Vol 13(4)(2024), 1055-1064

ν -ideals of Almost Distributive Lattice

Natnael Teshale A., N. Rafi and Y. Monikarchana

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 06D99; Secondary 06D15.

Keywords and phrases: Almost Distributive Lattice(ADL), E-complemented ADL, prime filter, E-ideal, ν -ideal.

Abstract In an Almost Distributive Lattice(ADL), the notion of ν -ideals is introduced and their properties are investigated. To characterize an *E*-complemented ADL, a set of equivalent conditions is established for every maximum ideal of an ADL to become into a ν -ideal. In addition, an ADL's ν -ideals are characterized using minimal prime *E*-ideals.

1 Introduction

The idea of an Almost Distributive Lattice(ADL) was presented by Swamy U.M., and Rao G.C., [11] as a common abstraction of many existing ring theoretic generalizations of a Boolean algebra on one hand and the class of distributive lattices on the other. The concept of dense complemented ideal was introduced by Ramesh Sirisetti and Jogarao in [9]. In [10], the notions of δ -primary ideals and weakly δ -primary ideals with the help of an ideal expansion were introduced. In [8], the concept of closure ideal was introduced in an MS-ADL and their properties were studied. In this paper, the concept of ν -ideals are introduced and their properties are investigated in an ADL that is analogous to a distributive lattice. Every ADL's maximum ideal becomes into a ν -ideal by a set of equivalent conditions, which leads to a characterization of E-complemented ADLs. Some necessary conditions are proved for proper E-ideal to become ν -ideal. Finally, minimal prime E-ideals are used to characterize the ν -ideals of an ADL.

2 Preliminaries

In this section, we go through some ideas as well as significant observations from [2] and [11], that are necessary for the paper's text.

Definition 2.1. [11] An algebra $R = (R, \lor, \land, 0)$ of type (2, 2, 0) is called an Almost Distributive Lattice (abbreviated as ADL), if it satisfies the following conditions:

- (1) $(x \lor y) \land z = (x \land z) \lor (y \land z);$
- (2) $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z);$
- (3) $(x \lor y) \land y = y;$
- (4) $(x \lor y) \land x = x;$
- (5) $x \lor (x \land y) = x;$
- (6) $0 \wedge x = 0;$
- (7) $x \lor 0 = x$, for all $x, y, z \in R$.

Example 2.2. Each non-empty set A can be classified as an ADL in the following way: Take $a_0 \in A$. Define the \forall and \land binary operations on A by

$$a \lor b = \begin{cases} a \text{ if } a \neq a_0 \\ b \text{ if } a = a_0 \end{cases} \qquad \qquad a \land b = \begin{cases} b \text{ if } a \neq a_0 \\ a_0 \text{ if } a = a_0. \end{cases}$$

Then (A, \lor, \land, a_0) is an ADL (where a_0 is the zero) and is said to be a discrete ADL.

For any $x, y \in R$, define $x \le y$ if and only if $x = x \land y$ (or alternatively, $x \lor y = y$), then \le is a partial ordering on R.

Theorem 2.3. [11] For any $x, y, z \in R$, we have the following:

(1) $x \lor y = x \Leftrightarrow x \land y = y;$ (2) $x \lor y = y \Leftrightarrow x \land y = x;$ (3) \land is associative in R;(4) $x \land y \land z = y \land x \land z;$ (5) $(x \lor y) \land z = (y \lor x) \land z;$ (6) $x \lor (y \land z) = (x \lor y) \land (x \lor z);$ (7) $x \land (x \lor y) = x, (x \land y) \lor y = y \text{ and } x \lor (y \land x) = x;$ (8) $x \land x = x \text{ and } x \lor x = x.$

An ADL R exhibits nearly all the properties of a distributive lattice, except for the absence of the right distributivity of \lor over \land , as well as the non-commutativity of both \lor and \land . However, an ADL R can be considered a distributive lattice as long as any one of these characteristics holds. In the context of an ADL R, we define an element $m \in R$ as maximal if it stands as the utmost element within the partially ordered set (R, \leq) . In other words, for every $a \in R$, the condition $m \leq a$ implies that m = a.

In ADL structures, motivated by the notions of distributive lattices [1, 6], we define a nonempty subset I of R as an ideal if, for any elements $a, b \in I$ and $x \in R$, both conditions $a \lor b \in I$ and $a \land x \in I$ are satisfied. In a similar way, a non-empty subset F of R is termed a filter when, for elements $a, b \in F$ and $x \in R$, both $a \land b \in F$ and $x \lor a \in F$ are true.

The collection $\Im(R)$ of all ideals in R forms a bounded distributive lattice. It possesses a least element, denoted as $\{0\}$, and a greatest element, which is the entire set R, both ordered by set inclusion. Within this lattice, for any two ideals I and J in $\Im(R)$, their infimum is represented as $I \cap J$, while the supremum is given by $I \vee J := \{a \vee b \mid a \in I, b \in J\}$. Furthermore, a proper ideal(filter) P of R said to be a prime if, for any elements x and y in R, the condition $x \wedge y \in P(x \vee y \in P)$ implies that either $x \in P$ or $y \in P$. Additionally, a proper ideal(filter) M of R is called maximal when there is no other proper ideal(filter) of R that contains it. It is observed that every maximal ideal(filter) in R. Given any subset S of an ADL R, the smallest ideal containing S is denoted as (S] and is defined as $(S] := \{(\bigvee_{i=1}^n s_i) \wedge x \mid s_i \in S, x \in R \text{ and } n \in \mathbb{N}\}$. When S consists of a single element, say $S = \{s\}$, we simplify the notation to (s], and such an ideal is referred to as the principal ideal of R. Similarly, for any subset S of R, the smallest filter

containing S is denoted as [S) and is defined as [S) := $\{x \lor (\bigwedge_{i=1}^{n} s_i) \mid s_i \in S, x \in R \text{ and } n \in \mathbb{N}\}.$

When S contains just one element, i.e., $S = \{s\}$, we use the notation [s), and such a filter is termed the principal filter of R. It can be demonstrated that, for any two elements a and b in R, we have that $(a] \lor (b] = (a \lor b]$ and $(a] \cap (b] = (a \land b]$. These relationships establish that the collection $(\mathfrak{I}^{PI}(R), \lor, \cap)$ of all principal ideals of R forms a sublattice of the distributive lattice $(\mathfrak{I}(R), \lor, \cap)$, which consists of all ideals of R. Furthermore, it should be noted that the set $(\mathfrak{F}(R), \lor, \cap)$ of all filters in R constitutes a bounded distributive lattice.

