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Abstract In an Almost Distributive Lattice(ADL), the notion of ν−ideals is introduced and
their properties are investigated. To characterize an E−complemented ADL, a set of equivalent
conditions is established for every maximum ideal of an ADL to become into a ν−ideal. In
addition, an ADL’s ν−ideals are characterized using minimal prime E−ideals.

1 Introduction

The idea of an Almost Distributive Lattice(ADL) was presented by Swamy U.M., and Rao G.C.,
[11] as a common abstraction of many existing ring theoretic generalizations of a Boolean al-
gebra on one hand and the class of distributive lattices on the other. The concept of dense
complemented ideal was introduced by Ramesh Sirisetti and Jogarao in [9]. In [10], the no-
tions of δ−primary ideals and weakly δ−primary ideals with the help of an ideal expansion were
introduced. In [8], the concept of closure ideal was introduced in an MS−ADL and their prop-
erties were studied. In this paper, the concept of ν−ideals are introduced and their properties are
investigated in an ADL that is analogous to a distributive lattice. Every ADL’s maximum ideal
becomes into a ν−ideal by a set of equivalent conditions, which leads to a characterization of
E−complemented ADLs. Some necessary conditions are proved for proper E−ideal to become
ν−ideal. Finally, minimal prime E−ideals are used to characterize the ν−ideals of an ADL.

2 Preliminaries

In this section, we go through some ideas as well as significant observations from [2] and [11],
that are necessary for the paper’s text.

Definition 2.1. [11] An algebra R = (R,∨,∧, 0) of type (2, 2, 0) is called an Almost Distributive
Lattice (abbreviated as ADL), if it satisfies the following conditions:

(1) (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z);

(2) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z);

(3) (x ∨ y) ∧ y = y;

(4) (x ∨ y) ∧ x = x;

(5) x ∨ (x ∧ y) = x;

(6) 0 ∧ x = 0;

(7) x ∨ 0 = x, for all x, y, z ∈ R.

Example 2.2. Each non-empty set A can be classified as an ADL in the following way:
Take a0 ∈ A. Define the ∨and ∧ binary operations on A by

a ∨ b =

{
a if a ̸= a0

b if a = a0
a ∧ b =

{
b if a ̸= a0

a0 if a = a0.

Then (A,∨,∧, a0) is an ADL (where a0 is the zero) and is said to be a discrete ADL.
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For any x, y ∈ R, define x ≤ y if and only if x = x ∧ y (or alternatively, x ∨ y = y), then ≤
is a partial ordering on R.

Theorem 2.3. [11] For any x, y, z ∈ R, we have the following:

(1) x ∨ y = x ⇔ x ∧ y = y;

(2) x ∨ y = y ⇔ x ∧ y = x;

(3) ∧ is associative in R;

(4) x ∧ y ∧ z = y ∧ x ∧ z;

(5) (x ∨ y) ∧ z = (y ∨ x) ∧ z;

(6) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z);

(7) x ∧ (x ∨ y) = x, (x ∧ y) ∨ y = y and x ∨ (y ∧ x) = x;

(8) x ∧ x = x and x ∨ x = x.

An ADL R exhibits nearly all the properties of a distributive lattice, except for the absence of
the right distributivity of ∨ over ∧, as well as the non-commutativity of both ∨ and ∧. However,
an ADL R can be considered a distributive lattice as long as any one of these characteristics
holds. In the context of an ADL R, we define an element m ∈ R as maximal if it stands as the
utmost element within the partially ordered set (R,≤). In other words, for every a ∈ R, the
condition m ≤ a implies that m = a.

In ADL structures, motivated by the notions of distributive lattices [1, 6], we define a non-
empty subset I of R as an ideal if, for any elements a, b ∈ I and x ∈ R, both conditions a∨ b ∈ I
and a ∧ x ∈ I are satisfied. In a similar way, a non-empty subset F of R is termed a filter when,
for elements a, b ∈ F and x ∈ R, both a ∧ b ∈ F and x ∨ a ∈ F are true.

The collection I(R) of all ideals in R forms a bounded distributive lattice. It possesses a least
element, denoted as {0}, and a greatest element, which is the entire set R, both ordered by set
inclusion. Within this lattice, for any two ideals I and J in I(R), their infimum is represented
as I ∩ J , while the supremum is given by I ∨ J := {a ∨ b | a ∈ I, b ∈ J}. Furthermore, a
proper ideal(filter) P of R said to be a prime if, for any elements x and y in R, the condition
x ∧ y ∈ P (x ∨ y ∈ P ) implies that either x ∈ P or y ∈ P . Additionally, a proper ideal(filter)
M of R is called maximal when there is no other proper ideal(filter) of R that contains it. It is
observed that every maximal ideal(filter) of R is prime. Furthermore, any proper ideal(filter) of
R contained in a maximal ideal(filter) in R. Given any subset S of an ADL R, the smallest ideal

containing S is denoted as (S] and is defined as (S] := {(
n∨

i=1
si) ∧ x | si ∈ S, x ∈ R and n ∈ N}.

