Palestine Journal of Mathematics

Vol 13(4)(2024) , 1055-1064 © Palestine Polytechnic University-PPU 2024

v—ideals of Almost Distributive Lattice

Natnael Teshale A., N. Rafi and Y. Monikarchana

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 06D99; Secondary 06D15.

Keywords and phrases: Almost Distributive Lattice(ADL), E—complemented ADL, prime filter, E—ideal, v—ideal.

Abstract In an Almost Distributive Lattice(ADL), the notion of v—ideals is introduced and
their properties are investigated. To characterize an F—complemented ADL, a set of equivalent
conditions is established for every maximum ideal of an ADL to become into a v—ideal. In
addition, an ADL’s v—ideals are characterized using minimal prime F —ideals.

1 Introduction

The idea of an Almost Distributive Lattice(ADL) was presented by Swamy U.M., and Rao G.C.,
[11] as a common abstraction of many existing ring theoretic generalizations of a Boolean al-
gebra on one hand and the class of distributive lattices on the other. The concept of dense
complemented ideal was introduced by Ramesh Sirisetti and Jogarao in [9]. In [10], the no-
tions of —primary ideals and weakly §—primary ideals with the help of an ideal expansion were
introduced. In [8], the concept of closure ideal was introduced in an M S—ADL and their prop-
erties were studied. In this paper, the concept of v—ideals are introduced and their properties are
investigated in an ADL that is analogous to a distributive lattice. Every ADL’s maximum ideal
becomes into a v—ideal by a set of equivalent conditions, which leads to a characterization of
E—complemented ADLs. Some necessary conditions are proved for proper £'—ideal to become
v—ideal. Finally, minimal prime E—ideals are used to characterize the v—ideals of an ADL.

2 Preliminaries
In this section, we go through some ideas as well as significant observations from [2] and [11],
that are necessary for the paper’s text.

Definition 2.1. [11] An algebra R = (R, V, A,0) of type (2,2,0) is called an Almost Distributive
Lattice (abbreviated as ADL), if it satisfies the following conditions:

(M) (zvy)Az=(xAz)V(yAz);
Q) zA(yVvz)=(xAy)V(zAz);
3) (xvy) rhy=uy;

4) (zxVy) Az =umx;

B) zV(zAy) =

6) OANz =0;

(7 zv0=x, forallz,y,z € R.

Example 2.2. Each non-empty set A can be classified as an ADL in the following way:
Take ag € A. Define the Vand A binary operations on A by

avb:{alfa;éao a/\b:{blfa;éao

bif a=aqg ao if a = aop.

Then (4, V, A, ap) is an ADL (where ay is the zero) and is said to be a discrete ADL.
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For any z,y € R, define x < y if and only if z = x A y (or alternatively, x V y = y), then <
is a partial ordering on R.

Theorem 2.3. [1]] For any x,y,z € R, we have the following:
(1) zvVy=cxSxANy=y,

(2) zVy=yercAhy=ua;

(3) A is associative in R;

(4) cANyANz=yANx Az

(5) (xVy)Ahz=(yVa) Az

(6) zV(yAnz)=(xVy) A(zVz2);

(7)) xn(zVy) ==z, (xAy)Vy=yandzV (y\z)=21;
(8) xtANx=xandxzV x = x.

An ADL R exhibits nearly all the properties of a distributive lattice, except for the absence of
the right distributivity of V over A, as well as the non-commutativity of both V and A. However,
an ADL R can be considered a distributive lattice as long as any one of these characteristics
holds. In the context of an ADL R, we define an element m € R as maximal if it stands as the
utmost element within the partially ordered set (R, <). In other words, for every a € R, the
condition m < a implies that m = a.

In ADL structures, motivated by the notions of distributive lattices [1, 6], we define a non-
empty subset I of R as an ideal if, for any elements a,b € I and x € R, both conditions aVb € I
and a A x € [ are satisfied. In a similar way, a non-empty subset F' of R is termed a filter when,
for elements a,b € F and x € R,botha Ab € F and x V a € F are true.

