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Abstract The aim of this paper is to discuss the oscillatory behavior of following equation.

∆

(
a(i)∆

(
b(i)∆

(
c(i)∆βx(i− u)

)α))
+ α(i)xκ(i− v) = 0,

where i ∈ Ni0+1−β . Here ∆β denotes the Riemann fractional difference operator of order β.
We obtain some oscillation results by using the general Riccati transformation technique. Some
examples provide the potency of the main results.

1 Introduction

Fractional calculus’s relevance in many scientific and engineering domains has led to its rise in
prominence over the last decades. While the concept of fractional difference is relatively new,
the ideas of fractional calculus may be found in Euler’s writings. The definition of the fractional
difference was established by Diaz and Osler, who took the seemingly obvious step of permitting
any real or complex integer to be used as an index of differencing in the conventional formula for
the nth difference. Later on, Hirota used Taylor’s series to define the fractional order difference
operator.

A recent discovery has shown the existence and uniqueness of solutions for several forms
of fractional differential equations, heralding the beginning of the study of fractional differ-
ential equations. While the theory of integro-differential equations has largely developed in
conjunction with the theory of differential equations, a significant amount of material on frac-
tional integro-differential equations is also accessible. In the theory of fractional order difference
equations, very little has been established.

In this research, we discuss oscillatory solution of fourth order fractional difference equation
with delay terms

∆

(
a(i)∆

(
b(i)∆

(
c(i)∆βx(i− u)

)α))
+ α(i)xκ(i− v) = 0, (1.1)

where i ∈ Ni0+1−β , ∆β denotes the Riemann fractional difference operator of order β ,
Ni0 = {i0, i0 + 1, i0 + 2, ...} and a(i), b(i), c(i) are positive sequences. Throughout this paper,
we assume that α, κ are the odd non-negative integers, κ ≤ α, α(i) is a positive sequence. The
delay term in (1.1) helps incorporate the influence of past states on the current state with more
flexibility, accommodating the fractional order to model complex dynamics and memory effects
more effectively .

These are the conditions that we employ to demonstrate the oscillatory results:
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A1) Assume that v and u are non-negative integers with
lim
i→∞

(i− v) = lim
i→∞

(i− u) = ∞;

A2) xκ(i−v)
b(i)∆(c(i)∆βx(i−u))α

≥ A > 0 and
ρ(i)∆(b(i)∆(c(i)∆βx(i−u))

α
)

∆

(
b

1
α (i)∆

1
α (c(i)∆βx(i−u))α

)
.

(
b

1
α (i)∆

1
α (c(i)∆βx(i−u))

)α−1

≥ B > 0, for b(i)∆
(
c(i)∆βx(i− u)

)α ̸= 0;

A3)
i−α∑
s=l0

1
c(s) < ∞ as i → ∞;

A4) Let F be a function such that F (w) = Pw − Qw1+ 1
α where P,Q > 0. The function F has

the maximum value at w =
(

αM
(α+1)N

)α
such that Fmax(w) =

(
α
N

)α ( M
(α+1)

)α+1
.

The nontrivial sequence x(i) is a solution of (1.1) defined for all i ≤ min {−u,−v} and sat-
isfies equation (1.1) for all large i. A solution x(i) of (1.1) is oscillatory if it is neither eventually
positive nor eventually negative; otherwise it is called non-oscillatory.

A fractional difference equation is a type of difference equation where the difference operator
is raised to a fractional power. This concept generalizes the idea of discrete dynamical systems
by incorporating fractional calculus into discrete method. Fractional difference and differential
equation have been proved in various fields including applied mathematics, physics, and en-
gineering (see [14, 15]) as they provide a way to model processes with memory and hereditary
properties in discrete systems. In recent years, many researchers involved with the research of os-
cillatory behavior of fractional order derivatives (see [2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 16, 18, 21]).
The oscillatory solutions to difference equations serve several important purposes across vari-
ous fields: System Analysis and stability, Signal processing, Numerical methods and simula-
tions, Population dynamics, and Engineering applications. Identifying the oscillatory solutions
is crucial for understanding and controlling systems with periodic behavior. Especially find-
ing oscillatory solutions in fractional difference equations aids in understanding, predicting, and
controlling systems with complex dynamics and memory effects. Motivated by their research,
this paper aims to obtain the oscillatory solution of (1.1).