When S consists of a single element, say S = {s}, we simplify the notation to (s], and such an
ideal is referred to as the principal ideal of R. Similarly, for any subset S of R, the smallest filter

containing S is denoted as [S) and is defined as [S) := {x ∨ (
n∧

i=1
si) | si ∈ S, x ∈ R and n ∈ N}.

When S contains just one element, i.e., S = {s}, we use the notation [s), and such a filter is
termed the principal filter of R. It can be demonstrated that, for any two elements a and b in
R, we have that (a] ∨ (b] = (a ∨ b] and (a] ∩ (b] = (a ∧ b]. These relationships establish that
the collection (IPI(R),∨,∩) of all principal ideals of R forms a sublattice of the distributive
lattice (I(R),∨,∩), which consists of all ideals of R. Furthermore, it should be noted that the
set (F(R),∨,∩) of all filters in R constitutes a bounded distributive lattice.

Theorem 2.4. [5] Let R be an ADL with maximal elements. Then P is a prime ideal of R if and
only if R \ P is a prime filter of R.

It is known that, for any x, y ∈ R with x ≤ y, the interval [x, y] is a bounded distributive
lattice. Now, an ADL R is said to be relatively complemented if, for any x, y ∈ R with x ≤ y,
the interval [x, y] is a complemented distributive lattice.

Theorem 2.5. [12] An ADL R with maximal elements is relatively complemented if and only if
B(R) = R, where B(R) = {x ∈ R | x ∧ y = 0, x ∨ y is maximal, for some y ∈ R}.
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Definition 2.6. [4] For any nonempty subset A of an ADL R, define A+ = { x ∈ R | a ∨ x is
maximal element, for all a ∈ A }. Here A+ is called the dual annihilator of A in R.

For any a ∈ R, we have {a}+ = [a)+, where [a) is the principal filter generated by a. An
element a of an ADL R is called dual dense element if (a]+ = M, where M is the set of all
maximal elements of R and the set E of all dual dense elements in an ADL is an ideal if E is
non-empty.

Definition 2.7. [7] An ideal G of R is said to be an E−ideal of R if E ⊆ G. An E−ideal Q
is said to be proper if Q ⊊ R. A proper E−ideal Q is said to be maximal if it is not properly
contained in any proper E−ideal of R. A proper E−ideal Q of an ADL R is said to be a prime
E−ideal if Q is prime ideal of R.

Definition 2.8. [7] A prime E−ideal M of an ADL R containing an E−ideal G is said to be a
minimal prime E−ideal belonging to G if there exists no prime E−ideal N such that G ⊆ N ⊆
M.

Note that if we take E = G in the above definition then we say that M is a minimal prime
E−ideal.

Definition 2.9. [7] For any nonempty subset S of R, define (S,E) = {a ∈ R | s ∧ a ∈
E, for all s ∈ S}. We call this set as relative dual annihilator of S with respect to the ideal
E.

For S = {s}, we denote ({s}, E) by (s, E).

Theorem 2.10. [7] For any x, y ∈ R we have the following:
(1) ((x], E) = (x,E);
(2) x ≤ y ⇒ (y,E) ⊆ (x,E);
(3) (x ∨ y,E) = (x,E) ∩ (y,E);
(4) ((x ∧ y,E), E) = ((x,E), E) ∩ ((y,E), E);
(5) (x,E) = R ⇔ x ∈ E.

3 ν−ideals of an ADL

In this section, the concept of ν−ideals is introduced in an ADL. The class of all ν−ideals are
characterized in terms of minimal prime E−ideal.

Definition 3.1. An element a of an ADL R with maximal elements is said to be E−complemented,
if there exists an element b ∈ R such that a ∧ b ∈ E and a ∨ b is a maximal element of L. An
ADL R with maximal elements is said to be an E−complemented ADL L, if every element of
an ADL R is E−complemented.

Now, we have the following.

Proposition 3.2. For any prime ideal M of an E−complemented ADL R with maximal elements,
the following are equivalent:
(1) E ⊆ M ;
(2) for any a ∈ R, a ∈ M if and only if (a,E) ⊈ M ;
(3) for any a, b ∈ R with (a,E) = (b, E), a ∈ M implies that b ∈ M ;
(4) E ∩ (R \M) = ∅.

Proof. (1) ⇒ (2) : Assume (1). Suppose a ∈ M. Since R is E−complemented, there exists
b ∈ R such that a ∧ b ∈ E and a ∨ b is maximal. Then b ∈ (a,E). Clearly, we have b /∈ M
and hence (a,E) ⊈ M. Conversely, assume that (a,E) ⊈ M. Then there exists b ∈ R such that
b ∈ (a,E) and b /∈ M. Clearly, a ∧ b ∈ E ⊆ M. Since M is prime and b /∈ M, we get a ∈ M.
(2) ⇒ (3) : Assume (2). Let a, b ∈ R with (a,E) = (b, E). Suppose a ∈ M By our assumption,
we get (a,E) ⊈ M and hence (b, E) ⊈ M. Therefore b ∈ M.
(3) ⇒ (4) : Assume (3). Let a ∈ R. If a ∈ E ∩ (R \ M). Then (a,E) = R and a /∈ M. That
implies (a,E) = R = (0, E). Since 0 ∈ M, by our assumption, we get a ∈ M, which is a
contradiction. Hence E ∩ (R \M) = ∅.
(4) ⇒ (1) : Assume (4). Then we have that E ⊆ M.
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Theorem 3.3. Let a′ be an E−complement of a in an ADL R with maximal elements. Then every
prime E−ideal contain exactly one of a or a′.

