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Abstract In this paper, we extend the concepts of cyclic transitivity, recurrence, and super-
recurrence by introducing and examining a novel notion called C-recurrence. We then present
a C-recurrence Criterion, inspired by the Hypercyclicity Criterion and the Cyclicity Criterion.
Finally, we characterize C-recurrence for weighted shifts.

1 Introduction and preliminaries

Let X be a Banach space over the field C of complex numbers. The set of linear continuous
operators on X is denoted by B(X).

An operator T ∈ B(X) is considered hypercyclic if there exists a vector x ∈ X such that its
orbit under the action of T ,

Orb(x, T ) := {Tn(x) : n ∈ N},

is dense in the entire space X . The vector x itself is referred to as a hypercyclic vector for
the operator T . The collection of all hypercyclic vectors for T is denoted by HC(T ). In the
context of separable Banach spaces, an equivalent notion of hypercyclicity, called topological
transitivity, was introduced by Birkhoff in [12]. According to this notion, an operator T acting
on a separable Banach space X is hypercyclic if and only if it is topologically transitive; that is,
for every pair of non-empty open sets (U, V ) in X , there exists an n ∈ N such that

Tn(U) ∩ V ̸= ∅.

In 1974, Hilden and Wallen introduced the concept of supercyclicity in [22]. An operator T ∈
B(X) is termed supercyclic if there exists a vector x ∈ X such that the set

C · Orb(x, T ) := {λTn(x) | n ∈ N, λ ∈ C}

is dense in X . This vector x is referred to as a supercyclic vector for T . The collection of all
supercyclic vectors for T is denoted by SC(T ). Furthermore, an operator T acting on a separable
Banach space X is supercyclic if and only if, for each pair (U, V ) of nonempty open subsets of
X , there exist n ∈ N and λ ∈ C such that

λTn(U) ∩ V ̸= ∅.

An operator T ∈ B(X) is referred to as cyclic if there exists a vector x ∈ X such that the set

C[T ]x := span{Orb(x, T )} = {p(T )(x) | p polynomial}

is dense in X . The set of all cyclic vectors for T is denoted by C(T ). The phenomenon of cyclic
transitivity was introduced in [11]. An operator T ∈ B(X) is said to be cyclic transitive if, for
any pair (U, V ) of non-empty open subsets of X , there exists a complex polynomial p such that

p(T )(U) ∩ V ̸= ∅.
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It is evident that cyclic transitivity implies cyclicity. However, the converse does not hold in
general, as shown in [17].

For further information about hypercyclic, supercyclic, and cyclic operators and their prop-
erties, refer to the book by K.G. Grosse-Erdmann and A. Peris [20], and the book by F. Bayart
and E. Matheron [8], as well as the survey article by K.G. Grosse-Erdmann [21]. See also
[1, 2, 3, 4, 5, 9].

Another crucial concept in linear dynamics is that of recurrence, originally introduced by
Poincaré in [23]. Later, it was studied by Gottschalk and Hedlund [18], as well as by Furstenberg
[16]. Recently, recurrent operators have been the subject of study in [13].

An operator T ∈ B(X) is considered recurrent if, for each open subset U of X , there exists a
positive integer n such that

Tn(U) ∩ U ̸= ∅.

A vector x ∈ X is called a recurrent vector for T if there exists an increasing sequence (nk) of
positive integers such that Tnkx converges to x as k approaches infinity. The set of all recurrent
vectors for T is denoted by Rec(T ). Additionally, T is recurrent if and only if Rec(T ) is dense
in X .

Recently, a new class of operators, known as the class of super-recurrent operators, has been
introduced. An operator T ∈ B(X) is considered super-recurrent if, for each open subset U of
X , there exists λ ∈ C and a positive integer n such that

λTn(U) ∩ U ̸= ∅.

A vector x ∈ X is called a recurrent vector for T if there exists an increasing sequence (nk) of
positive integers and a sequence (λnk

) of complex numbers such that λnk
Tnkx converges to x as

k approaches infinity. The set of all recurrent vectors for T is denoted by SRec(T ). Furthermore,
T is super-recurrent if and only if SRec(T ) is dense in X . For further information about this
class of operators, see [6, 10].