2 Preliminaries

In this section, we remind the basic lemmas of fractional equations. These preliminaries are used
to prove the main results.

Lemma 2.1 defined the fractional sum, it is an extension of the summation. It can be repre-
sented using the Gamma function and involves fractional orders. Additional lemmas deal with
some properties of fractional difference equations.

Lemma 2.1 (See [4]). Let β > 0. The β th fractional sum is defined by

∆
−βf(i) =

1
Γ(β)

i−β∑
s=a

(i− s− 1)(β−1)f(s),

for all i ∈ Na+β where f is defined for s ≡ a mod(1) and ∆−β(f) is defined for
i = (a+ β) mod(1).

The falling factorial power function is

iβ =
Γ(i+ 1)

Γ(i+ 1 − β)
.

The fractional sum ∆−βf(i) maps function defined in Na to functions defined in Na+β .
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Lemma 2.2 (See [4]). Let κ > 0 and m − 1 < κ < n where m is a positive integer m = (⌈κ⌉).
Set β = m− κ. The κth factorial difference is defined as

∆
κf(i) = ∆

m−βf(i) = ∆
m

∆
−βf(i),

where ∆−βf(i) is the βth fractional sum.

Lemma 2.3 (See [7]). The fundamental properties of ∆ as follows:

∆ [U(i)V (i)] = ∆U(i).V (i+ 1) + U(i)∆V (i).

∆

[
U(i)

V (i)

]
=

∆U(i).V (i+ 1)− U(i+ 1).∆V (i)

V (i).V (i+ 1)
.

A fundamental property of difference equations is their ability to model discrete systems
and processes. Unlike differential equations, which deal with continuous changes, difference
equations are used to describe the system’s evolution in discrete steps or time intervals.

Lemma 2.4 (See [4]). Let f be a real valued function defined on Na and κ, α > 0, then the
following equalities hold:

(i) ∆−α[∆−κf(i)] = ∆−(κ+α)f(i) = ∆−κ[∆−αf(i)];

(ii) ∆−α∆f(i) = ∆∆−αf(i)− (i−a)(α−1)

ρ(α) f(a).

3 Main Results

In this section, by employing the Riccati difference transformation to convert a nonlinear differ-
ence equation into a linear one, we demonstrate the oscillation outcomes of fractional differece
equation. This strategy is typically used to solve particular kinds of nonlinear difference equa-
tions by leveraging the linear structure that results from the transformation.

Theorem 3.1. Suppose that conditions A1-A4 is true. If there is a positive sequence ρ(i) such that

lim sup
i→∞

i−β∑
s=i3

1
c(s)

= ∞ (3.1)

and

lim sup
i→∞

i−1∑
s=i3

(
Aα(s)ρ(s)−

[(
ρ(s+ 1)ρ

1
α (s)a

1
α (s)α

Bρ(s)

)α(
∆ρ(s)

(α+ 1)ρ(s+ 1)

)α+1
])

= ∞,

(3.2)
then equation (1.1) is oscillatory.

Proof. Without loss of generality, we may assume that x(i) is non-oscillatory ∋ x(i) is eventually
positive solution. Then ∃ i1 ≥ i0 ∋ x(i) > 0, x(i − u) > 0 and xκ(i − v) > 0, ∀ i ≥ i1 ≥ i0.
Therefore by equation (1.1), we have

∆

(
a(i)∆

(
b(i)∆

(
c(i)∆βx(i− u)

)α))
= −α(i)xκ(i− v) < 0. (3.3)

Then a(i)∆
(
b(i)∆

(
c(i)∆βx(i− u)

)α) is an eventually decreasing sequence on [i1,∞) and
∆βx(i− u)α, ∆

(
c(i)∆βx(i− u)

)α, ∆
(
b(i)∆

(
c(i)∆βx(i− v)

)α) are eventually of one sign.
For i2 > i1 is large, we will claim that ∆

(
b(i)∆

(
c(i)∆βx(i− v)

)α)
> 0 on [i2,∞).

