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Abstract In this paper we investigate a class of impulsive Hamilton-Jacobi equations for
existence of global solutions in spaces of continuous functions. We give conditions under which
the considered equations have at least one and at least two classical solutions. To prove our main
results we propose a new approach based upon recent theoretical results.

1 Introduction

Impulsive differential equations or impulsive partial differential equations are natural frame-
works for mathematical simulation of phenomena which are abruptly changed in their states at
short time perturbations whose duration is negligible in comparison with the duration of the phe-
nomena. The theory of impulsive differential equations is richer than the corresponding theory
of impulsive partial differential equations, see for example the books [8, 16] and the references
therein. Some references on impulsive partial differential equations are: [2, 3, 7, 10, 13, 15]. For
some other related studies, see [6, 17].

In this paper, we investigate the following class of impulsive Hamilton-Jacobi equations

ut +H(t, x, u(t, x), Du(t, x)) = 0, t ∈ J\{t1, . . . , tk}, J = [0, T ], x ∈ Rn,

u(t+j , x)− u(t
−
j , x) = Ij(x, u(tj , x)), j ∈ {1, . . . , k}, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn,

(1.1)

where Du = (ux1 , . . . , uxn) and

u(t+j , x) = lim
t→t+j

u(t, x), u(t−j , x) = lim
t→t−j

u(t, x) x ∈ Rn, j ∈ {1, . . . , k}.

Assume that

(A1) n ≥ 1, 0 = t0 < t1 < . . . < tk < tk+1 = T , u0 ∈ C1(Rn), 0 ≤ u0 ≤ B on Rn for some
constant B > 0.

(A2) Ij ∈ C(Rn+1), |Ij(x, v)| ≤ aj(x)|v|pj , x ∈ Rn, v ∈ R, aj ∈ C(Rn), 0 ≤ aj(x) ≤ B,
x ∈ Rn, pj ≥ 0, j ∈ {1, 2, . . . , k},

(A3) f ∈ C(J ×R2n+1),

|H(t, x, u(t, x), Du(t, x))| ≤ b1(t, x) + b2(t, x)|u(t, x)|l +
n∑
j=1

b3j(t, x)|uxj
(t, x)|lj ,
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(t, x) ∈ J × Rn, b1, b2, b3j ∈ C(J × Rn), 0 ≤ b1, b2, b3j ≤ B on J × Rn, l, lj ≥ 0,
j ∈ {1, . . . , n}.

The problem (1.1) is investigated in [11] for existence and uniqueness of solutions using the
method of characteristics and a Krasnosel’skii type fixed point theorem. The main assumption
in [11] is that H is Lipschitzian in the t-variable. Note that the Hamiltonian H can satisfies (A3)
and at the same time to be not Lipschitzian in the t-variable. For instance,

H(t, x, u(t, x), Du(t, x)) =
√
t+ |u(t, x)|3 +

n∑
j=1

|uxj
(t, x)|3, (t, x) ∈ J ×Rn,

satisfies (A3), but it is not Lipschitzian in the t-variable. Therefore, the results in this paper one
can consider as complimentary results to the results in [11]. In [12], the authors show that the
solution of impulsive Hamilton-Jacobi equation is applied to traffic flow problem.

In this paper, we will investigate the problem (1.1) for existence of at least one classical so-
lution and existence of at least two nonnegative classical solutions. The problem of existence of
solutions of Cauchy-type problems for some partial differential equations in spaces of continu-
ous functions was studied in [4].

This paper is organized as follows. In the next section, we give some auxiliary results. In
Section 3 we prove existence of at least one classical solution for the problem (1.1). In Section
4, we prove existence of at least two nonnegative classical solutions. In Section 5, we give an
example to illustrate our main results.

2 Preliminary Results

Below, assume that X is a real Banach space. Now, we will recall the definitions of compact and
completely continuous mappings in Banach spaces.

Definition 2.1. Let K : M ⊂ X → X be a map. We say that K is compact if K(M) is contained
in a compact subset of X . K is called a completely continuous map if it is continuous and it
maps any bounded set into a relatively compact set.