Theorem 2.4. [5] Let R be an ADL with maximal elements. Then P is a prime ideal of R if and only if $R \setminus P$ is a prime filter of R.

It is known that, for any $x, y \in R$ with $x \leq y$, the interval [x, y] is a bounded distributive lattice. Now, an ADL R is said to be relatively complemented if, for any $x, y \in R$ with $x \leq y$, the interval [x, y] is a complemented distributive lattice.

Theorem 2.5. [12] An ADL R with maximal elements is relatively complemented if and only if B(R) = R, where $B(R) = \{x \in R \mid x \land y = 0, x \lor y \text{ is maximal, for some } y \in R\}$.

Definition 2.6. [4] For any nonempty subset A of an ADL R, define $A^+ = \{ x \in R \mid a \lor x \text{ is maximal element, for all } a \in A \}$. Here A^+ is called the dual annihilator of A in R.

For any $a \in R$, we have $\{a\}^+ = [a)^+$, where [a) is the principal filter generated by a. An element a of an ADL R is called dual dense element if $(a]^+ = \mathcal{M}$, where \mathcal{M} is the set of all maximal elements of R and the set E of all dual dense elements in an ADL is an ideal if E is non-empty.

Definition 2.7. [7] An ideal G of R is said to be an E-ideal of R if $E \subseteq G$. An E-ideal Q is said to be proper if $Q \subsetneq R$. A proper E-ideal Q is said to be maximal if it is not properly contained in any proper E-ideal of R. A proper E-ideal Q of an ADL R is said to be a prime E-ideal if Q is prime ideal of R.

Definition 2.8. [7] A prime E-ideal M of an ADL R containing an E-ideal G is said to be a minimal prime E-ideal belonging to G if there exists no prime E-ideal N such that $G \subseteq N \subseteq M$.

Note that if we take E = G in the above definition then we say that M is a minimal prime E-ideal.

Definition 2.9. [7] For any nonempty subset S of R, define $(S, E) = \{a \in R \mid s \land a \in E, for all s \in S\}$. We call this set as relative dual annihilator of S with respect to the ideal E.

For $S = \{s\}$, we denote $(\{s\}, E)$ by (s, E).

Theorem 2.10. [7] For any $x, y \in R$ we have the following: (1) ((x], E) = (x, E); (2) $x \leq y \Rightarrow (y, E) \subseteq (x, E)$; (3) $(x \lor y, E) = (x, E) \cap (y, E)$; (4) $((x \land y, E), E) = ((x, E), E) \cap ((y, E), E)$; (5) $(x, E) = R \Leftrightarrow x \in E$.

3 ν -ideals of an ADL

In this section, the concept of ν -ideals is introduced in an ADL. The class of all ν -ideals are characterized in terms of minimal prime E-ideal.

Definition 3.1. An element a of an ADL R with maximal elements is said to be E-complemented, if there exists an element $b \in R$ such that $a \wedge b \in E$ and $a \vee b$ is a maximal element of L. An ADL R with maximal elements is said to be an E-complemented ADL L, if every element of an ADL R is E-complemented.

Now, we have the following.

Proposition 3.2. For any prime ideal M of an E-complemented ADL R with maximal elements, the following are equivalent:

(1) $E \subseteq M$; (2) for any $a \in R$, $a \in M$ if and only if $(a, E) \nsubseteq M$; (3) for any $a, b \in R$ with $(a, E) = (b, E), a \in M$ implies that $b \in M$; (4) $E \cap (R \setminus M) = \emptyset$.

Proof. (1) \Rightarrow (2) : Assume (1). Suppose $a \in M$. Since R is E-complemented, there exists $b \in R$ such that $a \wedge b \in E$ and $a \vee b$ is maximal. Then $b \in (a, E)$. Clearly, we have $b \notin M$ and hence $(a, E) \nsubseteq M$. Conversely, assume that $(a, E) \nsubseteq M$. Then there exists $b \in R$ such that $b \in (a, E)$ and $b \notin M$. Clearly, $a \wedge b \in E \subseteq M$. Since M is prime and $b \notin M$, we get $a \in M$.

 $(2) \Rightarrow (3)$: Assume (2). Let $a, b \in R$ with (a, E) = (b, E). Suppose $a \in M$ By our assumption, we get $(a, E) \notin M$ and hence $(b, E) \notin M$. Therefore $b \in M$.

 $(3) \Rightarrow (4)$: Assume (3). Let $a \in R$. If $a \in E \cap (R \setminus M)$. Then (a, E) = R and $a \notin M$. That implies (a, E) = R = (0, E). Since $0 \in M$, by our assumption, we get $a \in M$, which is a contradiction. Hence $E \cap (R \setminus M) = \emptyset$.

 $(4) \Rightarrow (1)$: Assume (4). Then we have that $E \subseteq M$.

Theorem 3.3. Let a' be an E-complement of a in an ADL R with maximal elements. Then every prime E-ideal contain exactly one of a or a'.

Proof. Since a' be an E-complement of a, we have that $a \wedge a' \in E$ and $a \vee a'$ is maximal. Let M be a prime E-ideal of R. Clearly, $a \wedge a' \in E \subseteq M$. Since M is prime, we get $a \in M$ or $a' \in M$. Suppose $a \in M$ and $a' \in M$. Then $a \vee a' \in M$, which is a contradiction. Hence M must contain exactly one of a or a'.

Proposition 3.4. Let R be an E-complemented ADL. Then the following conditions are equivalent:

(1) R is a relatively complemented ADL;

(2) every prime ideal contains exactly one of a or a', where a' is the *E*-complement of *a* in *R*;

(3) every prime ideal is an E-ideal;

(4) every minimal prime ideal is an E-ideal.