Suppose that there is an integer i3 > i2 such that ∆
(
b(i)∆

(
c(i)∆βx(i− v)

)α)
< 0 on [i3,∞).

For [i3,∞) and there is a constant c1 > 0, we have(
a(i)∆

(
b(i)∆

(
c(i)∆βx(i− u)

)α)) ≤ −c1 < 0,

⇒ ∆

(
b(i)∆

(
c(i)∆βx(i− u)

)α) ≤ − c1

a(i)
< 0, (3.4)
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Summing inequality (3.4), ∃ c2 > 0 ∋

b(i)∆
(
c(i)∆βx(i− u)

)
≤ −c2 < 0,

⇒ ∆
(
c(i)∆βx(i− u)

)α ≤ −
[

c2

b(i)

]
< 0. (3.5)

Again summing inequality (3.5), ∃ c3 > 0 ∋

∆
βx(i− u) ≤ −c

1
α

3

[
1

c(i)

]
< 0. (3.6)

We can write inequality (3.6) as

∆(∆−(1−β)x(i− u)) ≤ −c
1
α

3

[
1

c(i)

]
. (3.7)

Summing aforementioned inequality from i3 to i− 1, we get

∆
−(1−β)x(i− u) ≤ ∆

−(1−β)x(i3 − u)−
i−1∑
s=i3

c
1
α

3

[
1

c(s)

]
. (3.8)

Operating ∆(1−β) on both sides of inequality (3.8), we carry

x(i− u) ≤ −c
1
α

3 ∆
(1−β)

i−1∑
s=i3

[
1

c(s)

]
. (3.9)

Using Lemma 2.1 and Lemma 2.4 in (3.9), we can write

x(i− u) ≤ (i− a)(β−1)

Γ(β)
c4 −

c
1
α

3
Γ(β)

i−β∑
s=i3

(i− s− 1)β−1 1
c(s)

≤ 1
Γ(β)

(
(i− a)β−1c4 − c

1
α

3 (i− l3 − 1)β−1
i−β∑
s=i3

1
c(s)

)
,

where c4 = ∆−βx(0). Taking limit supremum as i → ∞, the above inequality becomes

lim sup
i→∞

x(i− u) ≤ (i− a)(β−1)

Γβ)
c4 −

c
1
α

3
Γ(β)

i−β∑
s=i3

(i− s− 1)β−1 1
c(s)


≤ lim sup

i→∞

(
1

Γ(β)

(
(i− a)β−1c4 − c

1
α

3 (i− i3 − 1)β−1
i−β∑
s=i3

1
c(s)

))
= −∞,

by equation (3.1) which is a contradiction. Hence ∆
(
b(i)∆

(
c(i)∆βx(i− v)

)α)
> 0.

Define the function

z(i) = ρ(i)
a(i)∆

(
b(i)∆

(
c(i)∆βx(i− u)

)α)
b(i)∆ (c(i)∆βx(i− u))

α , (3.10)

for i ∈ [i1,∞). Then we have z(i) > 0. Using Lemma 2.3, we write

∆z(i) = ∆ρ(i)

[
a(i+ 1)∆

(
b(i+ 1)∆

(
c(i+ 1)∆βx(i+ 1 − u)

)α)
b(i+ 1)∆ (c(i+ 1)∆βx(i+ 1 − u))

α

]

+ ρ(i)∆

[
a(i)∆

(
b(i)∆

(
c(i)∆βx(i− u)

)α)
b(i)∆ (c(i)∆βx(i− u))

α

]
.
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∆z(i) = ∆ρ(i)
z(i+ 1)
ρ(i+ 1)

+ ρ(i)

[
b(i+ 1)∆

(
c(i+ 1)∆βx(i+ 1 − u)

)α
.∆
(
a(i)∆

(
b(i)∆

(
c(i)∆βx(i− u)

)α))
b(i)∆ (c(i)∆βx(i− u))

α
.b(i+ 1)∆ (c(i+ 1)∆βx(i+ 1 − u))

α

]

− ρ(i)

[
a(i+ 1)∆

(
b(i+ 1)∆

(
c(i+ 1)∆βx(i+ 1 − u)

)α)
.∆b(i)∆

(
c(i)∆βx(i− u)

)α
b(i)∆ (c(i)∆βx(i− u))

α
.b(i+ 1)∆ (c(i+ 1)∆βx(i+ 1 − u))

α

]
.