In this paper, we introduce a novel class of operators called C-recurrent operators, which
bridge the relationship between cyclic transitivity and recurrence. Specifically, this class of
operators combines the properties of being cyclic and recurrent, encompassing the phenomena
of cyclic transitivity and recurrence simultaneously.

In Section 2, we present the concept of C-recurrent operators. We demonstrate that every
super-recurrent operator and every cyclic transitivity operator belong to the class of C-recurrent
operators. Additionally, we establish the existence of an operator that is classified as C-recurrent
but is not categorized as super-recurrent or cyclic transitive. This finding illustrates that the class
of C-recurrent operators provides a broader scope that encompasses both super-recurrent and
cyclic transitivity operators while also introducing new examples that do not fall under either of
these categories.

In Section 3, we establish several properties for C-recurrent operators. In particular, we prove
that an operator T is C-recurrent if and only if it admits a dense set of C-recurrent vectors.

In Section 4, we introduce a C-recurrent Criterion, providing guidelines to determine whether
an operator belongs to this class. Furthermore, we establish some sufficient conditions for T ⊕T
to be C-recurrent when T is C-recurrent. Additionally, we conduct an in-depth investigation of
the C-recurrence properties of weighted shift operators on classical sequence spaces.

2 C-recurrent operators

In this section, we commence by introducing our primary definition. Let us recall that given
p ∈ C[X] with p(z) =

∑n
i=0 λiz

i and T ∈ B(X), we have the notation

p(T ) =
n∑

i=0

λiT
i.

Definition 2.1. An operator T is considered to be C-recurrent if, for every nonempty open subset
U of the vector space X , there exists a polynomial p ∈ C[X] such that the following condition
is met:

p(T )(U) ∩ U ̸= ∅.
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Furthermore, a vector x ∈ X \ {0} is termed a C-recurrent vector for the operator T if there
exists a sequence (pk) of complex polynomials such that the following convergence occurs:

pk(T )x −→ x.

The set containing all C-recurrent vectors for the operator T is denoted by CRec(T ).

Our initial contribution is to establish the relationship between our class of operators and
the other class mentioned previously. We have the following diagram showing the relationships
among supercyclic, super-recurrent, cyclic transitive, and C-recurrent operators.

Supercyclicity

��

+3 Cyclic Transitivity

��
Super-recurrent +3 C-recurrent

Note that the converse of all these implications does not hold in general, as demonstrated by
the following examples.

Counterexamples:
• Cyclic Transitivity ̸⇒ Supercyclicity: There exist operators that are cyclic transitive but not

supercyclic; see [15, Proposition 7.2].
• Super-recurrence ̸⇒ Supercyclicity: There exist operators that are super-recurrent but not

supercyclic; see [6, Remarks 2.2].
• C-recurrence ̸⇒ Super-recurrence: There exist operators that are C-recurrent but not super-

recurrent, as shown by the following example:

Example 2.2. Let H(C) be the space of entire functions. We define an operator T on H(C) by

T : H(C) −→ H(C)
f 7−→ T (f) = f ′.

The restriction of the operator T to the space of constant functions in H(C) is C-recurrent. To
see this, let f be a non-zero constant function. Consider the polynomials pk(z) = zk+αk, where
(αk)k∈N is a sequence of complex numbers such that αk → 1. Then,

pk(T )(f) = T k(f) + αkf = αkf −→ f,

as k → ∞. However, T cannot be super-recurrent in the space of constant functions in H(C).
This is because, for every non-zero constant function f in H(C), we have

λkT
nk(f) = 0 ↛ f,

for every increasing sequence (nk) of positive integers and a sequence (λk) of complex numbers.

• C-recurrence ̸⇒ Cyclic Transitivity: There exist operators that are C-recurrent but not cyclic
transitive, as shown by the following example:

Example 2.3. A cyclic transitive operator is C-recurrent, but the converse does not hold in gen-
eral. Indeed, let

T =

[
2 0
0 2

]

be a matrix on C2. T is a C-recurrent operator. To see this, let u =

[
u1

u2

]
and let pk(X) =

2−kβkX
k, where (βk)k∈N is a sequence of complex numbers such that βk → 1. Then

pk(T )u =

[
pk(2)u1

pk(2)u2

]
→ u.