Proposition 2.2. (Leray-Schauder nonlinear alternative [1]) Let C be a convex, closed subset
of a Banach space E, 0 ∈ U ⊂ C where U is an open set. Let f : U → C be a continuous,
compact map. Then

(a) either f has a fixed point in U,

(b) or there exist x ∈ ∂U , and λ ∈ (0, 1) such that x = λf(x).

To prove our existence result we will use the following fixed point theorem which is a conse-
quence of Proposition 2.2.

Theorem 2.3. Let E be a Banach space, Y a closed, convex subset of E, U be any open subset
of Y with 0 ∈ U . Consider two operators T and S, where

Tx = ε x, x ∈ U,

for ε > 1 and S : U → E be such that

(i) I − S : U → Y continuous, compact and

(ii) {x ∈ U : x = λ(I − S)x, x ∈ ∂U} = ∅, for any λ ∈
(
0, 1

ε

)
.

Then there exists x∗ ∈ U such that

Tx∗ + Sx∗ = x∗.

Proof. We have that the operator 1
ε(I − S) : U → Y is continuous and compact. Suppose that

there exist x0 ∈ ∂U and µ0 ∈ (0, 1) such that

x0 = µ0
1
ε
(I − S)x0,
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that is
x0 = λ0 (I − S)x0

where λ0 = µ0
1
ε ∈

(
0, 1

ε

)
. This contradicts the condition (ii). From Leray-Schauder nonlinear

alternative, it follows that there exists x∗ ∈ U so that

x∗ =
1
ε
(I − S)x∗

or
ε x∗ + Sx∗ = x∗,

or
Tx∗ + Sx∗ = x∗.

Definition 2.4. Let X and Y be real Banach spaces. A map K : X → Y is called expansive if
there exists a constant h > 1 for which one has the following inequality

‖Kx−Ky‖Y ≥ h‖x− y‖X

for any x, y ∈ X .

Now, we will recall the definition for a cone in a Banach space.

Definition 2.5. A closed, convex set P in X is said to be cone if

(i) αx ∈ P for any α ≥ 0 and for any x ∈ P ,

(ii) x,−x ∈ P implies x = 0.

Denote P∗ = P\{0}. The next result is a fixed point theorem which we will use to prove
existence of at least two nonnegative global classical solutions of the IVP (1.1). For its proof,
we refer the reader to [5, 9].

Theorem 2.6. Let P be a cone of a Banach space E; Ω a subset of P and U1, U2 and U3 three
open bounded subsets of P such that U1 ⊂ U2 ⊂ U3 and 0 ∈ U1. Assume that T : Ω → P is
an expansive mapping, S : U3 → E is a completely continuous map and S(U3) ⊂ (I − T )(Ω).
Suppose that (U2 \ U1) ∩ Ω 6= ∅, (U3 \ U2) ∩ Ω 6= ∅, and there exists u0 ∈ P∗ such that the
following conditions hold:

(i) Sx 6= (I − T )(x− λu0), for all λ > 0 and x ∈ ∂U1 ∩ (Ω + λu0),

(ii) there exists ε ≥ 0 such that Sx 6= (I − T )(λx), for all λ ≥ 1 + ε, x ∈ ∂U2 and λx ∈ Ω,

(iii) Sx 6= (I − T )(x− λu0), for all λ > 0 and x ∈ ∂U3 ∩ (Ω + λu0).

Then T + S has at least two non-zero fixed points x1, x2 ∈ P such that

x1 ∈ ∂U2 ∩Ω and x2 ∈ (U3 \ U2) ∩Ω

or
x1 ∈ (U2 \ U1) ∩Ω and x2 ∈ (U3 \ U2) ∩Ω.