(3.11)

By (3.3), equation (3.11) becomes

∆z(i) ≤ ∆ρ(i)
z(i+ 1)
ρ(i+ 1)

− α(i)ρ(i)
xκ(i− v)

b(i)∆ (c(i)∆βx(i− u))
α

−z(i+ 1)
ρ(i+ 1)

ρ(i)
∆b(i)∆

(
c(i)∆βx(i− u)

)α
b(i)∆ (c(i)∆βx(i− u))

α

⇒ ∆z(i) ≤ ∆ρ(i)
z(i+ 1)
ρ(i+ 1)

− α(i)ρ(i)
xκ(i− v)

b(i)∆ (c(i)∆βx(i− u))
α

− z(i+ 1)
ρ(i+ 1)

ρ
1
α+1(i)

a
1
α (i)

(
∆b

1
α (i)∆

1
α

(
c(i)∆βx(i− u)

))
b

1
α (i)∆

1
α (c(i)∆βx(i− u))


 ∆

(
b(i)∆

(
c(i)∆βx(i− u)

)α)
ρ

1
α (i)a

1
α (i)

(
∆b

1
α (i)∆

1
α (c(i)∆βx(i− u))

)(
b

1
α (i)∆

1
α (c(i)∆βx(i− u))

)α−1

 .

(3.12)

⇒ ∆z(i) ≤ ∆ρ(i)
z(i+ 1)
ρ(i+ 1)

− α(i)ρ(i)
xκ(i− v)

b(i)∆ (c(i)∆βx(i− u))
α − z(i+ 1)

ρ(i+ 1)
z

1
α (i) ρ(i)∆

(
b(i)∆

(
c(i)∆βx(i− u)

)α)
ρ

1
α (i)a

1
α (i)∆b

1
α (i)∆

1
α (c(i)∆βx(i− u))

(
b

1
α (i)∆

1
α (c(i)∆βx(i− u))

)α−1

 . (3.13)

From (3.13) and condition (A2), we obtain

∆z(i) ≤ ∆ρ(i)
z(i+ 1)
ρ(i+ 1)

−Aα(i)ρ(i)− z(i+ 1)
ρ(i+ 1)

z
1
α (i)

B

ρ
1
α (i)a

1
α (i)

. (3.14)

Since z(i) is decreasing, z(i+ 1) ≤ z(i) and

∆z(i) ≤ ∆ρ(i)
z(i+ 1)
ρ(i+ 1)

−Aα(i)ρ(i)− z1+ 1
α (i+ 1)

B

ρ(i+ 1)ρ 1
α (i)a

1
α (i)

. (3.15)

Summing up inequality (3.15) from i3 to i− 1 becomes

i−1∑
s=i3

∆z(i) ≤
i−1∑
s=i3

[
∆ρ(s)

z(i+ 1)
ρ(i+ 1)

]
−

i−1∑
s=i3

Aα(i)ρ(i)

−
i−1∑
s=i3

z1+ 1
α (s+ 1)

B

ρ(s+ 1)ρ 1
α (s)a

1
α (i)

, (3.16)



OSCILLATION OF FRACTIONAL DIFFERENCE EQUATIONS 1049

⇒ [z(s)]
i
i3

≤
i−1∑
s=i3

∆ρ(s)
z(s+ 1)
ρ(s+ 1)

−
i−1∑
s=i3

Aα(s)ρ(s)

−
i−1∑
s=i3

z1+ 1
α (s+ 1)

B

ρ(s+ 1)ρ 1
α (s)a

1
α (s)

,

⇒ z(i) ≤ z(i3) +
i−1∑
s=i3

∆ρ(s)
z(s+ 1)
ρ(s+ 1)

−
i−1∑
s=i3

Aα(s)ρ(s)