However, T cannot be cyclic; see [15]. Therefore, T is not cyclic transitive.
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3 Some properties of C-recurrent operators.

In the following, we present certain properties that are satisfied by C-recurrent operators.

Proposition 3.1. Suppose that q ∈ C[X] and S ∈ B(X) satisfy the condition ST = TS. Then it
follows that CRec(T ) remains invariant under q(S).

Proof. Let x ∈ CRec(T ). Then, there exists a sequence (pk) of polynomials such that

pk(T )x −→ x

as k −→ ∞. Since ST = TS, it follows that

pk(T )q(S) = q(S)pk(T )

for all q ∈ C[X]. Given that S is continuous, we can conclude that

pk(T )q(S)x = q(S)pk(T )x −→ q(S)x

as k −→ ∞. This implies that
q(S)x ∈ CRec(T ).

Corollary 3.2. If x is a C-recurrent vector for T , then the set of nonzero vectors generated by
applying polynomials to T acting on x, i.e.,

{p(T )x | p is a polynomial} \ {0},

is a subset of CRec(T ).
In particular, if T has a C-recurrent vector, then it possesses an invariant subspace consisting

of C-recurrent vectors, except for the zero vector.

Proof. For a nonzero polynomial p, let S = p(T ). Since x ∈ CRec(T ), it follows from Propo-
sition 3.1 that p(T )x ∈ CRec(T ). Therefore, for any nonzero polynomial p, the vector p(T )x is
also C-recurrent with respect to T .

In the following proposition, we establish that if q(T ) is C-recurrent for a complex polyno-
mial q, then T is also C-recurrent.

Proposition 3.3. Suppose that T ∈ B(X) and q ∈ C[X]. Then:

(i) If q(T ) is a C-recurrent operator, then T is also a C-recurrent operator.

(ii) CRec(q(T )) ⊆ CRec(T ).

Proof. Proof of (i) is evident by definition.
To establish (ii), let x ∈ CRec(q(T )). Thus, there exists a sequence (pk)k∈N of complex poly-
nomials such that

pk(q(T ))(x) −→ x.

As a result, pk(q)(T )(x) −→ x since pk(q) is a sequence of complex polynomials. Consequently,
x ∈ CRec(T ).

Consider two Banach spaces, X and Y , and let T and S be operators acting on X and Y ,
respectively. The operators T and S are referred to as quasi-conjugate or quasi-similar if there
exists an operator ϕ : X → Y with a dense range such that

S ◦ ϕ = ϕ ◦ T.

If it is possible to choose ϕ as a homeomorphism (a bijective continuous linear operator with a
continuous inverse), then T and S are called conjugate or similar.
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Proposition 3.4. If T ∈ B(X) is quasi-similar to S ∈ B(Y ), then the property of T being C-
recurrent in X implies that S is C-recurrent in Y .

Proof. Suppose that T is C-recurrent. Let U be a nonempty open subset of Y . Since ϕ is a
continuous linear operator with a dense range, ϕ−1(U) is a nonempty open subset of X . As T is
C-recurrent, there exist p ∈ C[X] and x ∈ X such that

x ∈ ϕ−1(U) and p(T )x ∈ ϕ−1(U).

This implies that ϕ(x) ∈ U and ϕ ◦ p(T )x ∈ U . Since T and S are quasi-similar, it follows that
ϕ(x) ∈ U and p(S) ◦ ϕ(x) ∈ U . Therefore, S is C-recurrent in Y .

Corollary 3.5. Assume that T ∈ B(X) and S ∈ B(Y ) are similar. Then, T is C-recurrent in X
if and only if S is C-recurrent in Y .

The following theorem provides both necessary and sufficient conditions for the C-recurrence
of operators.