Proof. Since a′ be an E−complement of a, we have that a ∧ a′ ∈ E and a ∨ a′ is maximal. Let
M be a prime E−ideal of R. Clearly, a ∧ a′ ∈ E ⊆ M. Since M is prime, we get a ∈ M or
a′ ∈ M. Suppose a ∈ M and a′ ∈ M. Then a∨a′ ∈ M, which is a contradiction. Hence M must
contain exactly one of a or a′.

Proposition 3.4. Let R be an E−complemented ADL. Then the following conditions are equiv-
alent:
(1) R is a relatively complemented ADL;
(2) every prime ideal contains exactly one of a or a′, where a′ is the E−complement of a in R;
(3) every prime ideal is an E−ideal;
(4) every minimal prime ideal is an E−ideal.

Proof. (1) ⇒ (2) : Assume (1). Let M be a prime ideal of R and a ∈ M. By our assumption,
there exists an element a′ ∈ R such that a ∧ a′ = 0 and a ∨ a′ is a maximal element. Since
a ∧ a′ = 0, we get a ∧ a′ ∈ M. Since M is prime, we get a ∈ M or a′ ∈ M. Since a ∨ a′ is
maximal, we get M contain exactly one of a or a′.
(2) ⇒ (3) : Assume the condition (2). Let M be a prime ideal of R. Let a ∈ E. Since R is
E−complemented, we get that a′ ∈ (a)+ = M. Hence a′ /∈ M. By the condition (2), we get
a ∈ M. Thus E ⊆ M. Therefore M is an E−ideal of R.
(3) ⇒ (4) : It is clear.
(4) ⇒ (1) : Assume (4). Let a ∈ R. Suppose a ∧ a′ ̸= 0. Then there exists a maximal filter M
of R such that a ∧ a′ ∈ M. Clearly, R \M is a minimal prime ideal such that a ∧ a′ /∈ R \M.
Hence a /∈ R \ M and a′ /∈ R \ M. By the hypothesis, we get E ⊆ R \ M. By Theorem-3.3,
R \M must contain exactly one of a or a′, which is a contradiction. Therefore a ∧ a′ = 0 and
hence R is a relatively complemented ADL.

Theorem 3.5. For any proper deal M of an E−complemented ADL R, M is maximal; if and
only if M is a prime E−ideal.

Proof. Let M be any proper ideal of R. Assume that M is a maximal ideal of R. Clearly, M is
prime. Let a ∈ E. Then (a)+ = M. Suppose a /∈ M. Then M ∨ (a] = R. There exist s ∈ M
and t ∈ (a] such that s ∨ t is maximal. That implies s ∈ (a)+. Since (a)+ = M, we get s is
maximal. That implies s ∈ M, this leads M = R, which is a contradiction. Hence a ∈ M. Thus
E ⊆ M. Therefore M is a prime E−ideal of R. Conversely, assume that M is a prime E−ideal
of R. Suppose M is not maximal. Then there exists a proper ideal N of R such that M ⊊ N.
Choose a ∈ N \M. Since R is E−complemented, there exists a′ ∈ R such that a∧ a′ ∈ E ⊆ M
and a ∨ a′ is maximal. Since M is prime and a /∈ M, we get a′ ∈ M ⊂ N. Then a ∨ a′ ∈ N,
which is a contradiction. Therefore M is maximal.

In an E−complemented ADL, the class of all maximal ideals and the class of all prime
E−ideals of R are the same. Since every prime E−ideal is maximal, we can conclude that
every prime E−ideal is minimal in an E−complemented ADL. Hence maximal ideals, prime
E−ideal, and minimal prime E−ideals are the same in an E−complemented ADL.

Definition 3.6. For any filter F of an ADL R, define ν(F ) = {a ∈ R | a ∧ s ∈ E, for some s ∈
F}.

Clearly, we have that ν(F ) =
⋃

a∈F

(a,E).

Proposition 3.7. Let F be a filter of an ADL R. Then ν(F ) is an E−ideal of R.

Proof. Clearly, E ⊆ ν(F ). Let a, b ∈ ν(F ). Then there exist s, t ∈ F such that a ∧ s ∈ E
and b ∧ t ∈ E. Since E is an ideal of R, we get s ∧ t ∧ a ∈ E and s ∧ t ∧ b ∈ E. Then
(s∧ t∧ a)∨ (s∧ t∧ b) ∈ E and hence ((s∧ t)∧ (a∨ b) ∈ E. That implies (a∨ b)∧ (s∧ t) ∈ E.
Since s, t ∈ F, we get s ∧ t ∈ F and hence a ∨ b ∈ ν(F ). Let a ∈ ν(F ) Then there exists s ∈ F
such that a ∧ s ∈ E. Let r ∈ R. Since E is an ideal of R, we get (a ∧ r) ∧ s ∈ E and hence
a ∧ s ∈ ν(F ). Therefore ν(F ) is an E−ideal of R.
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Lemma 3.8. Let G, H be two filters of an ADL R. Then we have the following:
(1) G ∩ ν(G) ̸= ∅ ⇔ ν(G) = R;
(2) G ⊆ H ⇒ ν(G) ⊆ ν(H);
(3) ν(G) ∩ ν(G) = w(G ∩H).