The collection J(R) of all ideals in R forms a bounded distributive lattice. It possesses a least
element, denoted as {0}, and a greatest element, which is the entire set R, both ordered by set
inclusion. Within this lattice, for any two ideals I and J in J(R), their infimum is represented
as I N J, while the supremum is given by I V J := {a Vb |a € I,b € J}. Furthermore, a
proper ideal(filter) P of R said to be a prime if, for any elements = and y in R, the condition
x Ay € P(xzVy € P) implies that either z € P or y € P. Additionally, a proper ideal(filter)
M of R is called maximal when there is no other proper ideal(filter) of R that contains it. It is
observed that every maximal ideal(filter) of R is prime. Furthermore, any proper ideal(filter) of

R contained in a maximal ideal(filter) in R. Given any subset S of an ADL R, the smallest ideal

containing S is denoted as (5] and is defined as (S]:={(\/ s;) Az |s; € S,z € Randn € N}.
i=1

When S consists of a single element, say S = {s}, we simplify the notation to (s], and such an

ideal is referred to as the principal ideal of R. Similarly, for any subset S of R, the smallest filter

n

containing S is denoted as [S) and is defined as [S) :={z V (A s;) | s; € S,z € Rand n € N}.

When S contains just one element, i.e., S = {s}, we use the notation [s), and such a filter is
termed the principal filter of R. It can be demonstrated that, for any two elements a and b in
R, we have that (a] V (b] = (a VvV b] and (a] N (b] = (a A b]. These relationships establish that
the collection (JFZ(R),V,N) of all principal ideals of R forms a sublattice of the distributive
lattice (J(R), V,N), which consists of all ideals of R. Furthermore, it should be noted that the
set (§(R),V,N) of all filters in R constitutes a bounded distributive lattice.

Theorem 2.4. [5] Let R be an ADL with maximal elements. Then P is a prime ideal of R if and
only if R\ P is a prime filter of R.

It is known that, for any z,y € R with z < y, the interval [z, y] is a bounded distributive
lattice. Now, an ADL R is said to be relatively complemented if, for any x,y € R with z < y,
the interval [z, y] is a complemented distributive lattice.

Theorem 2.5. [12] An ADL R with maximal elements is relatively complemented if and only if
B(R) =R, where B(R) ={x € R|x Ay =0, 2V y is maximal, for some y € R}.
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Definition 2.6. [4] For any nonempty subset A of an ADL R, define A" = {z € R|aVzis
maximal element, for all a € A }. Here A™ is called the dual annihilator of A in R.

For any a € R, we have {a}" = [a)™, where [a) is the principal filter generated by a. An
element a of an ADL R is called dual dense element if (a]t = M, where M is the set of all
maximal elements of R and the set £ of all dual dense elements in an ADL is an ideal if E is
non-empty.

Definition 2.7. [7] An ideal G of R is said to be an E—ideal of R if £ C G. An E—ideal
is said to be proper if ) C R. A proper E—ideal @ is said to be maximal if it is not properly
contained in any proper £—ideal of R. A proper E—ideal () of an ADL R is said to be a prime
E—ideal if ) is prime ideal of R.

Definition 2.8. [7] A prime E—ideal M of an ADL R containing an E—ideal G is said to be a
minimal prime F—ideal belonging to G if there exists no prime EF—ideal N such that G C N C
M.

Note that if we take £ = G in the above definition then we say that M is a minimal prime
E—ideal.

Definition 2.9. [7] For any nonempty subset S of R, define (S,E) = {a € R|sAa €
E, for all s € S}. We call this set as relative dual annihilator of .S with respect to the ideal
E.

For S = {s}, we denote ({s}, E) by (s, E).

Theorem 2.10. [7] For any x,y € R we have the following:
(1) ((z], E) = (2, E);

(2w <y= (1. F) C (z,E);

(3) (¢ V9. E) = (2.E) (3, E);

(4) (¢ Ay, E). B) = (2. E), B) 0 ((y, ), B);
(5)(z,E)=R< zeE.

3 v —ideals of an ADL

In this section, the concept of v—ideals is introduced in an ADL. The class of all v—ideals are
characterized in terms of minimal prime E—ideal.

Definition 3.1. An element a of an ADL R with maximal elements is said to be £ —complemented,
if there exists an element b € R such that a A b € F and a V b is a maximal element of L. An
ADL R with maximal elements is said to be an E—complemented ADL L, if every element of
an ADL R is E—complemented.

Now, we have the following.