Theorem 3.6. The following assertions are equivalent:

(i) T is C-recurrent;

(ii) For each x ∈ X , there exists a sequence (xk) of elements of X and a sequence (pk) of
complex polynomials such that

xk −→ x and pk(T )(xk) −→ x,

as k −→ ∞;

(iii) For each x ∈ X and each neighborhood W of zero, there exist z ∈ X and p ∈ C[X] such
that

p(T )(z)− x ∈ W and z − x ∈ W.

Proof. (i) ⇒ (ii): Let x ∈ X . For all k ≥ 1, consider Uk = B(x, 1
k ), which is a nonempty open

subset of X . Since T is C-recurrent, there exists a polynomial pk ∈ C[X] such that

pk(T )(Uk) ∩ Uk ̸= ∅.

For each k ≥ 1, choose xk ∈ Uk such that pk(T )(xk) ∈ Uk. It follows that

∥xk − x∥ <
1
k

and ∥pk(T )(xk)− x∥ <
1
k
,

implying that
xk −→ x and pk(T )(xk) −→ x

as k −→ ∞.
(ii) ⇒ (iii): It is clear;
(iii) ⇒ (i): Let U be a nonempty open subset of X , and let x ∈ U . Since for all k ≥ 1,
Wk = B(0, 1

k ) is a neighborhood of zero, there exist zk ∈ X and pk ∈ C[X] such that

∥pk(T )(zk)− x∥ <
1
k

and ∥zk − x∥ <
1
k
.

This implies that
zk −→ x and pk(T )(zk) −→ x

as k −→ ∞, which shows that T is C-recurrent.

Let X and Y be two Banach spaces, and consider T ∈ B(X) and S ∈ B(Y ). The following
proposition establishes the relationship between the cyclic recurrence of T ⊕ S on X ⊕ Y and
the cyclic recurrence of T and S on X and Y , respectively.
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Proposition 3.7. If T ⊕S is C-recurrent on X⊕Y , then both T and S are C-recurrent on X and
Y , respectively.

Proof. Let U1 and U2 be nonempty open sets in X and Y , respectively. Then, U1 ⊕ U2 is a
nonempty open set in X ⊕ Y . Since T ⊕ S is C-recurrent, there exists p ∈ C[X] such that

(p(T )⊕ p(S))(U1 ⊕ U2) ∩ (U1 ⊕ U2) ̸= ∅,

which implies that
p(T )(U1) ∩ U1 ̸= ∅ and p(S)(U2) ∩ U2 ̸= ∅.

Therefore, T and S are C-recurrent.

The following theorem establishes the relationship between the cyclic recurrence of an oper-
ator and the set of its C-recurrent vectors. In fact, it shows that T is C-recurrent if and only if it
has a dense set of C-recurrent vectors.

Theorem 3.8. Let T be an operator acting on X . The following assertions are equivalent:

(i) The operator T is C-recurrent;

(ii) CRec(T ) = X .

Furthermore, the set of C-recurrent vectors for T is a Gδ subset of X .

Proof. (ii) ⇒ (i): Assume that T has a dense set of C-recurrent vectors. Let U be an open set
in X . Take a C-recurrent vector y ∈ U and choose ε > 0 such that B(y, ε) ⊂ U . Since T has a
dense set of C-recurrent vectors, there exists a polynomial p ∈ C[X] such that

∥p(T )y − y∥ < ε.

Therefore,
y ∈ p(T )(U) ∩ U ̸= ∅,

and we conclude that T is C-recurrent.
(i) ⇒ (ii): Let U = B(x0, ε0) with x0 ∈ X and 0 < ε0 < 1. We assume that T is a C-
recurrent operator. Thus, there exists a polynomial p1 ∈ C[X] such that the set p1(T )(U) ∩ U
is both nonempty and open in X . Consequently, we can find x1 ∈ X and ε1 < 1

2 satisfying the
condition:

U1 := B(x1, ε1) ⊂ p1(T )
−1(U) ∩ U.

Once more, note that U1 = B(x1, ε1) is an open set in X . Therefore, we can find another
polynomial p2 ∈ C[X] such that the set p2(T )−1(U1) ∩ U1 is nonempty and open in X . Conse-
quently, we can choose x2 ∈ X and ε2 < 1

22 such that:

U2 := B(x2, ε2) ⊂ p2(T )
−1(U1) ∩ U1.