Proof. (1). Assume that G ∩ ν(G) ̸= ∅. Then choose an element a ∈ G ∩ ν(G). Then a ∈ G
and a ∈ ν(G). Since a ∈ ν(G), there exists s ∈ G such that a ∧ s ∈ E. By Theorem-2.10(5), we
get (a ∧ s, E) = R. Since a ∈ G and s ∈ G, we get a ∧ s ∈ G. Hence ν(G) =

⋃
a∈G

(a,E) = R.

Conversely, assume that ν(G) = R. Then for any m ∈ M such that m ∈ ν(G) and hence
m ∈ G ∩ ν(G). Thus G ∩ ν(G) ̸= ∅.
(2). Assume G ⊆ H. Let a ∈ ν(G). Then there exists s ∈ G such that a ∧ s ∈ E. Since G ⊆ H,
we get s ∈ H and hence a ∈ ν(H). Thus ν(G) ⊆ ν(H).
(3). Clearly, ν(G∩H) ⊆ ν(G)∩ ν(H). Let a ∈ ν(G)∩ ν(H). Then there exist s ∈ G and t ∈ H
such that a ∧ s ∈ E and a ∧ t ∈ E. Since s ∈ G and t ∈ H, we get s ∨ t ∈ G ∩ H and hence
a∧(s∨ t) = (a∧s)∨(a∧ t) ∈ E. Therefore a ∈ ν(G∩H). Hence ν(G)∩ν(H) ⊆ ν(G∩H).

Proposition 3.9. If G,H are two filters of an ADL R with ν(G) ∩ H = ∅, then there exists a
prime E−ideal M such that ν(G) ⊆ M and M ∩H = ∅.

Proof. Let G and H be two filters of an ADL R such that ν(G)∩H = ∅. Then there exists a prime
filter P such that H ⊆ P and ν(G)∩P = ∅. Since ν(G)∩P = ∅, we get that E ⊆ ν(G) ⊆ R\P.
Since R \ P is a prime ideal of R, we get that R \ P = M is a prime E−ideal of R containing
ν(G).

Now we have the following definition of ν−ideal in an ADL.

Definition 3.10. An E−ideal G of an ADL R is said to be a ν−ideal if G = ν(F ), for some filter
F of R such that F ∩ E = ∅.

From the above definition, it is easy to verify that for any m ∈ M, ν(m) = E. Hence E is
proper and the smallest E−ideal of R.

Example 3.11. Let R = {0, 1, 2, 3, 4, 5, 6, 7} and define ∨, ∧ on R as follows:

∧ 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 1 2 3 4 5 6 7
3 0 3 3 3 0 0 3 0
4 0 4 5 0 4 5 7 7
5 0 4 5 0 4 5 7 7
6 0 6 6 3 7 7 6 7
7 0 7 7 0 7 7 7 7

∨ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2
3 3 1 2 3 1 2 6 6
4 4 1 1 1 4 4 1 4
5 5 2 2 2 5 5 2 5
6 6 1 2 6 1 2 6 6
7 7 1 2 6 4 5 6 7

Then (R,∨, ∧) is an ADL. Clearly, we have that E = {0, 7}. Consider the E−ideals I1 =
{0, 3}, I2 = {0, 4, 5, 7}, I3 = {0, 3, 6, 7, }, I4 = {0, 7} = E and filters F1 = {1, 2, 4}, F2 =
{1.2.6}. Now, ν(F1) = {0, 3, 6, 7} = I3. Hence G is a ν−ideal of R. But ν(F2) = {0, 4, 5, 6} ̸=
Ii, for i = 1, 2, 3, 4. Hence

Proposition 3.12. For any a /∈ E in an ADL R. we have (a,E) is a ν−ideal of R.

Proof. Let a /∈ E. Clearly, we have [a) ∩E = ∅. Let s ∈ (a,E). Then s ∧ a ∈ E. Since a ∈ [a),
we get s ∈ ν([a)) and hence (a,E) ⊆ ν([a)). Let s ∈ ν([a)). Then there exists b ∈ [a) such that
s ∧ b ∈ E. That implies s ∧ a ∈ E, which gives that s ∈ (a,E). Therefore ν([a)) ⊆ (a,E) and
hence (a,E) = ν([a)). Thus (a,E) is a ν−ideal of R.

Theorem 3.13. Let M be a prime E−ideal of R with (M,E) ̸= E. Then M is a ν−ideal.