Proposition 3.2. For any prime ideal M of an E—complemented ADL R with maximal elements,
the following are equivalent:

(1) E C M;

(2) forany a € R, a € M if and only if (a, E) ¢ M;

(3) for any a,b € Rwith (a, E) = (b, E),a € M implies that b € M;

(4) EN(R\ M) =0.

Proof. (1) = (2) : Assume (1). Suppose a € M. Since R is E—complemented, there exists
b€ Rsuchthata Ab € FE and a V b is maximal. Then b € (a, E). Clearly, we have b ¢ M
and hence (a, E) ¢ M. Conversely, assume that (a, E) ¢ M. Then there exists b € R such that
be (a,F)andb ¢ M. Clearly,a Ab € E C M. Since M is prime and b ¢ M, we geta € M.
(2) = (3) : Assume (2). Let a,b € R with (a, E) = (b, E). Suppose a € M By our assumption,
we get (a, E) € M and hence (b, E) ¢ M. Therefore b € M.

(3) = (4) : Assume (3). Leta € R.Ifa € EN(R\ M). Then (a, E) = Rand a ¢ M. That
implies (a,E) = R = (0, F). Since 0 € M, by our assumption, we get a € M, which is a
contradiction. Hence EN (R\ M) = ().

(4) = (1) : Assume (4). Then we have that E C M. o
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Theorem 3.3. Let o' be an E—complement of a in an ADL R with maximal elements. Then every
prime E—ideal contain exactly one of a or o .

Proof. Since a’ be an E—complement of a, we have that a A ¢’ € F and a V o’ is maximal. Let
M be a prime E—ideal of R. Clearly, a A a’ € E C M. Since M is prime, we get a € M or
a’ € M. Suppose a € M anda’ € M. Then aVa' € M, which is a contradiction. Hence M must
contain exactly one of a or a’. O

Proposition 3.4. Let R be an E—complemented ADL. Then the following conditions are equiv-
alent:

(1) R is a relatively complemented ADL;

(2) every prime ideal contains exactly one of a or o', where o’ is the E—complement of a in R;
(3) every prime ideal is an E—ideal;

(4) every minimal prime ideal is an E—ideal.

Proof. (1) = (2) : Assume (1). Let M be a prime ideal of R and ¢ € M. By our assumption,
there exists an element a’ € R such that a A @’ = 0 and a V @’ is a maximal element. Since
aNa =0,wegetaAad € M. Since M is prime, we get a € M or o’ € M. Since a V d is
maximal, we get M contain exactly one of a or a’.

(2) = (3) : Assume the condition (2). Let M be a prime ideal of R. Let a € E. Since R is
E—complemented, we get that ’ € (a)™ = M. Hence o’ ¢ M. By the condition (2), we get
a € M. Thus E C M. Therefore M is an F—ideal of R.

(3) = (4) : Itis clear.

(4) = (1) : Assume (4). Let a € R. Suppose a A a’ # 0. Then there exists a maximal filter M
of R such that a A ' € M. Clearly, R\ M is a minimal prime ideal such that a A o’ ¢ R\ M.
Hence a ¢ R\ M and o’ ¢ R\ M. By the hypothesis, we get E C R\ M. By Theorem-3.3,
R\ M must contain exactly one of a or &', which is a contradiction. Therefore a A a’ = 0 and
hence R is a relatively complemented ADL. O

Theorem 3.5. For any proper deal M of an E—complemented ADL R, M is maximal; if and
only if M is a prime E—ideal.

Proof. Let M be any proper ideal of R. Assume that M is a maximal ideal of R. Clearly, M is
prime. Let a € E. Then (a)™ = M. Suppose a ¢ M. Then M V (a] = R. There exist s € M
and t € (a] such that s Vv ¢ is maximal. That implies s € (a)*. Since (a)* = M, we get s is
maximal. That implies s € M, this leads M = R, which is a contradiction. Hence a € M. Thus
E C M. Therefore M is a prime E—ideal of R. Conversely, assume that M is a prime E—ideal
of R. Suppose M is not maximal. Then there exists a proper ideal N of R such that M C N.
Choose a € N \ M. Since R is E—complemented, there exists a’ € RsuchthataAad’ € E C M
and a V @' is maximal. Since M is prime and a ¢ M, we geta’ € M C N. ThenaVd' € N,
which is a contradiction. Therefore M is maximal. O

In an F—complemented ADL, the class of all maximal ideals and the class of all prime
E—ideals of R are the same. Since every prime E—ideal is maximal, we can conclude that
every prime F'—ideal is minimal in an F—complemented ADL. Hence maximal ideals, prime
E—ideal, and minimal prime E—ideals are the same in an £—complemented ADL.