Proof. (1) \Rightarrow (2) : Assume (1). Let M be a prime ideal of R and $a \in M$. By our assumption, there exists an element $a' \in R$ such that $a \wedge a' = 0$ and $a \vee a'$ is a maximal element. Since $a \wedge a' = 0$, we get $a \wedge a' \in M$. Since M is prime, we get $a \in M$ or $a' \in M$. Since $a \vee a'$ is maximal, we get M contain exactly one of a or a'.

 $(2) \Rightarrow (3)$: Assume the condition (2). Let M be a prime ideal of R. Let $a \in E$. Since R is E-complemented, we get that $a' \in (a)^+ = \mathcal{M}$. Hence $a' \notin M$. By the condition (2), we get $a \in M$. Thus $E \subseteq M$. Therefore M is an E-ideal of R.

 $(3) \Rightarrow (4)$: It is clear.

 $(4) \Rightarrow (1)$: Assume (4). Let $a \in R$. Suppose $a \wedge a' \neq 0$. Then there exists a maximal filter M of R such that $a \wedge a' \in M$. Clearly, $R \setminus M$ is a minimal prime ideal such that $a \wedge a' \notin R \setminus M$. Hence $a \notin R \setminus M$ and $a' \notin R \setminus M$. By the hypothesis, we get $E \subseteq R \setminus M$. By Theorem-3.3, $R \setminus M$ must contain exactly one of a or a', which is a contradiction. Therefore $a \wedge a' = 0$ and hence R is a relatively complemented ADL.

Theorem 3.5. For any proper deal M of an E-complemented ADL R, M is maximal; if and only if M is a prime E-ideal.

Proof. Let M be any proper ideal of R. Assume that M is a maximal ideal of R. Clearly, M is prime. Let $a \in E$. Then $(a)^+ = \mathcal{M}$. Suppose $a \notin M$. Then $M \lor (a] = R$. There exist $s \in M$ and $t \in (a]$ such that $s \lor t$ is maximal. That implies $s \in (a)^+$. Since $(a)^+ = \mathcal{M}$, we get s is maximal. That implies $s \in M$, this leads M = R, which is a contradiction. Hence $a \in M$. Thus $E \subseteq M$. Therefore M is a prime E-ideal of R. Conversely, assume that M is a prime E-ideal of R. Suppose M is not maximal. Then there exists a proper ideal N of R such that $M \subsetneq N$. Choose $a \in N \setminus M$. Since R is E-complemented, there exists $a' \in R$ such that $a \land a' \in E \subseteq M$ and $a \lor a'$ is maximal. Since M is prime and $a \notin M$, we get $a' \in M \subset N$. Then $a \lor a' \in N$, which is a contradiction. Therefore M is maximal.

In an E-complemented ADL, the class of all maximal ideals and the class of all prime E-ideals of R are the same. Since every prime E-ideal is maximal, we can conclude that every prime E-ideal is minimal in an E-complemented ADL. Hence maximal ideals, prime E-ideal, and minimal prime E-ideals are the same in an E-complemented ADL.

Definition 3.6. For any filter F of an ADL R, define $\nu(F) = \{a \in R \mid a \land s \in E, \text{ for some } s \in F\}.$

Clearly, we have that $\nu(F) = \bigcup_{a \in F} (a, E)$.

Proposition 3.7. Let F be a filter of an ADL R. Then $\nu(F)$ is an E-ideal of R.

Proof. Clearly, $E \subseteq \nu(F)$. Let $a, b \in \nu(F)$. Then there exist $s, t \in F$ such that $a \wedge s \in E$ and $b \wedge t \in E$. Since E is an ideal of R, we get $s \wedge t \wedge a \in E$ and $s \wedge t \wedge b \in E$. Then $(s \wedge t \wedge a) \vee (s \wedge t \wedge b) \in E$ and hence $((s \wedge t) \wedge (a \vee b) \in E$. That implies $(a \vee b) \wedge (s \wedge t) \in E$. Since $s, t \in F$, we get $s \wedge t \in F$ and hence $a \vee b \in \nu(F)$. Let $a \in \nu(F)$ Then there exists $s \in F$ such that $a \wedge s \in E$. Let $r \in R$. Since E is an ideal of R, we get $(a \wedge r) \wedge s \in E$ and hence $a \wedge s \in \nu(F)$. Therefore $\nu(F)$ is an E-ideal of R. **Lemma 3.8.** Let G, H be two filters of an ADL R. Then we have the following: (1) $G \cap \nu(G) \neq \emptyset \Leftrightarrow \nu(G) = R$; (2) $G \subseteq H \Rightarrow \nu(G) \subseteq \nu(H)$; (3) $\nu(G) \cap \nu(G) = w(G \cap H)$.

Proof. (1). Assume that $G \cap \nu(G) \neq \emptyset$. Then choose an element $a \in G \cap \nu(G)$. Then $a \in G$ and $a \in \nu(G)$. Since $a \in \nu(G)$, there exists $s \in G$ such that $a \wedge s \in E$. By Theorem-2.10(5), we get $(a \wedge s, E) = R$. Since $a \in G$ and $s \in G$, we get $a \wedge s \in G$. Hence $\nu(G) = \bigcup_{a \in G} (a, E) = R$.

Conversely, assume that $\nu(G) = R$. Then for any $m \in \mathcal{M}$ such that $m \in \nu(G)$ and hence $m \in G \cap \nu(G)$. Thus $G \cap \nu(G) \neq \emptyset$.

(2). Assume $G \subseteq H$. Let $a \in \nu(G)$. Then there exists $s \in G$ such that $a \wedge s \in E$. Since $G \subseteq H$, we get $s \in H$ and hence $a \in \nu(H)$. Thus $\nu(G) \subseteq \nu(H)$.