1060 Natnael Teshale A., N. Rafi and Y. Monikarchana

Proof. Assume that (M,E) ̸= E. Since E ⊆ (M,E), we get that (M,E) ⊈ E. Then there exists
a ∈ (M,E) such that a /∈ E. Clearly, [a)∩E = ∅ and a /∈ M. Then M ⊆ ((M,E), E) ⊆ (a,E).
Therefore M ⊆ (a,E). Let s ∈ (a,E). Then s ∧ a ∈ E ⊆ M. Since a /∈ M, we have s ∈ M.
Then (a,E) ⊆ M. Therefore M = (a,E) = ν([a)) and hence M is a ν−ideal of R.

Theorem 3.14. Every minimal prime E−ideal of an ADL R is a ν−ideal.

Proof. Let M be a minimal prime E−ideal of R. Then R \ M is a prime filter of R such that
E ∩ (R \ M) = ∅. Now prove that M = ν(R \ M). Let a ∈ M. Since M is minimal, there
exists b ∈ R \M such that a ∧ b ∈ E. That implies a ∈ ν(R \M). Therefore M ⊆ ν(R \M).
Let a ∈ w(R \M). Then there exists s ∈ R \M such that a ∧ s ∈ E ⊆ M. Since M is prime
and s /∈ M, we get a ∈ M. Therefore ν(R \M) ⊆ M and hence M = ν(R \M). Thus M is a
ν−ideal of R.

We now turn our intension towards the converse of the above theorem. In general, every
ν−ideal of an ADL need not be a minimal prime E−ideal. In fact it need not even be a prime
E−ideal. It can be observed in the following example:

Example 3.15. Consider a distributive lattice L = {0, a, b, c, 1} and discrete ADL A = {0′, a′}.

�
�
�

@
@

@

@
@

@

�
�
�

d
d d

d

d
a

b c

1

0

Clearly,
R = A × L = {(0′, 0), (0′, a), (0′, b), (0′, c), (0′, 1), (a′, 0), (a′, a), (a′, b), (a′, c), (a′, 1)} is an
ADL with zero element (0, 0′). Clearly, the dense set E = {(0′, 0), (0′, a)}. Consider an E−ideal
I = {(0′, 0), (0′, a), (0′, c)} and a filter F = {(a′, b), (a′, 1)}. Clearly, I is a ν−ideal, but not
prime.

Though every ν−ideal need not be a prime E−ideal, we derive a necessary and sufficient
condition for a ν−ideal of an ADL to become a prime E−ideal.

Theorem 3.16. A proper ν−ideal G of an ADL R is a prime E−ideal if and only if G contains
a prime E−ideal.

Proof. Let G be a proper ν−ideal of R. Assume that G is a prime E−ideal of R. Clearly, G
contains a prime E−ideal G. Conversely, assume that G contains a prime E−ideal, say M. Since
E ⊆ M ⊆ G,G is an E−ideal of R. Since G is a ν−ideal, we get G = ν(F ), for some filter F
of R with F ∩ E = ∅. Let s, t ∈ R such that s /∈ G and t /∈ G. Since M ⊆ G, we get s /∈ M
and t /∈ M. Since M is prime, we get s ∧ t /∈ M. That implies (s ∧ t, E) ⊆ M ⊆ G = ν(F ).
Suppose s ∧ t ∈ G = ν(F ). Then there exists x ∈ F such that s ∧ t ∧ x ∈ E. That implies
x ∈ (s ∧ t, E) ⊆ ν(F ). Therefore x ∈ F ∩ ν(F ) and hence F ∩ ν(F ) ̸= ∅. By Lemma-3.8(1),
G = ν(F ) = R, which is a contradiction. Thus G is a prime E−ideal of R.

In the above Theorem-3.16, It is observed that every minimal prime E−ideal is a prime
ν−ideal of R. Now we established the equivalency between prime ν−ideals and minimal prime
E−ideals of an ADL.

Theorem 3.17. Every prime ν−ideal of an ADL R is a minimal prime E−ideal.
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Proof. Let M be a prime ν−ideal of R. Then M = ν(F ), for some filter F of R with F ∩E = ∅.
Let a ∈ M = ν(F ). Then there exists b ∈ F such that a ∧ b ∈ E. Suppose b ∈ M. Then
b ∈ F ∩ ν(F ). That implies F ∩ ν(F ) ̸= ∅. By Lemma-3.8(1), M = ν(F ) = R which is a
contradiction. Therefore b /∈ M and hence M is a minimal prime E−ideal.

Theorem 3.18. In an ADL R, the following are equivalent:
(1) R is E−complemented;
(2) every prime E−ideal is a ν−ideal;
(3) every prime E−ideal is minimal;
(4) every maximal ideal is a minimal prime E−ideal;
(5) every maximal ideal is a ν−ideal.