−
i−1∑
s=i3

z1+ 1
α (s+ 1)ρ(s)

B

ρ(s+ 1)ρ 1
α (s)a

1
α (s)

,

⇒ z(i) ≤ z(i3)−
i−1∑
s=i3

Aα(s)ρ(s)

+
i−1∑
s=i3

[
∆ρ(s)

z(s+ 1)
ρ(s+ 1)

− z1+ 1
α (s+ 1)ρ(s)

B

ρ(s+ 1)ρ 1
α (s)a

1
α (s)

]
, (3.17)

Using the condition (A4), then inequality (3.17) can be written as

⇒ z(i) ≤ z(i3)−
i−1∑
s=i3

Aα(s)ρ(s) +
i−1∑
s=i3

(
ρ(s+ 1)ρ

1
α (s)a

1
α (s)α

Bρ(s)

)α(
∆ρ(s)

(α+ 1)ρ(s+ 1)

)α+1

.

i−1∑
s=i3

(
Aα(s)ρ(s)−

(
ρ(s+ 1)ρ

1
α (s)a

1
α (s)α

Bρ(s)

)α(
∆ρ(s)

(α+ 1)ρ(s+ 1)

)α+1
)

≤ z(i3)− z(i) < z(i3).

Thus

lim sup
i→∞

i−1∑
s=i3

(
Aα(s)ρ(s)−

(
ρ(s+ 1)ρ

1
α (s)a

1
α (s)α

Bρ(s)

)α(
∆ρ(s)

(α+ 1)ρ(s+ 1)

)α+1
)

< z(i3) < ∞, (3.18)

which runs counter to (3.2). Our proof of Theorem 1 is completed.

Under these circumstances, the ensuring theorem is demonstrated.
Let H(i, s) be a positive sequence such that H(i, i) = 0, for i ≥ i0, H(i, s) > 0 and
∆2H(i, s) = H(i, s + 1) −H(i, s) < 0, for i ≥ s ≥ i0. Here H(i, s) is a double sequence that
refers to a sequence defined over two indices. It can be used to model more complex systems
than single sequences. They are frequently encountered in applications such as signal processing,
control theory, and numerical analysis.

Theorem 3.2. Assume that the conditions A1-A4 hold. If there exists a positive sequence ρ(i) ∋

lim sup
i→∞

[
1

H(i, i0)

i−1∑
s=i0

Aα(s)ρ(s)H(i, s)−

(
αρ(s+ 1)ρ

1
α (s)a

1
α (s)

H(i, s)B

)α(
h(i, s)

α+ 1

)α+1
]
= ∞,

(3.19)
where

h(i, s) = ∆2H(i, s) +H(i, s)∆ρ(s)
z(s+ 1)
ρ(s+ 1)

.

Then every solution of (1.1) is oscillatory.
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Proof. Suppose that x(i) is a non-oscillatory solution of (1.1). Without loss of generality assume
that x(i) is an eventually non-negative solution.
Then ∃ i1 ∈ [i0,∞] ∋ x(i) > 0, x(i− u) > 0, xκ(i− v) > 0, ∀ i ≥ i1.
Proceeding as in the proof of Theorem 3.1, inequality (3.13) holds.
Then multiplying both sides of inequality (3.15) by H(i, s) and then summing from i3 to i − 1,
we get

i−1∑
s=i3

∆z(s)H(i, s) ≤
i−1∑
s=i3

H(i, s)∆ρ(s)
z(s+ 1)
ρ(s+ 1)

−
i−1∑
s=i3

Aα(s)ρ(s)H(i, s)

−
i−1∑
s=i3

H(i, s)z1+ 1
α (s+ 1)

B

ρ(s+ 1)ρ 1
α (s)a

1
α (s)

, (3.20)

⇒
i−1∑
s=i3

Aα(s)ρ(s)H(i, s) ≤ −
i−1∑
s=i3

∆z(s)H(i, s) +
i−1∑
s=i3

H(i, s)∆ρ(s)
z(s+ 1)
ρ(s+ 1)

−
i−1∑
s=i3

H(i, s)z1+ 1
α (s+ 1)

B

ρ(s+ 1)ρ 1
α (s)a

1
α (s)

. (3.21)

Now

−
i−1∑
s=i3

∆z(s)H(i, s) = [−H(i, s)z(s)]
i
i3
+

i−1∑
s=i3

z(s+ 1)∆2H(i, s),

⇒ −
i−1∑
s=i3

∆z(s)H(i, s) = [H(i, i3)z(i3)] +
i−1∑
s=i3

z(s+ 1)∆2H(i, s).