(3). Clearly, $\nu(G \cap H) \subseteq \nu(G) \cap \nu(H)$. Let $a \in \nu(G) \cap \nu(H)$. Then there exist $s \in G$ and $t \in H$ such that $a \wedge s \in E$ and $a \wedge t \in E$. Since $s \in G$ and $t \in H$, we get $s \lor t \in G \cap H$ and hence $a \wedge (s \lor t) = (a \land s) \lor (a \land t) \in E$. Therefore $a \in \nu(G \cap H)$. Hence $\nu(G) \cap \nu(H) \subseteq \nu(G \cap H)$. \Box

Proposition 3.9. If G, H are two filters of an ADL R with $\nu(G) \cap H = \emptyset$, then there exists a prime E-ideal M such that $\nu(G) \subseteq M$ and $M \cap H = \emptyset$.

Proof. Let *G* and *H* be two filters of an ADL *R* such that $\nu(G) \cap H = \emptyset$. Then there exists a prime filter *P* such that $H \subseteq P$ and $\nu(G) \cap P = \emptyset$. Since $\nu(G) \cap P = \emptyset$, we get that $E \subseteq \nu(G) \subseteq R \setminus P$. Since $R \setminus P$ is a prime ideal of *R*, we get that $R \setminus P = M$ is a prime *E*-ideal of *R* containing $\nu(G)$.

Now we have the following definition of ν -ideal in an ADL.

Definition 3.10. An *E*-ideal *G* of an ADL *R* is said to be a ν -ideal if $G = \nu(F)$, for some filter *F* of *R* such that $F \cap E = \emptyset$.

From the above definition, it is easy to verify that for any $m \in \mathcal{M}$, $\nu(m) = E$. Hence E is proper and the smallest E-ideal of R.

Example 3.11. Let $R = \{0, 1, 2, 3, 4, 5, 6, 7\}$ and define \lor , \land on R as follows:

\wedge	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	1	2	3	4	5	6	7
3	0	3	3	3	0	0	3	0
4	0	4	5	0	4	5	7	7
5	0	4	5	0	4	5	7	7
6	0	6	6	3	7	7	6	7
7	0	7	7	0	7	7	7	7

\vee	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	1	2	3	1	2	6	6
4	4	1	1	1	4	4	1	4
5	5	2	2	2	5	5	2	5
6	6	1	2	6	1	2	6	6
7	7	1	2	6	4	5	6	7

Then (R, \vee, \wedge) is an ADL. Clearly, we have that $E = \{0, 7\}$. Consider the *E*-ideals $I_1 = \{0, 3\}, I_2 = \{0, 4, 5, 7\}, I_3 = \{0, 3, 6, 7\}, I_4 = \{0, 7\} = E$ and filters $F_1 = \{1, 2, 4\}, F_2 = \{1.2.6\}$. Now, $\nu(F_1) = \{0, 3, 6, 7\} = I_3$. Hence *G* is a ν -ideal of *R*. But $\nu(F_2) = \{0, 4, 5, 6\} \neq I_i$, for i = 1, 2, 3, 4. Hence

Proposition 3.12. For any $a \notin E$ in an ADL R. we have (a, E) is a ν -ideal of R.

Proof. Let $a \notin E$. Clearly, we have $[a) \cap E = \emptyset$. Let $s \in (a, E)$. Then $s \wedge a \in E$. Since $a \in [a)$, we get $s \in \nu([a))$ and hence $(a, E) \subseteq \nu([a))$. Let $s \in \nu([a))$. Then there exists $b \in [a)$ such that $s \wedge b \in E$. That implies $s \wedge a \in E$, which gives that $s \in (a, E)$. Therefore $\nu([a)) \subseteq (a, E)$ and hence $(a, E) = \nu([a))$. Thus (a, E) is a ν -ideal of R.

Theorem 3.13. Let M be a prime E-ideal of R with $(M, E) \neq E$. Then M is a ν -ideal.

Proof. Assume that $(M, E) \neq E$. Since $E \subseteq (M, E)$, we get that $(M, E) \nsubseteq E$. Then there exists $a \in (M, E)$ such that $a \notin E$. Clearly, $[a) \cap E = \emptyset$ and $a \notin M$. Then $M \subseteq ((M, E), E) \subseteq (a, E)$. Therefore $M \subseteq (a, E)$. Let $s \in (a, E)$. Then $s \wedge a \in E \subseteq M$. Since $a \notin M$, we have $s \in M$. Then $(a, E) \subseteq M$. Therefore $M = (a, E) = \nu([a))$ and hence M is a ν -ideal of R. \Box

Theorem 3.14. *Every minimal prime* E*-ideal of an* ADL R *is a* ν *-ideal.*

Proof. Let M be a minimal prime E-ideal of R. Then $R \setminus M$ is a prime filter of R such that $E \cap (R \setminus M) = \emptyset$. Now prove that $M = \nu(R \setminus M)$. Let $a \in M$. Since M is minimal, there exists $b \in R \setminus M$ such that $a \wedge b \in E$. That implies $a \in \nu(R \setminus M)$. Therefore $M \subseteq \nu(R \setminus M)$. Let $a \in w(R \setminus M)$. Then there exists $s \in R \setminus M$ such that $a \wedge s \in E \subseteq M$. Since M is prime and $s \notin M$, we get $a \in M$. Therefore $\nu(R \setminus M) \subseteq M$ and hence $M = \nu(R \setminus M)$. Thus M is a ν -ideal of R.

We now turn our intension towards the converse of the above theorem. In general, every ν -ideal of an ADL need not be a minimal prime E-ideal. In fact it need not even be a prime E-ideal. It can be observed in the following example:

Example 3.15. Consider a distributive lattice $L = \{0, a, b, c, 1\}$ and discrete ADL $A = \{0', a'\}$.

Clearly,

 $R = A \times L = \{(0',0), (0',a), (0',b), (0',c), (0',1), (a',0), (a',a), (a',b), (a',c), (a',1)\} \text{ is an ADL with zero element } (0,0'). Clearly, the dense set <math>E = \{(0',0), (0',a)\}$. Consider an E-ideal $I = \{(0',0), (0',a), (0',c)\}$ and a filter $F = \{(a',b), (a',1)\}$. Clearly, I is a ν -ideal, but not prime.

Though every ν -ideal need not be a prime E-ideal, we derive a necessary and sufficient condition for a ν -ideal of an ADL to become a prime E-ideal.

Theorem 3.16. A proper ν -ideal G of an ADL R is a prime E-ideal if and only if G contains a prime E-ideal.