Proof. (1) ⇒ (2) : Assume (1). Let M be a prime E−ideal of R. Then R \M is a prime ideal
of R such that (R \ M) ∩ E = ∅. Now prove that M = ν(R \ M). Let a ∈ M. Since R is
E−complemented, there exists b ∈ R such that a ∧ b ∈ E and a ∨ b is maximal. Clearly, b /∈ M,
which gives that b ∈ R \M. Since a ∧ b ∈ E, we get a ∈ ν(R \M). Therefore M ⊆ ν(R \M).
Let a ∈ ν(R \M). Then there exists b ∈ R \M such that a ∧ b ∈ E. Since a ∧ b ∈ E ⊆ M and
b /∈ M, we get a ∈ M. Therefore ν(R \M) ⊆ M. Hence M is a ν−ideal of R.
(2) ⇒ (3) : Assume (2). Let M be a prime E−ideal of R. By our assumption, P is a prime
ν−ideal. By Theorem-3.17, P is minimal.
(3) ⇒ (4) : It is clear.
(4) ⇒ (5) : It is clear.
(5) ⇒ (1) : Assume (5). Let a ∈ R and m ∈ M. Suppose m /∈ (a] ∨ (a,E). Then there exists
a maximal ideal M such that (a] ∨ (a,E) ⊆ M. That implies a ∈ M and (a,E) ⊆ M. By the
assumption, M is a ν−ideal. Since M is prime, by Theorem-3.17, M is minimal prime E−ideal.
Then a /∈ M, which is a contradiction. That implies m ∈ (a] ∨ (a,E). There exists s ∈ (a,E)
such that a ∨ s = m. Since s ∈ (a,E), we get s ∧ a ∈ E. Thus R is E−complemented.

We conclude this paper with a characterization theorem of ν−ideals in terms of minimal
prime E−ideals. For this, we first need the following results.

Lemma 3.19. Let F be a filter of an ADL R such that F ∩ E = ∅. If M is a minimal prime
E−ideal containing ν(F ), then F ∩M = ∅.

Proof. Let M be a minimal prime E−ideal of R with ν(F ) ⊆ M. Suppose a ∈ F ∩ M. Then
a ∈ M and a ∈ F. Since M is minimal and a ∈ M , there exists b /∈ M such that a ∧ b ∈ ν(F ).
Then there exists x ∈ F such that (a ∧ b) ∧ x ∈ E. That implies b ∧ (a ∧ x) ∈ E and a ∧ x ∈ F.
Therefore b ∈ ν(F ) ⊆ M, which is a contradiction. Thus F ∩M = ∅.

Lemma 3.20. Every minimal prime E−ideal of an ADL R containing a ν−ideal is a minimal
prime E−ideal in R.

Proof. Let G be a ν−ideal of R. Then G = ν(F ), for some filter F of R such that F ∩ E = ∅.
Let M be a minimal prime E−ideal containing G = ν(F ). By the above lemma, F ∩ M = ∅.
Let a ∈ M. Then there exists b /∈ M such that a ∧ b ∈ ν(F ). There exists x ∈ F such that
(a ∧ b) ∧ x ∈ E. Therefore a ∧ (b ∧ x) ∈ E ⊆ M and b ∧ x /∈ M. Thus M is a minimal prime
E−ideal of R.

Now, ν−ideals are characterized in terms of minimal prime E−ideals.

Theorem 3.21. Every ν−ideal of an ADL R is the intersection of all minimal prime E−ideals
containing it.

Proof. Let G be a ν−ideal of R. Then G = ν(F ), for some filter F of R such that F ∩ E = ∅.
Let H =

⋂
{M |M is a minimal prime E − ideal containing G}. Clearly, G ⊆ H. Let x /∈ G =

ν(F ). Then x ∧ s /∈ E, for all s ∈ F. Then there exists a minimal prime E−ideal M such that
x ∧ s /∈ M. That implies x /∈ M and s /∈ M. Since M is prime, (s, E) ⊆ M, for all s ∈ F. Then
G = ν(F ) ⊆ M. Hence M is minimal such that G ⊆ M and x /∈ M. Therefore x /∈ H, which
leads H ⊆ G. Thus G = H.
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Theorem 3.22. Let {Gα}α∈△ be a class of ν−ideals of an ADL R. Then
⋂

α∈△
Gα is a ν−ideal of

R.

Proof. For each α ∈ △, let Gα = ν(Fα) where Fα is a filter of R such that Fα ∩ E = ∅. Then
{Fα}α∈△ will be an arbitrary family of filters in R such that Fα ∩E = ∅ for each α ∈ △. Hence⋂
α∈△

Fα is a filter of R such that
( ⋂

α∈△
Fα

)
∩ E = ∅. By Lemma-3.8(3), we get

⋂
α∈△

ν(Fα) =

ν
( ⋂

α∈△
Fα

)
. Therefore

⋂
α∈△

Gα is a ν−ideal of R.

Note that the class of all ν−ideals of an ADL is closed under set-intersection. In general,
ν−ideals need not be closed under finite joins. However, in the following, we prove that the
class Iν(R) of all ν−ideals of an ADL R forms a complete lattice.

Theorem 3.23. Let G,H be two filters of an ADL R such that G ∩ E = H ∩ E = ∅. Then
ν(G ∨H) is the smallest ν−ideal containing both ν(G) and ν(H).

