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Abstract Using elementary tools, we obtain some expressions for the Bernoulli and Euler
polynomials and a formula linking the two polynomials. Moreover, we obtain super-congruences
concerning sums of alternating powers.

1 Introduction and results

Since their initial identification in the post-Renaissance period, specifically by Bernoulli in his
book "Ars Conjectandi" in 1713 [2], and Euler in his manuscript "Institutiones Calculi Dif-
ferentialis" in 1755 [5], Bernoulli and Euler numbers and polynomials have been the subject
of extensive research. These mathematical entities have captivated numerous mathematicians
throughout history, who have been intrigued by the quest to discover explicit formulas, criteria,
properties, and recurrent relationships associated with them. Even today, it remains a field of
great interest for contemporary mathematicians [1, 3, 8].

Recall that the nth Bernoulli polynomial Bn(x) (n ∈ N = {0, 1, 2, . . .}) and the nth Euler
polynomial En(x) can be defined by the generating function, respectively, as follows:

zexz

ez − 1
=

∞∑
n=0

Bn(x)
zn

n!
(|z| < 2π) (1.1)

2exz

ez + 1
=
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En(x)
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n!
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Bernoulli numbers and Euler numbers can be defined by Bn = Bn(0) and En = 2nEn(
1
2),

respectively. Setting x = 1
2 in Relation (1.2), we obtain the nth Euler number En (see A122045

in the On-Line Encyclopedia of Integer Sequences (OEIS) [10]) which can also be defined by the
generating series
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The expressions translations of Bernoulli and Euler polynomials are

Bn(y + z) =
n∑

k=0

(
n

k

)
Bk(y)z

n−k (1.3)

En(y + z) =
n∑

k=0

(
n

k

)
Ek(y)z

n−k. (1.4)

It is well-known that the alternating powers sum Tn(k) =
∑n−1

r=1 (−1)rrk can be written via
Euler polynomials as follows:

Tn(k) =
Ek(0)− (−1)nEk(n)

2
, for n, k ≥ 1 (1.5)
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with Ek(0) as a function of Bk is Ek(0) = 2
k+1(1 − 2k+1)Bk+1.

The previous properties of the polynomials of Bernoulli and Euler (1.1), (1.2), (1.3), (1.4)
and (1.5) can be found in [1, p. 804].

Another important property of Bernoulli and Euler polynomials is that they are Appell poly-
nomials. Recall that a sequence of polynomials An(x) is said to be an Appell polynomial se-
quence if A′

n(x) = nAn−1(x), for n ≥ 1 and A0(x) is a nonzero constant polynomial.
In 2003, Cheon [4] proved the following relation between the polynomials of Bernoulli and

those of Euler

Bn(x) =
n∑

k=0
k ̸=1

(
n

k

)
Bk(0)En−k(x).

In the next theorem, we present some simple properties of Bernoulli and Euler polynomials.

Theorem 1.1.
(I) There exists a family of polynomials with complex coefficients (bn(x)) such that for any

integer n ≥ 1, we have

deg(bn(x)) = n and B2n(x)−B2n = 2nbn
(

1
2
x(x− 1)

)
. (1.6)

(II) There exists a family of polynomials with complex coefficients (en(x)) such that for any
integer n ≥ 1, we have

deg(en(x)) = n and E2n(x) = 2nen
(

1
2
x(x− 1)

)
. (1.7)

In the following theorem we establish an explicit formula for Euler polynomials En(x) in
terms of Stirling numbers of the second kind.

Theorem 1.2. For m ≥ 0, we have

Em(x) =
m∑
k=0

k+1∑
j=1

(
m

k

)
(−1)j+k−1(j − 1)!

2j+1 S(k + 1, j)xm−k, (1.8)

where S(k, j) (OEIS A008277) is the Stirling number of the second kind.

Theorem 1.3. For any integer n ≥ 0, we have

En(x) =
2

n+ 1

(
Bn+1(x)−

n+1∑
k=0

(
n+ 1
k

)
Bn+1−kEk(x)

)
. (1.9)

Recall that, if p is an odd prime. Z(p) denotes the ring of rational p-integers (those rational
numbers whose denominators are not divisible by p). If x, y ∈ Z(p), then we say that x is
congruent to y modulo pn ( where n ≥ 2) if and only if x− y ∈ pnZ(p) and denote this relation
by x ≡ y (mod pn).

The following result gives a congruence for the alternating sum T p+1
2
(2k + 1) in terms of

Euler numbers.