Proof. Let G be a proper ν -ideal of R. Assume that G is a prime E-ideal of R. Clearly, G contains a prime E-ideal G. Conversely, assume that G contains a prime E-ideal, say M. Since $E \subseteq M \subseteq G, G$ is an E-ideal of R. Since G is a ν -ideal, we get $G = \nu(F)$, for some filter F of R with $F \cap E = \emptyset$. Let $s, t \in R$ such that $s \notin G$ and $t \notin G$. Since $M \subseteq G$, we get $s \notin M$ and $t \notin M$. Since M is prime, we get $s \wedge t \notin M$. That implies $(s \wedge t, E) \subseteq M \subseteq G = \nu(F)$. Suppose $s \wedge t \in G = \nu(F)$. Then there exists $x \in F$ such that $s \wedge t \wedge x \in E$. That implies $x \in (s \wedge t, E) \subseteq \nu(F)$. Therefore $x \in F \cap \nu(F)$ and hence $F \cap \nu(F) \neq \emptyset$. By Lemma-3.8(1), $G = \nu(F) = R$, which is a contradiction. Thus G is a prime E-ideal of R.

In the above Theorem-3.16, It is observed that every minimal prime E-ideal is a prime ν -ideal of R. Now we established the equivalency between prime ν -ideals and minimal prime E-ideals of an ADL.

Theorem 3.17. Every prime ν -ideal of an ADL R is a minimal prime E-ideal.

Proof. Let M be a prime ν -ideal of R. Then $M = \nu(F)$, for some filter F of R with $F \cap E = \emptyset$. Let $a \in M = \nu(F)$. Then there exists $b \in F$ such that $a \wedge b \in E$. Suppose $b \in M$. Then $b \in F \cap \nu(F)$. That implies $F \cap \nu(F) \neq \emptyset$. By Lemma-3.8(1), $M = \nu(F) = R$ which is a contradiction. Therefore $b \notin M$ and hence M is a minimal prime E-ideal. \Box

Theorem 3.18. In an ADL R, the following are equivalent:

(1) R is E-complemented;
(2) every prime E-ideal is a ν-ideal;
(3) every prime E-ideal is minimal;
(4) every maximal ideal is a minimal prime E-ideal;

(5) every maximal ideal is a ν -ideal.

Proof. (1) \Rightarrow (2) : Assume (1). Let M be a prime E-ideal of R. Then $R \setminus M$ is a prime ideal of R such that $(R \setminus M) \cap E = \emptyset$. Now prove that $M = \nu(R \setminus M)$. Let $a \in M$. Since R is E-complemented, there exists $b \in R$ such that $a \wedge b \in E$ and $a \vee b$ is maximal. Clearly, $b \notin M$, which gives that $b \in R \setminus M$. Since $a \wedge b \in E$, we get $a \in \nu(R \setminus M)$. Therefore $M \subseteq \nu(R \setminus M)$. Let $a \in \nu(R \setminus M)$. Then there exists $b \in R \setminus M$ such that $a \wedge b \in E$. Since $a \wedge b \in E \subseteq M$ and $b \notin M$, we get $a \in M$. Therefore $\nu(R \setminus M) \subseteq M$. Hence M is a ν -ideal of R.

 $(2) \Rightarrow (3)$: Assume (2). Let *M* be a prime *E*-ideal of *R*. By our assumption, *P* is a prime ν -ideal. By Theorem-3.17, *P* is minimal.

 $(3) \Rightarrow (4)$: It is clear.

 $(4) \Rightarrow (5)$: It is clear.

 $(5) \Rightarrow (1)$: Assume (5). Let $a \in R$ and $m \in \mathcal{M}$. Suppose $m \notin (a] \lor (a, E)$. Then there exists a maximal ideal M such that $(a] \lor (a, E) \subseteq M$. That implies $a \in M$ and $(a, E) \subseteq M$. By the assumption, M is a ν -ideal. Since M is prime, by Theorem-3.17, M is minimal prime E-ideal. Then $a \notin M$, which is a contradiction. That implies $m \in (a] \lor (a, E)$. There exists $s \in (a, E)$ such that $a \lor s = m$. Since $s \in (a, E)$, we get $s \land a \in E$. Thus R is E-complemented. \Box

We conclude this paper with a characterization theorem of ν -ideals in terms of minimal prime *E*-ideals. For this, we first need the following results.

Lemma 3.19. Let F be a filter of an ADL R such that $F \cap E = \emptyset$. If M is a minimal prime E-ideal containing $\nu(F)$, then $F \cap M = \emptyset$.

Proof. Let M be a minimal prime E-ideal of R with $\nu(F) \subseteq M$. Suppose $a \in F \cap M$. Then $a \in M$ and $a \in F$. Since M is minimal and $a \in M$, there exists $b \notin M$ such that $a \wedge b \in \nu(F)$. Then there exists $x \in F$ such that $(a \wedge b) \wedge x \in E$. That implies $b \wedge (a \wedge x) \in E$ and $a \wedge x \in F$. Therefore $b \in \nu(F) \subseteq M$, which is a contradiction. Thus $F \cap M = \emptyset$.

Lemma 3.20. Every minimal prime E-ideal of an ADL R containing a ν -ideal is a minimal prime E-ideal in R.

Proof. Let G be a ν -ideal of R. Then $G = \nu(F)$, for some filter F of R such that $F \cap E = \emptyset$. Let M be a minimal prime E-ideal containing $G = \nu(F)$. By the above lemma, $F \cap M = \emptyset$. Let $a \in M$. Then there exists $b \notin M$ such that $a \wedge b \in \nu(F)$. There exists $x \in F$ such that $(a \wedge b) \wedge x \in E$. Therefore $a \wedge (b \wedge x) \in E \subseteq M$ and $b \wedge x \notin M$. Thus M is a minimal prime E-ideal of R.

Now, ν -ideals are characterized in terms of minimal prime E-ideals.

Theorem 3.21. Every ν -ideal of an ADL R is the intersection of all minimal prime E-ideals containing it.

