x2 −
97y2 = −53t,∀t ∈ N is solvable in integers.
Using the Algorithm as in 2.2 and testing (a, b) = (4, 9) and −bV 2 + 2aVW + bW 2 = 1 has a
solution (V,W ) = (20, 13), so x2 − 97y2 = −1 is solvable.

3 Main Results

Choice 1 : t = 1 Consider the equation

x2 = 97y2 − 53 (3.1)

Let (x0, y0) be the initial solution of (3.1) given by x0 = 7298, y0 = 741.
To find the other solutions of (3.1) consider the Pell equation,

x2 = 97y2 + 1

whose intial solution (x̃n, ỹn) is given by x̃n = 1
2fn, ỹn = 1

2
√

97
gn where

fn = [(62809633 + 6377352
√

97)n+1 + (62809633 − 6377352
√

97)n+1]
gn = [(62809633 + 6377352

√
97)n+1 − (62809633 − 6377352

√
97)n+1]

Applying Brahmaguta Lemma between (x0, y0) and (xn, yn), the sequence of non zero
distinct integer solutions to (3.1) are obtained as

xn+1 =
1
2 [7298fn + 741

√
97gn] ,

yn+1 =
1

2
√

97
[741

√
97fn + 7298gn] .

The recurrence relations satisfied by the solutions of (3.1) are given by

xn+2 − 125619266xn+1 + xn = 0 ,
yn+2 − 125619266yn+1 + yn = 0 .

Choice 2 : t = 3 Consider the equation

x2 = 97y2 − 533 (3.2)

Let (x0, y0) be the initial solution of (3.2) given by x0 = 12374, y0 = 1257.
Applying Brahmaguta Lemma between (x0, y0) and (x̃n, ỹn), the sequence of non zero
distinct integer solutions to (3.2) are obtained as
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xn+1 =
1
2 [12374fn + 1257

√
97gn],

yn+1 =
1

2
√

97
[1257

√
97fn + 12374gn].

The recurrence relations satisfied by the solutions of (3.2) are given by

xn+2 − 125619266xn+1 + xn = 0,
yn+2 − 125619266yn+1 + yn = 0.

Choice 3 : t = 5 Consider the equation

x2 = 97y2 − 535 (3.3)

Let (x0, y0) be the initial solution of (3.3) given by x0 = 16010, y0 = 2637.
Applying Brahmaguta Lemma between (x0, y0) and (x̃n, ỹn), the sequence of non zero
distinct integer solutions to (3.3) are obtained as

xn+1 =
1
2 [16010fn + 2637

√
97gn],

yn+1 =
1

2
√

97
[2637

√
97fn + 16010gn].

The recurrence relations satisfied by the solutions of (3.3) are given by

xn+2 − 125619266xn+1 + xn = 0,
yn+2 − 125619266yn+1 + yn = 0.

Choice 4 : t = 2k, k > 0 Consider the equation

x2 = 97y2 − 532k, k > 0 (3.4)

Let (x0, y0) be the initial solution of (3.4) given by x0 = 5604(53)k, y0 = 569(53)k.
Applying Brahmaguta Lemma between (x0, y0) and (x̃n, ỹn), the sequence of non zero
distinct integer solutions to (3.4) are obtained as

xn+1 =
53k

2 [5604fn + 569
√

97gn],
yn+1 =

53k

2
√

97
[569

√
97fn + 5604gn].

The recurrence relations satisfied by the solutions of (3.4) are given by

xn+2 − 125619266xn+1 + xn = 0,
yn+2 − 125619266yn+1 + yn = 0.

Choice 5 : t = 2k + 5, k > 0 Consider the equation

x2 = 97y2 − 532k+5, k > 0 (3.5)

Let (x0, y0) be the initial solution of (3.5) given by x0 = 53k−1[8213986], y0 = 53k−1[841233].
Applying Brahmaguta Lemma between (x0, y0) and (x̃n, ỹn), the sequence of non zero dis-
tinct integer solutions to (3.4) are obtained as

xn+1 =
53k−1

2 [8213986fn + 841233
√

97gn],
yn+1 =

53k−1

2
√

97
[841233

√
97fn + 8213986gn].

The recurrence relations satisfied by the solutions of (3.4) are given by

xn+2 − 125619266xn+1 + xn = 0,
yn+2 − 125619266yn+1 + yn = 0.

4 Conclusion

As seen from the study presented above, solving a negative Pell’s equation involving the Self
primes has led to the development of a more fundamental and dynamic theory for solving equa-
tions of a similar sort.
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