Theorem 1.4. For any prime number p ≥ 3, and for any integers k and m ≥ 1, we have

p−1
2∑

r=1

(−1)rr2k+1 ≡ 1
2
E2k+1(0) +

(−1)
p−1

2

22k+2

m−1∑
j=0

(
2k + 1
2j + 1

)
p2j+1E2k−2j (mod p2m+s), (1.10)

with s ∈ {0, 1}.
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2 Proofs

In this section, we will provide proofs of our theorems.

Proof of Theorem 1.1.

Case I. Applying (1.3) for y =
1
2

and z = 2x−1
2 , we get

Bn(x) = Bn

(
1
2
+

2x− 1
2

)
=

n∑
k=0

(
n

k

)
Bk

(
1
2

)(
2x− 1

2

)n−k

. (2.1)

It is easy to show that B2k
( 1

2

)
= (21−2k−1)B2k and B2k+1

( 1
2

)
= 0 for any k ≥ 0, which allows

us to write (2.1) as follows:

Bn(x) =
n∑

k=0

(
n

2k

)
B2k

(
1
2

)(
2x− 1

2

)n−2k

=

⌊n
2 ⌋∑

k=0

(
n

2k

)
B2k

(
1
2

)
(2x− 1)n−2k

2n−2k

=
1

2n

⌊n
2 ⌋∑

k=0

(
n

2k

)
(2 − 22k)B2k(2x− 1)n−2k. (2.2)

By noting that

(2x− 1)2 = 8(
x(x− 1)

2
) + 1, (2.3)

from Relations (2.2) and (2.3) we deduce that

B2n(x)−B2n = 2n× bn(
1
2
x(x− 1)),

where

bn(t) =
1

n22n+1

n∑
k=0

(
2n
2k

)
(2 − 22k)B2k((8t+ 1)n−k − 1).

Case II. According to the following relationship

En(x) =
n∑

k=0

(
n

k

)
Ek

2k

(
x− 1

2

)n−k

,

then using Relation (2.3), we can easily see that we have

E2n(x) = 2n× en(
1
2
x(x− 1)),

where

en(t) =
1

n22n+1

n∑
k=0

(
2n
2k

)
E2k(8t+ 1)n−k.

This achieves the proof.

Remark 2.1. Since Bernoulli polynomials and Euler polynomials are Appell polynomials, by
using B′

2n(x) = 2nB2n−1(x) and E′
2n(x) = 2nE2n−1(x), for any integer n ≥ 1, respectively,

according to (1.6) and (1.7), we have

B2n−1(x) = (x− 1
2
)b′n(

1
2
x(x− 1) and E2n−1(x) = (x− 1

2
)e′n(

1
2
x(x− 1)).
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Remark 2.2. From Relations (1.6) and (1.7), we have bn(0) = 0 and en(0) = 0 and following
Relations (1.6) and (1.7), we have also b′n(0) = 0 and e′n(0) ̸= 0, which allows to deduce that

x2 divides bn(x) for n ≥ 2 and x divides en(x) for n ≥ 1.

Proof of Theorem 1.2. Differentiating both sides of Equation (1.2) with respect to z, m times,
and applying Leibniz formula for derivation we get

∞∑
n=m

En(x)
zn−m

(n−m)!
= 2

m∑
k=0

(
m

k

)
(exz)(m−k)

(
1

ez + 1

)(k)

.

Applying the following identity [11, Theorem 3.1](
1

1 − λeαz

)(k)

= (−α)k
k+1∑
j=1

(−1)j−1(j − 1)!
(1 − λeαz)j

S(k + 1, j), (2.4)

for λ = −1 and α = 1, we get(
1

1 + ez

)(k)

= (−1)k
k+1∑
j=1

(−1)j−1(j − 1)!
(1 + ez)j

S(k + 1, j).

Consequently, it follows

Em(x) = lim
z→0

∞∑
n=m

En(x)
zn−m

(n−m)!

= 2
m∑
k=0

(
m

k

)
xm−k(−1)k

k+1∑
j=1

(−1)j−1(j − 1)!S(k + 1, j) lim
z→0

exz

(1 + ez)j

=
m∑
k=0

k+1∑
j=1

(
m

k

)
(−1)j+k−1(j − 1)

2j+1 !S(k + 1, j)xm−k.

This completes the proof of the theorem.

Remark 2.3. Note that Relation (1.8) and Relation (2.4) have been obtained respectively by Luo
[9] using difference operator and by Xu [11] using Faà di Bruno formula. Note also that for
x = n, x = 0 in Relation (1.8) and by Relation (1.5), we get Theorem 3 of [7].