Proof. Let G,H be two filters of R such that G ∩ E = H ∩ E = ∅. Clearly, (G ∨H) ∩ E = ∅.
By Lemma-3.8(2), we get ν(G) ⊆ ν(G ∨ H) and ν(H) ⊆ ν(G ∨ H). Suppose ν(G) ⊆ ν(K)
and ν(H) ⊆ ν(K), for some filter K of R with K ∩ E = ∅. Let a ∈ ν(G ∨H). Then there exist
s ∈ G and t ∈ H such that a ∧ (s ∧ t) ∈ E. That implies a ∧ s ∈ ν(H) ⊆ ν(K). There exists
x ∈ K such that a ∧ s ∧ x ∈ E. Since x ∧ y ∈ K, we get a ∈ ν(K). Therefore ν(G ∨ H) is
the supremum of ν(G) and ν(H). Consider this supremum by ν(G)⊔ ν(H). Thus (Iν(R),∩,⊔)
forms a lattice.

Corollary 3.24. Let {ν(Fα)}α∈△ be a class of ν−ideals of an ADL R where Fα ∩ E = ∅ for
each α ∈ △. Then

⊔
α∈△

ν(Fα) is the smallest ν−idealr containing each ν(Fα).

It can be easily observed that the class of all ν−ideals of an ADL forms a complete lattice
with respect to set inclusion ⊆, in which for any {ν(Fα)}α∈△ of ν−ideals, inf{ν(Fα)}α∈△ =

ν(
⋂

α∈△
Fα) and the sup{ν(Fα)}α∈△ = ν

( ∨
α∈△

Fα

)
. Since the class of all filters of an ADL forms

a complete distributive lattice, the class Iν(R) of all ν−ideals of an ADL R forms a complete
distributive lattice. In general, the class Iν(R) of all ν−ideals of an ADL R is not a sublattice
of the ideal lattice I(R). However, in the following, we derive a set of equivalent conditions for
Iν(R) to become a sublattice of I(R). For this, we first need the following result.

Lemma 3.25. Every proper ν−ideal is contained in a minimal prime E−ideal.

Proof. Let G be a proper ν−ideal of R. Then G = ν(F ) for some filter F of R with F ∩
E = ∅. Hence E ⊆ ν(F ) = G. Clearly, G ∩ F = ν(F ) ∩ F = ∅. Consider, the set I =
{H | H is a filter of R such that F ⊆ H and G ∩ H = ∅}. Clearly F ∈ I and I satisfies the
Zorn’s lemma. Let N be a maximal element of I. Then N is an ideal of R such that F ⊆ N and
G ∩ N = ∅. Since E ⊆ G, we get E ∩ N = ∅. That implies N is an ideal which is maximal
with respect to the property that E ∩N = ∅. Hence R \N is a minimal prime E−ideal such that
G ⊆ R \N.

Theorem 3.26. In an ADL R, the following are equivalent:
(1) Iν(R) is a sublattice of I(R);
(2) for x, y ∈ R, x ∧ y ∈ E implies (x,E) ∨ (y,E) = R;
(3) for x, y ∈ R, (x,E) ∨ (y,E) = (x ∧ y,E);
(4) for G,H ∈ F(R), G ∨H = R implies ν(G) ∨ ν(H) = R;
(5) for G,H ∈ F(R), ν(G) ∨ ν(H) = ν(G ∨H).

Proof. (1) ⇒ (2) : Assume (1). Let x, y ∈ R with x∧y ∈ E. Suppose (x,E)∨(y,E) ̸= R. Since
(x,E) and (y,E) are ν−ideals of R, by hypothesis, we get that (x,E)∨(y,E) is a proper ν−ideal
of R. By Lemma-3.25, there exists a minimal prime E−ideal M such that (x,E)∨ (y,E) ⊆ M.
Hence (x,E) ⊆ M and (y,E) ⊆ M. Since M is a minimal prime E−ideal, we get that x /∈ M
and y /∈ M. Since M is a prime ideal, we get that x ∧ y /∈ M, which is a contradiction to that
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x ∧ y ∈ E ⊆ M. Therefore (x,E) ∨ (y,E) = R.
(2) ⇒ (3) : Assume (2). Let x, y ∈ R. Clearly (x,E) ∨ (y,E) ⊆ (x ∧ y,E). Let s ∈ (x ∧ y,E).
Then s ∧ (x ∧ y) ∈ E. That implies (s ∧ x) ∧ (s ∧ y) ∈ E. By our assumption, we have that
(s∧ x,E)∨ (s∧ y,E) = R. Then s ∈ (s∧ x,E)∨ (s∧ y,E). There exist a ∈ (s∧ x,E) and t ∈
(s∧y,E) such that s = a∨ t. Since a ∈ (s∧x,E), we get a∧s ∈ (x,E). Similarly, we have that
t∧s ∈ (y,E). Clearly, (s∧a)∨(s∧t) ∈ (x,E)∨(y,E), which leads s∧(a∨t) ∈ (x,E)∨(y,E).
Since s = a ∨ s, we get that s ∈ (x,E) ∨ (y,E). Therefore (x ∧ y,E) ⊆ (x,E) ∨ (y,E) and
hence (x,E) ∨ (y,E) = (x ∧ y,E).
(3) ⇒ (4) : Assume (3). Let G,H be two filters of R with G ∨H = R. Let x ∈ E. Then there
exist s ∈ G and t ∈ H such that x = s∧ t. By our assumption, we get R = (x,E) = (s∧ t, E) =
(s, E) ∨ (t, E) ⊆ ν(G) ∨ ν(H). Hence ν(G) ∨ ν(H) = R.
(4) ⇒ (5) : Let G,H be two filters of R. Clearly we have that ν(G) ∨ ν(H) ⊆ ν(G ∨H). Let
a ∈ ν(G ∨H). Then there exists s ∈ G ∨H such that a ∧ s ∈ E. Since s ∈ G ∨H, there exist
x ∈ G and y ∈ H such that s = x ∧ y. Since a ∧ s ∈ E, we get a ∧ (x ∧ y) ∈ E. That implies
[(a∨x)∨(a∨y)) = [E), which gives [a∧x)∩ [a∧y) = R. Therefore ν([a∧x))∨ν([a∧y)) = R
and hence (a∧x,E)∨(a∧y,E) = R. Since a ∈ R, we have a ∈ (a∧x,E)∨(a∧y,E). Then there
exist s ∈ (a∧x,E) and t ∈ (a∧y,E) such that a = s∨ t. Since s ∈ (a∧x,E) and t ∈ (a∧y,E),
we get a ∧ s ∈ (x,E) and a ∧ t ∈ (y,E). Then (a ∧ s) ∨ (a ∧ t) ∈ (x,E) ∨ (y,E), which leads
a∧ (s∨ t) ∈ (x,E)∨ (y,E). Since s∨ t = a, we get a ∈ (x,E)∨ (y,E). Since (x,E)∨ (y,E) ⊆
ν(G) ∨ ν(H), we get a ∈ ν(G) ∨ ν(H). Therefore we get ν(G ∨ H) ⊆ ν(G) ∨ ν(H). Hence
ν(G ∨H) = ν(G) ∨ ν(H).
(5) ⇒ (1) : It is clear.