Definition 3.6. For any filter F' of an ADL R, define v(F) = {a € R|a A s € E, for some s €

Clearly, we have that v(F) = | (a, E).
acF

Proposition 3.7. Let F be a filter of an ADL R. Then v(F) is an E—ideal of R.

Proof. Clearly, E C v(F). Let a,b € v(F). Then there exist s,t € F such thata A's € F
and bAt € E. Since E is an ideal of R, we get s A\t Aa € Eand s Nt Ab € E. Then
(sAtAa)V (sAtAD) € Eandhence ((sAt)A(aVb) € E. That implies (aVb) A (sAt) € E.
Since s,t € F,we gets At € F'and hence a Vb € v(F'). Let a € v(F) Then there exists s € F
such that a A s € E. Let r € R. Since E is an ideal of R, we get (a A r) A s € E and hence
a A s € v(F). Therefore v(F) is an E—ideal of R. o
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Lemma 3.8. Let G, H be two filters of an ADL R. Then we have the following:
(1)GNv(G) # 0 < v(G) =R;

(2)GC H=v(G) Cv(H),

(3)v(G)Nv(G) =w(GNH).

Proof. (1). Assume that G N v(G) # 0. Then choose an element a € GNv(G). Thena € G
and a € v(G). Since a € v(G), there exists s € G such that a A s € E. By Theorem-2.10(5), we

get (aAs,E) = R.Sincea € Gands € G,we getaAs € G.Hence v(G) = | (a,F) = R.
a€G
Conversely, assume that v(G) = R. Then for any m € M such that m € v(G) and hence

m € GNv(G). Thus G Nv(G) # 0.

(2). Assume G C H. Let a € v(G). Then there exists s € G such thata A s € E. Since G C H,
we get s € H and hence a € v(H). Thus v(G) C v(H).

(3). Clearly, v(GNH) Cv(G)Nv(H). Leta € v(G) Nv(H). Then there exist s € Gand t € H
suchthata As € Fanda At € E. Since s € Gandt € H, we get sVt € G N H and hence
aN(sVt) = (aAs)V(aAt) € E. Therefore a € v(GNH).Hence v(G)Nv(H) Cv(GNH). O

Proposition 3.9. If G, H are two filters of an ADL R with v(G) N H = (), then there exists a
prime E—ideal M such that v(G) C M and M N H = {).

Proof. Let G and H be two filters of an ADL R such that v(G)NH = . Then there exists a prime
filter P such that H C P and v(G)NP = (. Since v(G)NP = ), we get that £ C v(G) C R\ P.
Since R\ P is a prime ideal of R, we get that R\ P = M is a prime F—ideal of R containing
v(G). o

Now we have the following definition of »—ideal in an ADL.

Definition 3.10. An F—ideal G of an ADL R is said to be a v—ideal if G = v(F), for some filter
F of Rsuchthat FNE = (.

From the above definition, it is easy to verify that for any m € M, v(m) = E. Hence F is
proper and the smallest F—ideal of R.

Example 3.11. Let R = {0,1,2,3,4,5,6,7} and define vV, A on R as follows:

AlOIT1T 1234|567 v iOo|1]2|3|4|5]6]|7
0/]0{0|0]|]0]0O|0]O0]O0 001 |2|3|4|5|6|7
11011234567 rj1j1yrj1j1j141j)1
210112134567 21212121212 ]2]2|2
3/10(3(3(13(0]0(3/0 313(1]213(1]2]|6/|6
4101415045177 4141111144114
510451045717 S15121212(5(5|2]|5
606|613 |7|7|6]7 6|/6|1|2|6[1]2]6|6
7107\ 7107|7|7|7 7171112164567

Then (R,V, A) is an ADL. Clearly, we have that £ = {0, 7}. Consider the F—ideals I} =
{0,3}, I, = {0,4,5,7}, I = {0,3,6,7,},I4 = {0,7} = E and filters F} = {1,2,4}, F, =
{1.2.6}. Now, v(F;) = {0,3,6,7} = I3. Hence G is a v—ideal of R. But v(F,) = {0,4,5,6} #
I;,fori =1,2,3,4. Hence

Proposition 3.12. For any a ¢ E in an ADL R. we have (a, E) is a v—ideal of R.