Proof. Let G be a ν -ideal of R. Then $G = \nu(F)$, for some filter F of R such that $F \cap E = \emptyset$. Let $H = \bigcap \{M | M \text{ is a minimal prime } E - \text{ideal containing } G \}$. Clearly, $G \subseteq H$. Let $x \notin G = \nu(F)$. Then $x \wedge s \notin E$, for all $s \in F$. Then there exists a minimal prime E-ideal M such that $x \wedge s \notin M$. That implies $x \notin M$ and $s \notin M$. Since M is prime, $(s, E) \subseteq M$, for all $s \in F$. Then $G = \nu(F) \subseteq M$. Hence M is minimal such that $G \subseteq M$ and $x \notin M$. Therefore $x \notin H$, which leads $H \subseteq G$. Thus G = H. **Theorem 3.22.** Let $\{G_{\alpha}\}_{\alpha \in \triangle}$ be a class of ν -ideals of an ADL R. Then $\bigcap_{\alpha \in \triangle} G_{\alpha}$ is a ν -ideal of R.

Proof. For each $\alpha \in \Delta$, let $G_{\alpha} = \nu(F_{\alpha})$ where F_{α} is a filter of R such that $F_{\alpha} \cap E = \emptyset$. Then $\{F_{\alpha}\}_{\alpha \in \Delta}$ will be an arbitrary family of filters in R such that $F_{\alpha} \cap E = \emptyset$ for each $\alpha \in \Delta$. Hence $\bigcap_{\alpha \in \Delta} F_{\alpha}$ is a filter of R such that $\left(\bigcap_{\alpha \in \Delta} F_{\alpha}\right) \cap E = \emptyset$. By Lemma-3.8(3), we get $\bigcap_{\alpha \in \Delta} \nu(F_{\alpha}) = \nu\left(\bigcap_{\alpha \in \Delta} F_{\alpha}\right)$. Therefore $\bigcap_{\alpha \in \Delta} G_{\alpha}$ is a ν -ideal of R.

Note that the class of all ν -ideals of an ADL is closed under set-intersection. In general, ν -ideals need not be closed under finite joins. However, in the following, we prove that the class $\mathfrak{I}_{\nu}(R)$ of all ν -ideals of an ADL R forms a complete lattice.

Theorem 3.23. Let G, H be two filters of an ADL R such that $G \cap E = H \cap E = \emptyset$. Then $\nu(G \lor H)$ is the smallest ν -ideal containing both $\nu(G)$ and $\nu(H)$.

Proof. Let G, H be two filters of R such that $G \cap E = H \cap E = \emptyset$. Clearly, $(G \vee H) \cap E = \emptyset$. By Lemma-3.8(2), we get $\nu(G) \subseteq \nu(G \vee H)$ and $\nu(H) \subseteq \nu(G \vee H)$. Suppose $\nu(G) \subseteq \nu(K)$ and $\nu(H) \subseteq \nu(K)$, for some filter K of R with $K \cap E = \emptyset$. Let $a \in \nu(G \vee H)$. Then there exist $s \in G$ and $t \in H$ such that $a \wedge (s \wedge t) \in E$. That implies $a \wedge s \in \nu(H) \subseteq \nu(K)$. There exists $x \in K$ such that $a \wedge s \wedge x \in E$. Since $x \wedge y \in K$, we get $a \in \nu(K)$. Therefore $\nu(G \vee H)$ is the supremum of $\nu(G)$ and $\nu(H)$. Consider this supremum by $\nu(G) \sqcup \nu(H)$. Thus $(\mathfrak{I}_{\nu}(R), \cap, \sqcup)$ forms a lattice.

Corollary 3.24. Let $\{\nu(F_{\alpha})\}_{\alpha\in\Delta}$ be a class of ν -ideals of an ADL R where $F_{\alpha} \cap E = \emptyset$ for each $\alpha \in \Delta$. Then $\bigsqcup_{\alpha\in\Delta} \nu(F_{\alpha})$ is the smallest ν -idealr containing each $\nu(F_{\alpha})$.

It can be easily observed that the class of all ν -ideals of an ADL forms a complete lattice with respect to set inclusion \subseteq , in which for any $\{\nu(F_{\alpha})\}_{\alpha\in\triangle}$ of ν -ideals, $inf\{\nu(F_{\alpha})\}_{\alpha\in\triangle} = \nu(\bigcap_{\alpha\in\triangle} F_{\alpha})$ and the $sup\{\nu(F_{\alpha})\}_{\alpha\in\triangle} = \nu(\bigvee_{\alpha\in\triangle} F_{\alpha})$. Since the class of all filters of an ADL forms a complete distributive lattice, the class $\mathfrak{I}_{\nu}(R)$ of all ν -ideals of an ADL R forms a complete distributive lattice. In general, the class $\mathfrak{I}_{\nu}(R)$ of all ν -ideals of an ADL R is not a sublattice of the ideal lattice $\mathfrak{I}(R)$. However, in the following, we derive a set of equivalent conditions for $\mathfrak{I}_{\nu}(R)$ to become a sublattice of $\mathfrak{I}(R)$. For this, we first need the following result.

Lemma 3.25. Every proper ν -ideal is contained in a minimal prime E-ideal.

Proof. Let G be a proper ν -ideal of R. Then $G = \nu(F)$ for some filter F of R with $F \cap E = \emptyset$. Hence $E \subseteq \nu(F) = G$. Clearly, $G \cap F = \nu(F) \cap F = \emptyset$. Consider, the set $\Im = \{H \mid H \text{ is a filter of } R \text{ such that } F \subseteq H \text{ and } G \cap H = \emptyset\}$. Clearly $F \in \Im$ and \Im satisfies the Zorn's lemma. Let N be a maximal element of \Im . Then N is an ideal of R such that $F \subseteq N$ and $G \cap N = \emptyset$. Since $E \subseteq G$, we get $E \cap N = \emptyset$. That implies N is an ideal which is maximal with respect to the property that $E \cap N = \emptyset$. Hence $R \setminus N$ is a minimal prime E-ideal such that $G \subseteq R \setminus N$.