3 Existence of at Least One Solution

Let J0 = J\{tj}kj=1 and define the spaces PC(J), PC1(J) and PC1(J, C1(Rn)) by

PC(J) = {g : g ∈ C(J0), ∃g(t+j ), g(t
−
j ) and g(t−j ) = g(tj), j ∈ {1, . . . , k}},

PC1(J) = {g : g ∈ PC(J) ∩ C1(J0), ∃g′(t−j ), g
′(t+j ) and g′(t−j ) = g′(tj), j ∈ {1, . . . , k}}
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and

PC1(J, C1(Rn)) = {u : J×Rn → R : u(·, x) ∈ PC1(J), x ∈ Rn and u(t, ·) ∈ C1(Rn), t ∈ J}.
(3.1)

Suppose that X := PC1(J, C1(Rn)) is endowed with the norm

‖u‖ = sup
{

sup
(t,x)∈[tj ,tj+1]×Rn

|u(t, x)|, sup
(t,x)∈[tj ,tj+1]×Rn

|uxi
(t, x)|,

sup
(t,x)∈[tj ,tj+1]×Rn

|ut(t, x)|, j ∈ {1, . . . , k}, i ∈ {1, . . . , n}
}
,

provided it exists.

Lemma 3.1. Suppose (A2) and (A3). Let u ∈ X and ‖u‖ ≤ B. Then

|H(t, x, u(t, x), Du(t, x))| ≤ B

1 +Bl +
n∑
j=1

Blj

 ,

|Ij(x, u(t, x))| ≤ Bpj+1, j ∈ {1, . . . , k},

∣∣∣∣∣∣
k∑
j=1

Ij(x, u(t, x))

∣∣∣∣∣∣ ≤
k∑
j=1

Bpj+1, (t, x) ∈ J ×Rn.

Proof. We have

|H(t, x, u(t, x), Du(t, x))| ≤ b1(t, x) + b2(t, x)|u(t, x)|l +
n∑
j=1

b3j(t, x)|uxj
(t, x)|lj

≤ B +Bl+1 +B

n∑
j=1

Blj

= B

1 +Bl +
n∑
j=1

Blj

 , (t, x) ∈ J ×Rn,

and

|Ij(x, u(t, x))| ≤ aj(x)|u(t, x)|pj

≤ Bpj+1, (t, x) ∈ J ×Rn, j ∈ {1, . . . , k},

and ∣∣∣∣∣∣
k∑
j=1

Ij(x, u(t, x))

∣∣∣∣∣∣ ≤
k∑
j=1

|Ij(x, u(t, x))|

≤
k∑
j=1

Bpj+1, (t, x) ∈ J ×Rn.

This completes the proof.
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For u ∈ X = PC1(J, C1(Rn)), define the operator

S1u(t, x) = u(t, x) +

∫ t

0
H(s, x, u(s, x), Du(s, x))ds

−u0(x)−
∑

0<tk<t

Ik(x, u(tk, x)), (t, x) ∈ J ×Rn.

Lemma 3.2. Suppose (A1)-(A3). If u ∈ X satisfies the equation

S1u(t, x) = 0, (t, x) ∈ J ×Rn, (3.2)

then it is a solution to the IVP (1.1).

Proof. We have

0 = S1u(t, x)

= u(t, x) +

∫ t

0
H(s, x, u(s, x), Du(s, x))ds

−u0(x)−
∑

0<tk<t

Ik(x, u(tk, x)), (t, x) ∈ J ×Rn.

Hence,
u(t, x) = −

∫ t
0 H(s, x, u(s, x), Du(s, x))ds

+u0(x) +
∑

0<tk<t
Ik(x, u(tk, x)), (t, x) ∈ J ×Rn.

(3.3)

We differentiate (3.3) with respect to t and we find

ut(t, x) = −H(t, x, u(t, x), Du(t, x)), (t, x) ∈ J ×Rn.

We put t = 0 in (3.3) and we get

u(0, x) = u0(x), x ∈ Rn.

Now, by (3.3), we obtain

u(t+j , x) = −
∫ tj

0
H(s, x, u(s, x), Du(s, x))ds

+u0(x) +
∑

0<tk<t+j

Ik(x, u(tk, x)), x ∈ Rn,

j ∈ {1, . . . , k}, and

u(t−j , x) = −
∫ tj

0
H(s, x, u(s, x), Du(s, x))ds

+u0(x) +
∑

0<tk<t−j

Ik(x, u(tk, x)), x ∈ Rn,

j ∈ {1, . . . , k}, whereupon

u(t+j , x)− u(t
−
j , x) = Ij(x, u(tj , x)), x ∈ Rn, j ∈ {1, . . . , k}.