Using induction, we construct a sequence (xk)k∈N of elements in X , a sequence (pk)k∈N of
complex polynomials, and a sequence of positive real numbers (εk)k∈N satisfying the following
conditions:

B(xk, εk) ⊂ B(xk−1, εk−1) and pk(T )(B(xk, εk)) ⊂ B(xk−1, εk−1).

Since X is complete, we can conclude by applying Cantor’s theorem that:⋂
k

B(xk, εk) = {y}

for some y ∈ X . Therefore, pk(T )y → y, implying that y is a C-recurrent vector for T , and
y ∈ U . Finally, let’s observe that:

CRec(T ) =
∞⋂
s=1

⋃
p∈C[X]

{
x ∈ X : ∥p(T )x− x∥ <

1
s

}
which demonstrates that the set of C-recurrent vectors for T is a Gδ-set.

Remark 3.9. Contrary to what we have proven in Theorem 3.8, the set of C-recurrent vectors is
necessarily dense for every C-recurrent operator. In fact, this condition is not required for cyclic
vectors of a cyclic operator, as shown in [17].
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4 C-recurrence Criterion, the problem of T ⊕ T and weighted shifts
operators

In this section, we present several conditions for T ⊕ T to be C-recurrent. We introduce a
C-recurrence Criterion and analyze the C-recurrence properties of weighted shift operators on
classical sequence spaces.

We start by presenting several equivalent conditions for T ⊕ T to be C-recurrent.

Proposition 4.1. The following statements are equivalent:

(i) T ⊕ T is C-recurrent;

(ii) For every pair of nonempty open sets U, V ⊂ X , there exists a polynomial p ∈ C[X] such
that

p(T )(U) ∩ U ̸= ∅ and p(T )(V ) ∩ V ̸= ∅;

(iii) For every nonempty open set U ⊂ X and every neighborhood W of 0, there exists a poly-
nomial p ∈ C[X] such that

p(T )(U) ∩ U ̸= ∅ and p(T )(W ) ∩W ̸= ∅.

Proof. Since the implications (i) ⇒ (ii) and (ii) ⇒ (iii) are straightforward, we only need to
prove the implication (iii) ⇒ (i).

(iii) ⇒ (i): Let U and V be nonempty open subsets of X . Then, there exist a nonempty open
set V1 and a neighborhood W of 0 such that W + V1 ⊂ V . By our hypothesis, there exists a
polynomial p ∈ C[X] such that

p(T )(U) ∩ U ̸= ∅ and p(T )(W ) ∩W ̸= ∅.

Consequently, we have
p(T )(W + V1) ∩ (W + V1) ̸= ∅,

which implies that
(p(T )⊕ p(T ))(U ⊕ V ) ∩ (U ⊕ V ) ̸= ∅.

Hence, we obtain the desired result.

To establish a C-recurrence Criterion, let us begin by revisiting the hypercyclicity and cyclic-
ity criteria.

Theorem 4.2. (Hypercyclicity Criterion [20]) Let X be a separable Banach space, and let T
be an operator acting on X . Assume that there exist dense subsets X0 ⊂ X and Y0 ⊂ X , an
increasing sequence (nk)k≥1 of positive integers, and maps Snk

: Y0 −→ X such that, for any
x ∈ X0 and y ∈ Y0, the following conditions are satisfied:

(i) Tnk(x) −→ 0,

(ii) Snk
(y) −→ 0,

(iii) TnkSnk
(y) −→ y.

Then T is hypercyclic.

Theorem 4.3. (Cyclicity Criterion [19]) Let T be an operator on a separable Banach space X .
Suppose that there exist two dense subsets V and W of X , a sequence (pk) of polynomials, and
a sequence of maps Sk : W −→ X such that:

(i) For every x ∈ V , pk(T )x −→ 0,

(ii) For every x ∈ W , Sk(x) −→ 0,

(iii) For every x ∈ W , pk(T )Sk(x) −→ x.

Then T ⊕ T is cyclic.
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We modify the hypercyclicity and cyclicity criteria to establish a C-recurrence criterion.