Therefore (3.21) becomes,

i−1∑
s=i3

Aα(s)ρ(s)H(i, s) ≤ [H(i, i3)z(i3)] +
i−1∑
s=i3

z(s+ 1)∆2H(i, s)

+
i−1∑
s=i3

H(i, s)∆ρ(s)
z(s+ 1)
ρ(s+ 1)

−
i−1∑
s=i3

H(i, s)z1+ 1
α (s+ 1)

B

ρ(s+ 1)ρ 1
α (s)a

1
α (s)

,

⇒
i−1∑
s=i3

Aα(s)ρ(s)H(i, s) ≤ H(i, i3)z(i3) +
i−1∑
s=i3

h(i, s)z(s+ 1)

−
i−1∑
s=i3

H(i, s)z1+ 1
α (s+ 1)

B

ρ(s+ 1)ρ 1
α (s)a

1
α (s)

,

where h(i, s) = ∆2H(i, s) +H(i, s)∆ρ(s) z(s+1)
ρ(s+1) .

⇒
i−1∑
s=i3

Aα(s)ρ(s)H(i, s) ≤ H(i, i3)z(i3)

+
i−1∑
s=i3

(
h(i, s)z(s+ 1)−H(i, s)z1+ 1

α (s+ 1)
B

ρ(s+ 1)ρ 1
α (s)a

1
α (s)

)
.
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Using the condition (A4), the aforementioned inequality can be expressed as

i−1∑
s=i3

Aα(s)ρ(s)H(i, s) ≤ H(i, i3)z(i3) +
i−1∑
s=i3

(
αρ(s+ 1)ρ

1
α (s)a

1
α (s)

H(i, s)B

)α(
h(i, s)

α+ 1

)α+1

.

or

i−1∑
s=i3

(
Aα(s)ρ(s)H(i, s)−

(
αρ(s+ 1)ρ

1
α (s)a

1
α (s)

H(i, s)B

)α(
h(i, s)

α+ 1

)α+1
)

≤ H(i, i0)z(i3),

(3.22)
for i > i3 > i0.

Now

i−1∑
s=i0

(
Aα(s)ρ(s)H(i, s)−

(
αρ(s+ 1)ρ

1
α (s)a

1
α (s)

H(i, s)B

)α(
h(i, s)

α+ 1

)α+1
)

=
i3−1∑
s=i0

(
Aα(s)ρ(s)H(i, s)−

(
αρ(s+ 1)ρ

1
α (s)a

1
α (s)

H(i, s)B

)α(
h(i, s)

α+ 1

)α+1
)

+
i−1∑
s=i3

(
Aα(s)ρ(s)H(i, s)−

(
αρ(s+ 1)ρ

1
α (s)a

1
α (s)

H(i, s)B

)α(
h(i, s)

α+ 1

)α+1
)
. (3.23)

Substituting inequality (3.22) in (3.23), we have

i−1∑
s=i0

(
Aα(s)ρ(s)H(i, s)−

(
αρ(s+ 1)ρ

1
α (s)a

1
α (s)

H(i, s)B

)α(
h(i, s)

α+ 1

)α+1
)

≤
i3−1∑
s=i0

(
Aα(s)ρ(s)H(i, s)−

(
αρ(s+ 1)ρ

1
α (s)a

1
α (s)

H(i, s)B

)α(
h(i, s)

α+ 1

)α+1
)

+H(i, i0)z(i3),

⇒
i−1∑
s=i0

(
Aα(s)ρ(s)H(i, s)−

(
αρ(s+ 1)ρ

1
α (s)a

1
α (s)

H(i, s)B

)α(
h(i, s)

α+ 1

)α+1
)