Proof. Leta ¢ E. Clearly, we have [a) N E = (. Let s € (a,E). Then s Aa € E. Since a € [a),
we get s € v([a)) and hence (a, E) C v([a)). Let s € v([a)). Then there exists b € [a) such that
s Ab € E. That implies s A a € E, which gives that s € (a, E). Therefore v([a)) C (a, F) and
hence (a, E) = v([a)). Thus (a, F) is a v—ideal of R. o

Theorem 3.13. Let M be a prime E—ideal of R with (M, E) # E. Then M is a v—ideal.
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Proof. Assume that (M, E) # E. Since E C (M, E), we get that (M, E) ¢ E. Then there exists
a € (M,E)suchthata ¢ E. Clearly, [a) NE =0anda ¢ M.Then M C ((M,E),E) C (a,E).
Therefore M C (a,E). Let s € (a,E). Then s Aa € E C M. Since a ¢ M, we have s € M.
Then (a, E) C M. Therefore M = (a, E) = v([a)) and hence M is a v—ideal of R. o

Theorem 3.14. Every minimal prime E—ideal of an ADL R is a v—ideal.

Proof. Let M be a minimal prime F—ideal of R. Then R\ M is a prime filter of R such that
EN(R\ M) = (. Now prove that M = v(R\ M). Let a € M. Since M is minimal, there
exists b € R\ M such that a A b € E. That implies a € v(R\ M). Therefore M C v(R\ M).
Let a € w(R\ M). Then there exists s € R\ M such thata A s € E C M. Since M is prime
and s ¢ M, we get a € M. Therefore v(R\ M) C M and hence M = v(R\ M). Thus M is a
v—ideal of R. O

We now turn our intension towards the converse of the above theorem. In general, every
v—ideal of an ADL need not be a minimal prime E—ideal. In fact it need not even be a prime
E—ideal. It can be observed in the following example:

Example 3.15. Consider a distributive lattice L = {0, a, b, ¢, 1} and discrete ADL A = {0/, a’}.

O0

Clearly,
R =AxL = {(0,0),(0,a),(0,0b),(0,¢), (0, 1),(a,0), (¢',a), (a',b), (a,¢), (a’,1)} is an
ADL with zero element (0, 0’). Clearly, the dense set E = {(0’,0), (0’,a)}. Consider an E—ideal
I = {(0,0),(0,a),(0',c)} and a filter F = {(da’,b),(a’,1)}. Clearly, I is a v—ideal, but not
prime.

Though every v—ideal need not be a prime F—ideal, we derive a necessary and sufficient
condition for a v—ideal of an ADL to become a prime F—ideal.

Theorem 3.16. A proper v—ideal G of an ADL R is a prime E—ideal if and only if G contains
a prime E—ideal.

Proof. Let G be a proper v—ideal of R. Assume that G is a prime E—ideal of R. Clearly, G
contains a prime F—ideal G. Conversely, assume that G contains a prime F —ideal, say M. Since
E C M C G,G is an E—ideal of R. Since G is a v—ideal, we get G = v(F), for some filter F'
of Rwith FNE = (. Let s,t € Rsuchthats ¢ Gandt ¢ G. Since M C G, we gets ¢ M
and t ¢ M. Since M is prime, we get s At ¢ M. That implies (s At,E) C M C G = v(F).
Suppose s At € G = v(F). Then there exists z € F such that s At A z € E. That implies
xz € (sA\t,E) C v(F). Therefore € F Nv(F) and hence F' N v(F) # (. By Lemma-3.8(1),
G = v(F) = R, which is a contradiction. Thus G is a prime E—ideal of R. i

In the above Theorem-3.16, It is observed that every minimal prime E—ideal is a prime
v—ideal of R. Now we established the equivalency between prime v—ideals and minimal prime

FE—ideals of an ADL.