Theorem 4.4. (C-recurrence Criterion) Let T be an operator on X . Suppose that there exists a
dense subspace Z ⊂ X and a sequence (pk) of complex polynomials such that:

(i) pk(T )x −→ 0 for every x ∈ Z,

(ii) For every x ∈ Z, there exists a sequence (xk) of elements of X such that xk −→ 0 and
pk(T )xk −→ x.

Then T ⊕ T is C-recurrent.

Proof. Let U and V be non-empty open subsets of X . We will demonstrate that there exists
k ≥ 0 such that pk(U) ∩ U ̸= ∅ and pk(V ) ∩ V ̸= ∅. Since Z is dense in X , we can find

x ∈ U ∩ Z and y ∈ V ∩ Z.

Let ε1 and ε2 be chosen as strictly positive real numbers such that:

B(x, ε1) ⊆ U and B(y, ε2) ⊆ V.

By condition (i), we have pk(T )x −→ 0 and pk(T )y −→ 0 as k −→ ∞. Moreover, based on
condition (ii), we know that there exist two sequences (xk) and (yk) of elements in X such that

xk −→ 0, pk(T )xk −→ x, yk −→ 0, and pk(T )yk −→ y

as k −→ ∞. Thus, we can choose a value of k large enough such that the following inequalities
hold:

∥pk(T )(x)∥ <
ε1

2
, ∥xk∥ < ε1, ∥pk(T )(xk)− x∥ <

ε1

2
,

and
∥pk(T )(y)∥ <

ε2

2
, ∥yk∥ < ε2, ∥pk(T )(yk)− y∥ <

ε2

2
.

Additionally, we obtain:

∥(xk + x)− x∥ = ∥xk∥ < ε1 and ∥(yk + y)− y∥ = ∥yk∥ < ε2.

Hence, we have x + xk ∈ B(x, ε1) ⊂ U and y + yk ∈ B(y, ε2) ⊂ V . Consequently, we
obtain:

∥pk(T )(x+ xk)− x∥ = ∥pk(T )(x) + pk(T )(xk)− x∥
≤ ∥pk(T )(x)∥+ ∥pk(T )(xk)− x∥

<
ε1

2
+

ε1

2
= ε1,

and

∥pk(T )(y + yk)− y∥ = ∥pk(T )(y) + pk(T )(yk)− y∥
≤ ∥pk(T )(y)∥+ ∥pk(T )(yk)− y∥

<
ε2

2
+

ε2

2
= ε2.

Thus, we have established the existence of k ∈ N such that pk(T )(x+xk) ∈ U and pk(T )(y+
yk) ∈ V . Therefore, we can deduce that

x+ xk ∈ pk(T )
−1(U) ∩ U and y + yk ∈ pk(T )

−1(V ) ∩ V.

As a result, we can conclude that T ⊕ T is C-recurrent.

Let’s illustrate the C-recurrence Criterion with an example where we will prove that B ⊕ B
is C-recurrent on X = ℓp(N), where 1 ≤ p < ∞, and B is the backward shift operator defined
as follows:

B(x0, x1, . . .) = (x1, x2, . . .)

for all (x0, x1, . . .) ∈ ℓp(N). Note that the shift operator plays a big role not only in the dynamics
but in operator theory in general, see for instance [14, 24].
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Example 4.5. Let X = ℓp(N), where 1 ≤ p < ∞, or X = c0(N), and let B : X → X be the
backward shift operator. We aim to prove that B ⊕B is C-recurrent in X ⊕X .

Consider Z := c0(N), which denotes the space of finitely supported sequences. Let (pk) be
a sequence of polynomials defined by pk(B) = λkBk, where B is the backward shift operator.
This is for each k ∈ N and each λ ∈ C such that |λ| > 1. For any x ∈ Z ⊂ X , we have

pk(B)(x) −→ 0,

since pk(B)(x) = λkBk(x) = 0 for sufficiently large k, as Bk(x) becomes zero for large enough
k due to the finitely supported nature of x in Z. Due to the density of Z in X , we can find a
sequence (yk) of elements in Z such that

yk −→ x as k → ∞.