Theorem 3.27. Let Iν(R) be a sublattice of I(R). If {Gα}α∈△ be any class of ν−ideals of R,
then

∨
α∈△

Gα is again a ν−ideal of R.

Proof. For each α ∈ △, let Gα = ν(Fα) where Fα is a filter of R such that Fα ∩ E = ∅. Then
{Fα}α∈△ will be any class family of filters of R with Fα ∩ E = ∅, for all α ∈ △. Clearly,
(∨Fα) ∩ E = ∅. Since Gα = ν(Fα) ⊆ ν(∨Fα) for each α ∈ △ , we get ∨Gα ⊆ ν(∨Fα). Let
a ∈ ν(∨Fα). Then there exists s ∈ ∨Fα such that a ∧ s ∈ E. Then there exists a positive integer
n such that s = s1 ∧ s2 ∧ · · · ∧ sn where si ∈ Fαi . By condition (4) of Theorem-3.26, we get
a ∧ s ∈ E ⇒ a ∧ (s1 ∧ s2 ∧ · · · ∧ sn) ∈ E ⇒ (a ∧ s1) ∧ (a ∧ s2) ∧ · · · ∧ (a ∧ sn) ∈ E ⇒
[a ∧ s1) ∩ [a ∧ s2) ∩ · · · ∩ [a ∧ sn) = R ⇒ ν([a ∧ s1)) ∨ ν([a ∧ s2)) ∨ · · · ∨ ν([a ∧ sn)) =
R ⇒ (a ∧ s1, E) ∨ (a ∧ s2, E) ∨ · · · ∨ (a ∧ sn, E) = R. Since a ∈ R we get a ∈ (a ∧ s1, E) ∨
(a ∧ s2, E) ∨ · · · ∨ (a ∧ sn, E). Then there exists ti ∈ (a ∧ si, E) for i = 1, 2, · · · , n such that
a = t1∨t2∨· · ·∨tn. Now, a = a∧a = a∧(t1∨t2∨· · ·∨tn) = (a∧t1)∨(a∧t2)∨· · ·∨(a∧tn) ∈
(s1, E) ∨ (s2, E) ∨ · · · ∨ (sn, E) ⊆ ν(F1) ∨ ν(F2) ∨ · · · ∨ ν(Fn) = G1 ∨G2 ∨ · · · ∨Gn ⊆ ∨Gα.
That implies ν(∨Fα) ⊆ ∨Gα. Thus ∨Gα is a ν−ideal of R.

Theorem 3.28. Let Iν(R) be a sublattice of I(R). For any E−ideal G, there exists a unique
ν−ideal contained in G.

Proof. Let G be any E−ideal of R. Consider M = {H ∈ Iν(R) | H ⊆ G}. Since E is the
ν−ideal and E ⊆ G, we get E ∈ M. Clearly, M satisfies the hypothesis of Zorn’s Lemma.
Then M has a maximal element let it be N. It is enough to show that N is unique. Let Q be any
maximal element of M such that N ⊆ Q. Clearly, N ∨Q ⊆ G. By Theorem-3.26, N ∨Q ∈ M.
Therefore N = N ∨ Q = Q. Thus M has a unique maximal element, which is the required
ν−ideal contained in G.
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