Theorem 3.26. In an ADL R, the following are equivalent: (1) $\mathfrak{I}_{\nu}(R)$ is a sublattice of $\mathfrak{I}(R)$; (2) for $x, y \in R, x \land y \in E$ implies $(x, E) \lor (y, E) = R$; (3) for $x, y \in R, (x, E) \lor (y, E) = (x \land y, E)$; (4) for $G, H \in \mathfrak{F}(R), G \lor H = R$ implies $\nu(G) \lor \nu(H) = R$; (5) for $G, H \in \mathfrak{F}(R), \nu(G) \lor \nu(H) = \nu(G \lor H)$.

Proof. $(1) \Rightarrow (2)$: Assume (1). Let $x, y \in R$ with $x \land y \in E$. Suppose $(x, E) \lor (y, E) \neq R$. Since (x, E) and (y, E) are ν -ideals of R, by hypothesis, we get that $(x, E) \lor (y, E)$ is a proper ν -ideal of R. By Lemma-3.25, there exists a minimal prime E-ideal M such that $(x, E) \lor (y, E) \subseteq M$. Hence $(x, E) \subseteq M$ and $(y, E) \subseteq M$. Since M is a minimal prime E-ideal, we get that $x \notin M$ and $y \notin M$. Since M is a prime ideal, we get that $x \land y \notin M$, which is a contradiction to that

 $x \wedge y \in E \subseteq M$. Therefore $(x, E) \lor (y, E) = R$.

 $(2) \Rightarrow (3)$: Assume (2). Let $x, y \in R$. Clearly $(x, E) \lor (y, E) \subseteq (x \land y, E)$. Let $s \in (x \land y, E)$. Then $s \land (x \land y) \in E$. That implies $(s \land x) \land (s \land y) \in E$. By our assumption, we have that $(s \land x, E) \lor (s \land y, E) = R$. Then $s \in (s \land x, E) \lor (s \land y, E)$. There exist $a \in (s \land x, E)$ and $t \in (s \land x, E) \lor (s \land y, E)$ such that $s = a \lor t$. Since $a \in (s \land x, E)$, we get $a \land s \in (x, E)$. Similarly, we have that $t \land s \in (y, E)$. Clearly, $(s \land a) \lor (s \land t) \in (x, E) \lor (y, E)$, which leads $s \land (a \lor t) \in (x, E) \lor (y, E)$. Since $s = a \lor s$, we get that $s \in (x, E) \lor (y, E)$. Therefore $(x \land y, E) \subseteq (x, E) \lor (y, E)$ and hence $(x, E) \lor (y, E)$.

 $(3) \Rightarrow (4)$: Assume (3). Let G, H be two filters of R with $G \lor H = R$. Let $x \in E$. Then there exist $s \in G$ and $t \in H$ such that $x = s \land t$. By our assumption, we get $R = (x, E) = (s \land t, E) = (s, E) \lor (t, E) \subseteq \nu(G) \lor \nu(H)$. Hence $\nu(G) \lor \nu(H) = R$.

 $(4) \Rightarrow (5) : \text{Let } G, H \text{ be two filters of } R. \text{ Clearly we have that } \nu(G) \lor \nu(H) \subseteq \nu(G \lor H). \text{ Let } a \in \nu(G \lor H). \text{ Then there exists } s \in G \lor H \text{ such that } a \land s \in E. \text{ Since } s \in G \lor H, \text{ there exist } x \in G \text{ and } y \in H \text{ such that } s = x \land y. \text{ Since } a \land s \in E, \text{ we get } a \land (x \land y) \in E. \text{ That implies } [(a \lor x) \lor (a \lor y)) = [E), \text{ which gives } [a \land x) \cap [a \land y) = R. \text{ Therefore } \nu([a \land x)) \lor \nu([a \land y)) = R \text{ and hence } (a \land x, E) \lor (a \land y, E) = R. \text{ Since } a \in R, \text{ we have } a \in (a \land x, E) \lor (a \land y, E). \text{ Then there exist } s \in (a \land x, E) \text{ and } t \in (a \land y, E) \text{ such that } a = s \lor t. \text{ Since } s \in (a \land x, E) \text{ and } t \in (a \land y, E), \text{ we get } a \land s \in (x, E) \text{ and } a \land t \in (y, E). \text{ Then } (a \land s) \lor (a \land t) \in (x, E) \lor (y, E), \text{ which leads } a \land (s \lor t) \in (x, E) \lor (y, E). \text{ Since } s \lor t = a, \text{ we get } a \in (x, E) \lor (y, E). \text{ Since } (x, E) \lor (y, E) \subseteq \nu(G) \lor \nu(H), \text{ we get } a \in \nu(G) \lor \nu(H). \text{ Therefore we get } \nu(G \lor H) \subseteq \nu(G) \lor \nu(H). \text{ Hence } \nu(G \lor H) = \nu(G) \lor \nu(H). \text{ (for } u) = 0$

Theorem 3.27. Let $\mathfrak{I}_{\nu}(R)$ be a sublattice of $\mathfrak{I}(R)$. If $\{G_{\alpha}\}_{\alpha \in \Delta}$ be any class of ν -ideals of R, then $\bigvee_{\alpha \in \Delta} G_{\alpha}$ is again a ν -ideal of R.