Consider the forward shift operator S defined on X by

S(x0, x1, . . .) = (0, x0, x1, . . .),

for all (x0, x1, . . .) ∈ ℓp(N). Let (xk) := (λ−kSk(yk)). Considering that
∥∥λ−kSk

∥∥ ≤ |λ|−k, we
can deduce that

xk = λ−kSk(yk) −→ 0 and pk(B)(xk) = yk −→ x.

This confirms that the backward shift operator B fulfills the C-recurrence Criterion. Thus, we
can conclude that B ⊕B is a C-recurrent operator on X ⊕X .

In the following proposition, we present an alternative formulation of the C-recurrence cri-
terion. It will become evident later that this formulation is easier to work with compared to the
initial one.

Proposition 4.6. An operator T on a Banach space X satisfies the C-recurrence Criterion if and
only if there exists a dense subspace Z ⊂ X and a sequence (pk) of polynomials such that for
each x ∈ Z, there exists a sequence (xk) of elements in X satisfying the following conditions:

(i) ∥pk(T )(x)∥ ∥xk∥ −→ 0;

(ii) pk(T )xk −→ x.

Proof. It is evident that an operator satisfying the C-recurrence Criterion also satisfies the hy-
pothesis of Proposition 4.6, so we need only to prove the converse.

For any x ∈ Z, there exists a sequence (xk) consisting of elements from the set X that
satisfies both properties (i) and (ii) described in Proposition 4.6. Assume that

αk := ∥pk(T )(x)∥ and βk := ∥xk∥

are not both zero. In the case where αkβk ̸= 0, we define λk := α
−1/2
k β

1/2
k . In situations where

αk = 0, we take λk := 2kβk, and if βk = 0, we set λk := 2−kα−1
k .

Now, we define
qk = λkpk and yk = λ−1

k xk.

Then,
qk(T )(x) −→ 0, yk −→ 0, and qk(T )(yk) = pk(T )xk −→ x.

Therefore, we have shown that T satisfies the C-recurrence criterion.

Obviously, the criterion obtained in Proposition 4.6 is easier to apply than the C-recurrence
Criterion (Theorem 4.4). This will become evident in the following result.

Let us first recall the definition of weighted shift operators.
Suppose X is either ℓp(N) with 1 ≤ p < ∞ or X = c0(N), and let w = (wn)n∈N be a

bounded sequence of non-zero positive numbers in C. Consider the unilateral weighted shift
operator Bw on X . It is defined as follows:

Bw(en) =

{
wnen−1 for n ≥ 1,
0 for n = 0,
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where (en)n∈N represents the canonical basis of X .
The objective of the next proposition is to demonstrate how we can utilize the C-recurrence

Criterion to establish that Bw ⊕ Bw is C-recurrent, and consequently, deduce that Bw is also
C-recurrent.

Proposition 4.7. Let Bw ∈ B(X) be the unilateral weighted backward shift operator acting on
X = ℓp(N) for 1 ≤ p < ∞ or X = c0(N). Then, Bw ⊕Bw is a C-recurrent operator on X ⊕X .
Consequently, Bw is also a C-recurrent operator on X .

Proof. We will prove the result for the case of X = ℓp(N) for 1 ≤ p < ∞, since the proof for
X = c0(N) is identical.

Let Z := c0(N) be the set of all finitely supported sequences, and let (pk) be a sequence of
polynomials defined by pk(t) = tk, for all k ∈ N. Consider x belonging to Z. The density of Z
in X guarantees the existence of a sequence (yk) in Z such that yk converges to x.

Let Sw be the linear map defined on X by

Sw(en) = w−1
n+1en+1,

and for each k ∈ N, we set xk := Sk
w(yk). Since ∥pk(Bw)(x)∥ =

∥∥Bk
w(x)

∥∥ = 0 for large enough
k, we have

∥pk(Bw)(x)∥ ∥xk∥ −→ 0

and
pk(Bw)(xk) = yk −→ x.

As a consequence, we deduce that Bw satisfies the C-recurrence Criterion (Proposition 4.6).
Hence, Bw ⊕Bw is a C-recurrent operator on X ⊕X .
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