Theorem 3.17. Every prime v—ideal of an ADL R is a minimal prime E—ideal.
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Proof. Let M be a prime v—ideal of R. Then M = v(F'), for some filter F of R with FNE = {).
Let a € M = v(F). Then there exists b € F such that a A b € E. Suppose b € M. Then
b € FNv(F). That implies F' N v(F) # 0. By Lemma-3.8(1), M = v(F) = R which is a
contradiction. Therefore b ¢ M and hence M is a minimal prime E—ideal. O

Theorem 3.18. In an ADL R, the following are equivalent:
(1) R is E—complemented;

(2) every prime E—ideal is a v—ideal;

(3) every prime E—ideal is minimal;

(4) every maximal ideal is a minimal prime E—ideal;

(5) every maximal ideal is a v—ideal.

Proof. (1) = (2) : Assume (1). Let M be a prime E—ideal of R. Then R\ M is a prime ideal
of R such that (R\ M) N E = 0. Now prove that M = v(R\ M). Let a € M. Since R is
E—complemented, there exists b € R such that a Ab € E and a V b is maximal. Clearly, b ¢ M,
which gives that b € R\ M. Sincea Ab € E, we geta € v(R\ M). Therefore M C v(R\ M).
Leta € v(R\ M). Then there exists b € R\ M such thata Ab € E. Sincea ANb € E C M and
b¢ M, we geta € M. Therefore v(R\ M) C M. Hence M is a v—ideal of R.

(2) = (3) : Assume (2). Let M be a prime E—ideal of R. By our assumption, P is a prime
v—ideal. By Theorem-3.17, P is minimal.

(3) = (4) : Itis clear.

(4) = (5) : Ttis clear.

(5) = (1) : Assume (5). Let a € R and m € M. Suppose m ¢ (a] V (a, E). Then there exists
a maximal ideal M such that (a] V (a, E) C M. That implies a € M and (a, E) C M. By the
assumption, M is a v—ideal. Since M is prime, by Theorem-3.17, M is minimal prime F—ideal.
Then a ¢ M, which is a contradiction. That implies m € (a] V (a, E). There exists s € (a, E)
such that a V s = m. Since s € (a, E), we get s A a € E. Thus R is E—complemented. o

We conclude this paper with a characterization theorem of v—ideals in terms of minimal
prime F'—ideals. For this, we first need the following results.

Lemma 3.19. Ler F be a filter of an ADL R such that F N E = (. If M is a minimal prime
E—ideal containing v(F), then F N M = {).

Proof. Let M be a minimal prime E—ideal of R with v(F') C M. Suppose a € F N M. Then
a € M and a € F. Since M is minimal and a € M, there exists b ¢ M such thata A b € v(F).
Then there exists € F such that (a A b) Az € E. Thatimpliesb A (a Az) € Eand a Az € F.
Therefore b € v(F') C M, which is a contradiction. Thus F N M = §. ]

Lemma 3.20. Every minimal prime E—ideal of an ADL R containing a v—ideal is a minimal
prime E—ideal in R.

Proof. Let G be a v—ideal of R. Then G = v(F), for some filter F' of R such that FN E = 0.
Let M be a minimal prime F—ideal containing G = v(F). By the above lemma, ' N M = 0.
Let a € M. Then there exists b ¢ M such that a A b € v(F). There exists z € F' such that
(anb) Az € E. Thereforea A (bAx) € EC M and b Az ¢ M. Thus M is a minimal prime
E—ideal of R. O

Now, v—ideals are characterized in terms of minimal prime £ —ideals.

Theorem 3.21. Every v—ideal of an ADL R is the intersection of all minimal prime E—ideals
containing it.

Proof. Let G be a v—ideal of R. Then G = v(F), for some filter F' of R such that F N E = {).
Let H = (\{M|M is a minimal prime E — ideal containing G}. Clearly, G C H.Letz ¢ G =
v(F). Then x A s ¢ E, for all s € F. Then there exists a minimal prime E—ideal M such that
x A s ¢ M. That implies ¢ M and s ¢ M. Since M is prime, (s, E) C M, for all s € F. Then
G = v(F) C M. Hence M is minimal such that G C M and x ¢ M. Therefore ¢ H, which
leads H C G. Thus G = H. O
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Theorem 3.22. Let {G, }aecn be a class of v—ideals of an ADL R. Then (| G, is a v—ideal of
aceA
R.