This completes the proof.
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Let

B1 = 2B + T

B +B1+l +
n∑
j=1

B1+lj

+
k∑
j=1

B1+pj .

Lemma 3.3. Suppose (A1)-(A3). If u ∈ X , ‖u‖ ≤ B, then

|S1u(t, x)| ≤ B1, (t, x) ∈ J ×Rn.

Proof. We apply Lemma 3.1 and we get

|S1u(t, x)| =

∣∣∣∣u(t, x) + ∫ t

0
H(s, x, u(s, x), Du(s, x))ds

−u0(x)−
∑

0<tk<t

Ik(x, u(tk, x))

∣∣∣∣
≤ |u(t, x)|+

∫ t

0

b1(s, x) + b2(s, x)|u(s, x)|l +
n∑
j=1

b3j(s, x)|uxj (s, x)|lj
 ds

+|u0(x)|+
∑

0<tk<t

|Ik(x, u(tk, x))|

≤ 2B + T

B +B1+l +
n∑
j=1

B1+lj

+
k∑
j=1

B1+pj

= B1, (t, x) ∈ J ×Rn.

This completes the proof.

In addition, we suppose

(A4) there exist a function g ∈ C(J ×Rn) such that g > 0 on (0, T ]×
(
Rn\

(
∪kj=1{xj = 0}

))
and

g(0, x) = g(t, 0, x2, . . . , xn)

= g(t, x1, 0, x3, . . . , xn)

· · ·

= g(t, x1, . . . , xn−1, 0)

= 0, t ∈ [0, T ], x = (x1, . . . , xn) ∈ Rn,

and a positive constant A such that

2n(1 + t)
n∏
j=1

(1 + |xj |)
∫ t

0

∣∣∣∣∫ x

0
g(t1, s)ds

∣∣∣∣ dt1 ≤ A, (t, x) ∈ J ×Rn,

where
∫ x

0 =
∫ x1

0 . . .
∫ xn

0 , ds = dsn . . . ds1.
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For u ∈ X = PC1(J, C1(Rn)), define the operator

S2u(t, x) =

∫ t

0

∫ x

0
(t− t1)

n∏
j=1

(xj − sj)g(t1, s)S1u(t1, s)dsdt1, (t, x) ∈ J ×Rn (3.4)

Lemma 3.4. Suppose (A1)-(A4). If u ∈ X and ‖u‖ ≤ B, then

‖S2u‖ ≤ AB1.

Proof. We have

|S2u(t, x)| =

∣∣∣∣ ∫ t

0

∫ x

0
(t− t1)

n∏
j=1

(xj − sj)g(t1, s)S1u(t1, s)dsdt1

∣∣∣∣
≤

∫ t

0

∣∣∣∣ ∫ x

0
(t− t1)

n∏
j=1

|xj − sj |g(t1, s)|S1u(t1, s)|ds
∣∣∣∣dt1

≤ B1t2n
n∏
j=1

|xj |
∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1
≤ B12n(1 + t)

n∏
j=1

(1 + |xj |)
∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1
≤ AB1, (t, x) ∈ J ×Rn,

and

∣∣∣∣ ∂∂tS2u(t, x)

∣∣∣∣ =

∣∣∣∣ ∫ t

0

∫ x

0

n∏
j=1

(xj − sj)g(t1, s)S1u(t1, s)dsdt1

∣∣∣∣
≤

∫ t

0

∣∣∣∣ ∫ x

0

n∏
j=1

|xj − sj |g(t1, s)|S1u(t1, s)|ds
∣∣∣∣dt1

≤ B12n
n∏
j=1

|xj |
∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1
≤ B12n(1 + t)

n∏
j=1

(1 + |xj |)
∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1
≤ AB1, (t, x) ∈ J ×Rn,



Impulsive Hamilton-Jacobi Equations 1091

and ∣∣∣∣ ∂∂xlS2u(t, x)