≤
i3−1∑
s=i0

Aα(s)ρ(s)H(i, s) +H(i, i0)z(i3),

⇒
i−1∑
s=i0

(
Aα(s)ρ(s)H(i, s)−

(
αρ(s+ 1)ρ

1
α (s)a

1
α (s)

H(i, s)B

)α(
h(i, s)

α+ 1

)α+1
)

≤ H(i.i0)
i3−1∑
s=i0

Aα(s)ρ(s) + z(i3),

⇒ 1
H(i, i0)

i−1∑
s=i0

(
Aα(s)ρ(s)H(i, s)−

(
αρ(s+ 1)ρ

1
α (s)a

1
α (s)

H(i, s)B

)α(
h(i, s)

α+ 1

)α+1
)

≤
i3−1∑
s=i0

Aα(s)ρ(s) + z(i3),
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Taking limit supremum as i → ∞, we get

lim sup
i→∞

[
1

H(i, i0)

i−1∑
s=i0

(
Aα(s)ρ(s)H(i, s)−

(
αρ(s+ 1)ρ

1
α (s)a

1
α (s)

H(i, s)B

)α(
h(i, s)

α+ 1

)α+1
)]

≤
i3−1∑
s=i0

Aα(s)ρ(s) + z(i3) < ∞,

which contradicts (3.19). This completes the proof.

4 Application

Example 4.1. Consider

∆

(
i3∆

(
i2∆

(
i∆

1
4 x(i− 1)

)3
))

+ i−3x5(i− 2) = 0. (4.1)

Here, i0 = 2, a(i) = i3, b(i) = i2, c(i) = i, β = 1
4 ,u = 1, v = 2, α = 3, κ = 5 and

choosing ρ(i) = i2.

Now

lim
i→∞

i−1∑
s=i0

[
1

c(s)

]
= lim

i→∞

i−1∑
s=2

[
1
s

]
= ∞.

and

lim sup
i→∞

i−1∑
s=i3

(
Aα(s)ρ(s)−

(
ρ(s+ 1)ρ

1
α (s)a

1
α (s)α

Bρ(s)

)α(
∆ρ(s)

(α+ 1)ρ(s+ 1)

)α+1
)

= lim sup
i→∞

i−1∑
s=i3

As−3s2 −

(
3(s+ 1)2s

2
3 s

Bs2

)3(
∆s2

4(s+ 1)2

)4


= lim sup
i→∞

i−1∑
s=i3

A−

(
3(s+ 1)2s

2
3

Bs

)3(
∆s2

4(s+ 1)2

)4
 = ∞

Thus all the conditions of Theorem 3.1 are satisfied. Hence we conclude that every solution of
(4.1) is oscillatory.

Example 4.2. Consider

∆

(
i−2

∆

(
i3∆

(
i2∆

1
3 x(i− 1)

)5
))

+ i−1x(i− 2) = 0. (4.2)

Here, i0 = 2, a(i) = i−2, b(i) = i3, c(i) = i2, β = 1
3 ,u = 1, v = 2, α = 5, κ = 1 and

choosing ρ(i) = i2.

Now

lim sup
i→∞

[
1

H(i, i0)

i−1∑
s=i0

(
Aα(s)ρ(s)H(i, s)−

(
αρ(s+ 1)ρ

1
α (s)a

1
α (s)

H(i, s)B

)α(
h(i, s)

α+ 1

)α+1
)]

= lim sup
i→∞

 1
H(i, i0)

i−1∑
s=i0

sAH(i, s)−

(
5(s+ 1)2s

1
5

H(i, s)B

)5(
h(i, s)

6

)6
 = ∞.

Thus (3.19) is satisfied. All solutions to (4.2) are oscillatory, according to Theorem 3.2
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5 Conclusion remarks

In this paper, by using Riccati transformation and summing techniques, the oscillatory solutions
of equation (1.1) are established in Theorem 3.1 and Theorem 3.2. These techniques can trans-
form an equation into a form that is easier to solve. Here, some sufficient conditions are proved.
These conditions are new and authentic. Also the examples are demonstrated with the effect of
main results.
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