Proof. For each a € A, let G, = v(F,) where F, is a filter of R such that F,, " £ = (). Then
{F4}aen will be an arbitrary family of filters in R such that F,, N E = () for each o € A. Hence

(| Fy is afilter of R such that ( N Fa) N E = (. By Lemma-3.8(3), we get ) v(F,) =
acA ac aEAN

u( N Fa). Therefore (| G, is a v—ideal of R. ]
acA aEA

Note that the class of all v—ideals of an ADL is closed under set-intersection. In general,
v—ideals need not be closed under finite joins. However, in the following, we prove that the
class J,(R) of all v—ideals of an ADL R forms a complete lattice.

Theorem 3.23. Let G, H be two filters of an ADL R such that GNE = HNE = (. Then
v(G V H) is the smallest v—ideal containing both v(G) and v(H).

Proof. Let G, H be two filters of R suchthat GNE = HNE ={. Clearly, (GV H)NE = {.
By Lemma-3.8(2), we get v(G) C v(GV H) and v(H) C v(G V H). Suppose v(G) C v(K)
and v(H) C v(K), for some filter K of R with K N E = (). Leta € v(G V H). Then there exist
s€ Gandt € Hsuchthata A (s At) € E. That implies a A s € v(H) C v(K). There exists
z € Ksuchthata As Az € E. Since z Ay € K, we get a € v(K). Therefore v(G V H) is
the supremum of v(G) and v(H). Consider this supremum by v(G) Uv(H). Thus (J,(R),N, L)
forms a lattice. O

Corollary 3.24. Let {v(F,)}acna be a class of v—ideals of an ADL R where F,, N E = () for

each o € A. Then || v(F,) is the smallest v—idealr containing each v(F,).
aEN

It can be easily observed that the class of all v—ideals of an ADL forms a complete lattice
with respect to set inclusion C, in which for any {v(F,)}aen of v—ideals, inf{v(F,)}acr =
v( (| Fy)andthe sup{v(Fy)}tacn = u( V Fa) . Since the class of all filters of an ADL forms

aEN aeA
a complete distributive lattice, the class J,(R) of all v—ideals of an ADL R forms a complete
distributive lattice. In general, the class J, (R) of all v—ideals of an ADL R is not a sublattice
of the ideal lattice J(R). However, in the following, we derive a set of equivalent conditions for
J,(R) to become a sublattice of J(R). For this, we first need the following result.

Lemma 3.25. Every proper v—ideal is contained in a minimal prime E—ideal.

Proof. Let G be a proper v—ideal of R. Then G = v(F) for some filter F' of R with F' N
E = 0. Hence E C v(F) = G. Clearly, GNF = v(F) N F = (. Consider, the set J =
{H | Hisafilter of Rsuchthat ¥ C H and G N H = 0}. Clearly F' € J and J satisfies the
Zorn’s lemma. Let NV be a maximal element of J. Then N is an ideal of R such that ' C N and
GNN = (. Since E C G, we get EN N = (). That implies N is an ideal which is maximal
with respect to the property that N N = (). Hence R\ N is a minimal prime F—ideal such that
GCR\N. O

Theorem 3.26. In an ADL R, the following are equivalent:
(1) 3,(R) is a sublattice of I(R);

(2)for z,y € R,x ANy € E implies (x,E)V (y, E) = R;
(3)forz,y € R, (z,E)V (y, E) = (v Ay, E);

(4) for G,H € §(R),GV H = Rimpliesv(G)Vv(H) = R;
(5)for G,H € §(R),v(G)Vv(H)=v(GV H).

Proof. (1) = (2) : Assume (1). Letz,y € RwithzAy € E. Suppose (z, E)V(y, E) # R. Since
(z, E) and (y, E) are v—ideals of R, by hypothesis, we get that (z, E)V(y, E) is a proper v—ideal
of R. By Lemma-3.25, there exists a minimal prime E—ideal M such that (z, E) V (y, E) C M.
Hence (z, E) C M and (y, E) C M. Since M is a minimal prime E—ideal, we get that x ¢ M
and y ¢ M. Since M is a prime ideal, we get that x Ay ¢ M, which is a contradiction to that
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x ANy € E C M. Therefore (z, E) V (y,E) = R.