∣∣∣∣ =

∣∣∣∣ ∫ t

0

∫ x

0
(t− t1)

n∏
j=1,j 6=l

(xj − sj)g(t1, s)S1u(t1, s)dsdt1

∣∣∣∣
≤

∫ t

0

∣∣∣∣ ∫ x

0
(t− t1)

n∏
j=1,j 6=l

|xj − sj |g(t1, s)|S1u(t1, s)|ds
∣∣∣∣dt1

≤ B1t2n
n∏

j=1,j 6=l

|xj |
∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1
≤ B12n(1 + t)

n∏
j=1

(1 + |xj |)
∫ t

0

∣∣∣∣ ∫ x

0
g(t1, s)ds

∣∣∣∣dt1
≤ AB1, (t, x) ∈ J ×Rn, l ∈ {1, . . . , n}.

Thus, ‖S2u‖ ≤ AB1. This completes the proof.

Lemma 3.5. Suppose (A1)-(A4). If u ∈ X satisfies the equation

S2u(t, x) = C, (t, x) ∈ J ×Rn, (3.5)

for some constant C, then u is a solution to the IVP (1.1).

Proof. We differentiate two times with respect to t and two times with respect to xl, l ∈ {1, . . . , n},
the equation (3.5) and we find

g(t, x)S1u(t, x) = 0, (t, x) ∈ J ×Rn,

whereupon
S1u(t, x) = 0, (t, x) ∈ (0, T ]×

(
R\
(
∪nj=1{xj = 0}

))
.

Since S1u(·, ·) ∈ C(J ×Rn), we get

0 = lim
t→0

S1u(t, x)

= S1u(0, x)

= lim
x1→0

S1u(t, x)

= S1u(t, 0, x2, . . . , xn)

· · ·

= lim
xn→0

S1u(t, x)

= S1u(t, x1, . . . , xn−1, 0), (t, x) ∈ J ×Rn.

Thus,
S1u(t, x) = 0, (t, x) ∈ [0, T ]×Rn.

Hence and Lemma 3.2, we conclude that u is a solution to the IVP (1.1). This completes the
proof.
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Our main result in this section is as follows.

Theorem 3.6. Suppose (A1)-(A4). Then the IVP (1.1) has at least one solution in X .

Proof. Let Ỹ denote the set of all equi-continuous families in X with respect to the norm ‖ · ‖.
Let also, Y = Ỹ and

U = {u ∈ Y : ‖u‖ < B and if ‖u‖ ≥ B

2
, then u(0, x) >

B

2
, x ∈ Rn}.

For u ∈ U and ε > 1, define the operators

Tu(t, x) = εu(t, x),

Su(t, x) = u(t, x)− εu(t, x)− εS2u(t, x), (t, x) ∈ J ×Rn.

For u ∈ U , we have

‖(I − S)u‖ = ‖εu+ εS2u‖

≤ ε‖u‖+ ε‖S2u‖

≤ εB1 + εAB1.

Thus, S : U → X is continuous and (I −S)(U) resides in a compact subset of Y . Now, suppose
that there is a u ∈ U so that ‖u‖ = B and

u = λ(I − S)u

or
u = λε (u+ S2u), (3.6)

for some λ ∈
(
0, 1

ε

)
. Observe that S2u(0, x) = 0, x ∈ Rn. Since ‖u‖ = B > B

2 , we conclude
that u(0, x) > B

2 , x ∈ Rn, and

u(0, x) = λεu(0, x), x ∈ Rn,

whereupon λε = 1, which is a contradiction. Consequently

{u ∈ U : u = λ1(I − S)u, ‖u‖ = B} = ∅

for any λ1 ∈
(
0, 1

ε

)
. Then, from Theorem 2.3, it follows that the operator T +S has a fixed point

u∗ ∈ Y . Therefore

u∗(t, x) = Tu∗(t, x) + Su∗(t, x)

= εu∗(t, x) + u∗(t, x)

−εu∗(t, x)− εS2u
∗(t, x), (t, x) ∈ J ×Rn,

whereupon
S2u

∗(t, x) = 0, (t, x) ∈ J ×Rn.