Proof. For each $\alpha \in \Delta$, let $G_{\alpha} = \nu(F_{\alpha})$ where F_{α} is a filter of R such that $F_{\alpha} \cap E = \emptyset$. Then $\{F_{\alpha}\}_{\alpha \in \Delta}$ will be any class family of filters of R with $F_{\alpha} \cap E = \emptyset$, for all $\alpha \in \Delta$. Clearly, $(\vee F_{\alpha}) \cap E = \emptyset$. Since $G_{\alpha} = \nu(F_{\alpha}) \subseteq \nu(\vee F_{\alpha})$ for each $\alpha \in \Delta$, we get $\vee G_{\alpha} \subseteq \nu(\vee F_{\alpha})$. Let $a \in \nu(\vee F_{\alpha})$. Then there exists $s \in \vee F_{\alpha}$ such that $a \wedge s \in E$. Then there exists a positive integer n such that $s = s_1 \wedge s_2 \wedge \cdots \wedge s_n$ where $s_i \in F_{\alpha_i}$. By condition (4) of Theorem-3.26, we get $a \wedge s \in E \Rightarrow a \wedge (s_1 \wedge s_2 \wedge \cdots \wedge s_n) \in E \Rightarrow (a \wedge s_1) \wedge (a \wedge s_2) \wedge \cdots \wedge (a \wedge s_n) \in E \Rightarrow [a \wedge s_1) \cap [a \wedge s_2) \cap \cdots \cap [a \wedge s_n) = R \Rightarrow \nu([a \wedge s_1)) \vee \nu([a \wedge s_2)) \vee \cdots \vee \nu([a \wedge s_n)) = R \Rightarrow (a \wedge s_1, E) \vee (a \wedge s_2, E) \vee \cdots \vee (a \wedge s_n, E) = R$. Since $a \in R$ we get $a \in (a \wedge s_1, E) \vee (a \wedge s_2, E) \vee \cdots \vee (a \wedge s_n, E) = R$. Since $a \in R$ we get $a \in (a \wedge s_1, E) \vee (a \wedge s_2, E) \vee \cdots \vee (a \wedge s_n, E) = R$. Since $a \in R$ we get $a \in (a \wedge s_1, E) \vee (a \wedge s_2, E) \vee \cdots \vee (a \wedge s_n, E) = (a \wedge s_1, E) \vee (a \wedge s_2) \vee \cdots \vee (a \wedge s_n, E) = R$. Since $a \in R$ we get $a \in (a \wedge s_1, E) \vee (a \wedge s_2, E) \vee \cdots \vee (a \wedge s_n, E) = R$. Since $a \in R$ we get $a \in (a \wedge s_1, E) \vee (a \wedge s_2, E) \vee \cdots \vee (a \wedge s_n, E) = R$. Since $a \in R$ we get $a \in (a \wedge s_1, E) \vee (a \wedge s_2, E) \vee \cdots \vee (a \wedge s_n, E) = (a \wedge s_1, E) \vee (a \wedge t_2) \vee \cdots \vee (a \wedge t_n) \in (s_1, E) \vee (s_2, E) \vee \cdots \vee (s_n, E) \subseteq \nu(F_1) \vee \nu(F_2) \vee \cdots \vee \nu(F_n) = G_1 \vee G_2 \vee \cdots \vee G_n \subseteq \vee G_{\alpha}$. That implies $\nu(\vee F_{\alpha}) \subseteq \vee G_{\alpha}$. Thus $\vee G_{\alpha}$ is a ν -ideal of R.

Theorem 3.28. Let $\mathfrak{I}_{\nu}(R)$ be a sublattice of $\mathfrak{I}(R)$. For any *E*-ideal *G*, there exists a unique ν -ideal contained in *G*.

Proof. Let G be any E-ideal of R. Consider $\mathfrak{M} = \{H \in \mathfrak{I}_{\nu}(R) \mid H \subseteq G\}$. Since E is the ν -ideal and $E \subseteq G$, we get $E \in \mathfrak{M}$. Clearly, \mathfrak{M} satisfies the hypothesis of Zorn's Lemma. Then \mathfrak{M} has a maximal element let it be N. It is enough to show that N is unique. Let Q be any maximal element of \mathfrak{M} such that $N \subseteq Q$. Clearly, $N \lor Q \subseteq G$. By Theorem-3.26, $N \lor Q \in \mathfrak{M}$. Therefore $N = N \lor Q = Q$. Thus \mathfrak{M} has a unique maximal element, which is the required ν -ideal contained in G.

References

- [1] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ. XXV, Providence, U.S.A., (1967).
- [2] G. C. Rao, Almost Distributive Lattices, Doctoral Thesis, Dept. of Mathematics, Andhra University, Visakhapatnam, (1980).
- [3] G.C. Rao, G.N. Rao and A. Lakshmana, *Quasi-complemented Almost Distributive Lattices*, Southeast Asian Bulletin of Mathematics, **39(3)**, 311–319, (2015).
- [4] G.C. Rao and M. Sambasiva Rao, Annulets in Almost Distributive Lattices, European Journal of Pure and Applied Mathematics, 2(1), 58–72, (2009).

- [5] G.C. Rao and S. Ravi Kumar, *Minimal prime deals in an ADL*, Int. J. Contemp. Sciences, 4, 475–484, (2009).
- [6] G. Gratzer, General Lattice Theory, Academic Press, New York, Sanfransisco, (1978).
- [7] N. Rafi, Y. Monikarchana and Ravi kumar Bandaru, On Prime E-ideals of Almost Distributive Lattices, Int. J. Anal. Appl., 21:85,1–24, (2023).
- [8] N. Rafi, Ravi Kumar Bandaru and M. Srujana, *Closure prime spectrum of MS-Almost Distributive Lattices*, Palestine Journal of Mathematics, **10**(2), 834–844, (2021).
- [9] Ramesh Sirisetti and G. Jogarao, Weak Relatively Complemented Almost Distributive Lattices, Palestine Journal of Mathematics, 6(2), 448–457 (2017).
- [10] Shriram K. Nimbhorkar and Jaya Y. Nehete, δ-Primary Ideals in Lattices, Palestine Journal of Mathematics, 8(Special Issue: I), 475–481 (2019).
- [11] U.M. Swamy and G.C. Rao, Almost Distributive Lattices, J. Aust. Math. Soc. (Series A), 31, 77–91, (1981).
- [12] U.M. Swamy and S. Ramesh, *Birkhoff Centre of an Almost Distributive Lattice*, International Journal of Algebra, 3(11), 539 – 546, (2009).

Author information

Natnael Teshale A., Department of Mathematics, University of Gondar, Gondar, Ethiopia. E-mail: yenatnaelteshale@gmail.com

N. Rafi, Department of Mathematics, Bapatla Engineering College, Bapatla, Andhra Pradesh-522 101, India. E-mail: rafimaths@gmail.com

Y. Monikarchana, Department of Mathematics, Mohan Babu University, A.Rangampet, Tirupati, Andhra Pradesh-517 102, India. E-mail: 285archana@gmail.com

Received: 2023-10-21 Accepted: 2024-01-18