Proof of Theorem 1.3. We note that

zexz

ez + 1
=

zexz

ez − 1
− 2zexz

e2z − 1
,

and we have
∞∑
n=0

(nEn−1(x))
zn

n!
=

2zexz

ez + 1

= 2
∞∑
n=0

Bn(x)
zn

n!
− 2

2exz

ez + 1
z

ez + 1

= 2
∞∑
n=0

Bn(x)
zn

n!
− 2

∞∑
n=0

En(x)
zn

n!

∞∑
n=0

Bn
zn

n!
.

Thanks to the product( ∞∑
n=0

an
zn

n!

)( ∞∑
n=0

bn
zn

n!

)
=

∞∑
n=0

((
n∑

k=0

(
n

k

)
an−kbk

))
zn

n!
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we obtain the following expression

En(x) =
2

n+ 1

(
Bn+1(x)−

n+1∑
k=0

(
n+ 1
k

)
Bn+1−kEk(x)

)
.

This completes the proof of the theorem.

The following two identities come immediately by combining Theorem 1.1, Theorem 1.3,
and putting x = 1

2 in Relation (1.9).

Corollary 2.4. We have

E2n−1(x) =
1
n

(
2nbn

(
1
2
x(x− 1)

)
−

2n∑
k=1

(
2n
k

)
B2n−kEk(x)

)
,

and

En =
2

n+ 1

(
(1 − 2n)Bn+1 −

n+1∑
k=0

(
n+ 1
k

)
2n−kBn+1−kEk

)
.

Proof of Theorem 1.4. Replacing n = p+1
2 in Identity (1.5), we get

p−1
2∑

r=1

(−1)rr2k+1 =
E2k+1(0) + (−1)

p−1
2 E2k+1(

p
2 + 1

2)

2
.

By expanding E2k+1(
p
2 + 1

2) with the help of Relation (1.4), we obtain

p−1
2∑

r=1

(−1)rr2k+1 =
1
2

E2k+1(0) + (−1)
p−1

2

2k+1∑
j=0

(
2k + 1

j

)(p
2

)j
E2k+1−j

(
1
2

)
=

1
2

E2k+1(0) +
(−1)

p−1
2

22k+1

2k+1∑
j=0

(
2k + 1

j

)
pjE2k+1−j

 .

As E2k+1 = 0, we deduce that

p−1
2∑

k=1

(−1)kk2k+1 =
1
2

E2k+1(0) +
(−1)

p−1
2

22k+1

2k+1∑
j=1

(
2k + 1

j

)
pjE2k+1−j


=

1
2

E2k+1(0) +
(−1)

p−1
2

22k+1

2k∑
j=0

(
2k + 1
j + 1

)
pj+1E2k−j


=

1
2
E2k+1(0) +

(−1)
p−1

2

22k+2 (Cm + p2mDm),

where

Cm =
2m−1∑
j=0

(
2k + 1
j + 1

)
pj+1E2k−j

and

Dm =
1

p2m

2k∑
j=2m

(
2k + 1
j + 1

)
pj+1E2k−j .
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By noting that Euler numbers E2k−j are equal to zero for 0 ≤ j ≤ 2m− 1, we can write Cm as
follows:

Cm =
m−1∑
j=0

(
2k + 1
2j + 1

)
p2j+1E2k−2j

≡
m−1∑
j=0

(
2k + 1
2j + 1

)
p2j+1E2k−2j (mod p2m+s).

We have

Dm =
2k∑

j=2m

(
2k + 1
j + 1

)
pj+1−2mE2k−j ∈ Z(p).

Then the result follows.

Note that for m = 1 in (1.10), we get

p−1
2∑

r=1

(−1)rr2k+1 ≡ 1
2

(
E2k+1(0) +

(−1)
p−1

2

2
p(2k + 1)E2k

(
1
2

))
(mod p2).

This last result is exactly congruence (31) given in [6].
The particular cases of Theorem 1.4 yield the following congruences.

Corollary 2.5. For any prime number p ≥ 3 and for any integer k, we have

p−1
2∑

r=1

(−1)rr2k+1 ≡ 1
2
E2k+1(0)+

(−1)
p−1

2

22k+2 (2k+ 1)pE2k +
(−1)

p−1
2

3 × 22k+2 (4k
2 − 1)p3E2k−2 (mod p4).

Moreover, for s = 1, we have

p−1
2∑

r=1

(−1)rr2k+1 ≡ 1
2
E2k+1(0)+

(−1)
p−1

2

22k+2 (2k+ 1)pE2k +
(−1)

p−1
2

3 × 22k+2 (4k
2 − 1)p3E2k−2 (mod p5).
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