(2) = (3) : Assume (2). Let 2,y € R. Clearly (2, E) V (y,E) C (x Ay, E). Lets € (z Ay, E).
Then s A (z Ay) € E. That implies (s A z) A (s Ay) € E. By our assumption, we have that
(shz,E)V (sANy,F)=R.Thens € (s Az, E)V (sAy,E). There exista € (s Az, E) and t €
(sAy, F)suchthat s = aVt. Since a € (sAx, E), we getaAs € (z, E). Similarly, we have that
tAs € (y,E). Clearly, (sAa)V (sAt) € (z, E)V (y, E), which leads sA (aVt) € (z, E)V(y, E).
Since s = a V s, we get that s € (z,F) V (y, E). Therefore (z Ay, E) C (z,E) V (y, E) and
hence (z,E) V (y,E) = (z Ay, E).

(3) = (4) : Assume (3). Let G, H be two filters of R with GV H = R. Let z € E. Then there
exist s € G and t € H such that x = s At. By our assumption, we get R = (z, E) = (sAt, E) =
(s, E)V (t,F) Cv(G)Vv(H). Hence v(G) Vv(H) = R.

(4) = (5) : Let G, H be two filters of R. Clearly we have that v(G) V v(H) C v(G V H). Let
a € v(GV H). Then there exists s € GV H such thata A s € E. Since s € G V H, there exist
x € Gandy € H such that s = x Ay. SinceaAs € E, we get a A (z Ay) € E. That implies
[(avz)V(aVy)) = [E), which gives [aAz)N[aAy) = R. Therefore v([aAz))Vr([any)) =R
and hence (aAz, E)V(aAy, E) = R.Since a € R, wehave a € (aAz, E)V(aAy, E). Then there
exists € (aAz, E)andt € (aAy, F) suchthata = sVt. Since s € (aAz, E)andt € (aAy, E),
wegetaAs € (z,F)anda At € (y,E). Then (a As)V (aAt) € (z,E) V (y, E), which leads
an(sVt) € (z,E)V(y,E).Since sVt =a,we geta € (z, E)V (y, E). Since (z, E) V (y, E) C
v(G)Vv(H), we get a € v(G) V v(H). Therefore we get v(G vV H) C v(G) V v(H). Hence
v(GV H)=v(G)Vv(H).

(5) = (1) : Itis clear. o

Theorem 3.27. Let J,(R) be a sublattice of I(R). If {Ga taca be any class of v—ideals of R,
then \/ G, is again a v—ideal of R.
aceA

Proof. Foreach o € A, let G, = v(F,) where F, is a filter of R such that F,, N E = (). Then
{Fu}aen will be any class family of filters of R with F,, N E = §), for all « € A. Clearly,
(VF,) N E = {. Since G, = v(F,) C v(VF,) foreach a« € A, we get VG, C v(VF,). Let
a € v(VF,). Then there exists s € VF, such that a A s € E. Then there exists a positive integer
n such that s = s; A sy A--- A s, where s; € Fy,,. By condition (4) of Theorem-3.26, we get
aNs€E=aN(siAsaN-Asy,) €EE = (aAsi))AN(aNss))AN---AN(aNsy,) € E=
[ans))NaAs)N--—-NaAs,) =R=v(laNs)Vr(aAs))V---Vr(ans,)) =
R= (aAns,E)V(aNsy, E)V---V(aAsy FE)=R.Sincea € Rwegeta € (aNs,E)V
(aN sy, E)V -V (aA sy, E). Then there exists t; € (a A s;, E) fori = 1,2,--- ,n such that
a=tVtaV-- Vi, Now,a = aha =aA(tyViaV---Vi,) = (aAt1)V(aAt) V-V (aAty,) €
(s1, E)V (2, E)V -V (80, E) Cv(F))Vv(F) V- Vu(E,) =G VG V- VG, CVG,.
That implies v(VF,) C VG, . Thus VG, is a v—ideal of R. O

Theorem 3.28. Let 3, (R) be a sublattice of J(R). For any E—ideal G, there exists a unique
v—ideal contained in G.

Proof. Let G be any E—ideal of R. Consider M = {H € J,(R) | H C G}. Since F is the
v—ideal and £ C G, we get £ € . Clearly, 91 satisfies the hypothesis of Zorn’s Lemma.
Then 9 has a maximal element let it be V. It is enough to show that N is unique. Let @) be any
maximal element of 91 such that N C Q. Clearly, N V @ C G. By Theorem-3.26, N vV Q € 9.
Therefore N = N V Q = Q. Thus 9 has a unique maximal element, which is the required
v—ideal contained in G. O
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