From here, u∗ is a solution to the problem (1.1). From here and from Lemma 3.5, it follows that
u is a solution to the IVP (1.1). This completes the proof.
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4 Existence of at Least Two Solutions

Let X = PC1(J, C1(Rn)) and assume that the constants B and A which appear in the conditions
(A1) and (A4), respectively, satisfy the following inequalities:

(A5) AB1 <
L
5 , where B1 = 2B+T

(
B +B1+l +

n∑
j=1

B1+lj

)
+

k∑
j=1

B1+pj . and L is a positive

constant that satisfies the following conditions:

r < L < R1 ≤ B,

with r and R1 are positive constants.

Our main result in this section is as follows.

Theorem 4.1. Suppose that (A1)-(A4) and (A5) hold. Then the problem (1.1) has at least two
nonnegative solutions in X .

Proof. Let
P̃ = {u ∈ X : u ≥ 0 on J ×Rn}.

With P we will denote the set of all equi-continuous families in P̃ . For v ∈ X , define the
operators

T1v(t, x) = (1 +mε)v(t, x)− ε L
10
,

S3v(t, x) = −εS2v(t, x)−mεv(t, x)− ε
L

10
, (t, x) ∈ J ×Rn,

where ε is a positive constant, m > 0 is large enough and the operator S2 is given by formula
(3.4). Note that any fixed point v ∈ X of the operator T1 + S3 is a solution to the IVP (1.1).
Define

Ω = P,

U1 = Pr = {v ∈ P : ‖v‖ < r},

U2 = PL = {v ∈ P : ‖v‖ < L},

U3 = PR1 = {v ∈ P : ‖v‖ < R1}.

(i) For v1, v2 ∈ Ω, we have

‖T1v1 − T1v2‖ = (1 +mε)‖v1 − v2‖,

whereupon T1 : Ω→ X is an expansive operator with a constant h = 1 +mε > 1.

(ii) For v ∈ PR1 , we get

‖S3v‖ ≤ ε‖S2v‖+mε‖v‖+ ε
L

10

≤ ε

(
AB1 +mR1 +

L

10

)
.

Therefore S3(PR1) is uniformly bounded. Since S3 : PR1 → X is continuous, we have that
S3(PR1) is equi-continuous. Consequently S3 : PR1 → X is completely continuous.
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(iii) Let v1 ∈ PR1 . Set

v2 = v1 +
1
m
S2v1 +

L

5m
.

Note that S2v1 +
L
5 ≥ 0 on J ×Rn. We have v2 ≥ 0 on J ×Rn. Therefore v2 ∈ Ω and

−εmv2 = −εmv1 − εS2v1 − ε
L

10
− ε L

10

or

(I − T1)v2 = −εmv2 + ε
L

10

= S3v1.

Consequently S3(PR1) ⊂ (I − T1)(Ω).

(iv) Assume that for any v0 ∈ P∗ there exist λ ≥ 0 and v ∈ ∂Pr ∩ (Ω + λv0) or v ∈ ∂PR1 ∩
(Ω + λv0) such that

S3v = (I − T1)(v − λv0).

Then

−εS2v −mεv − ε
L

10
= −mε(v − λv0) + ε

L

10
or

−S2v = λmv0 +
L

5
.

Hence,

‖S2v‖ =
∥∥∥∥λmv0 +

L

5

∥∥∥∥ ≥ L

5
.

This is a contradiction.

(v) Let ε1 =
2

5m . Suppose that there exist a v1 ∈ ∂PL and λ1 ≥ 1 + ε1 such that

S3v1 = (I − T1)(λ1v1). (4.1)

Moreover,

−εS2v1 −mεv1 − ε
L

10
= −λ1mεv1 + ε

L

10
,

or

S2v1 +
L

5
= (λ1 − 1)mv1.

From here,

2
L

5
>

∥∥∥∥S2v1 +
L

5

∥∥∥∥ = (λ1 − 1)m‖v1‖ = (λ1 − 1)mL

and
2

5m
+ 1 > λ1,

which is a contradiction.

Therefore all conditions of Theorem 2.6 hold. Hence, the problem (1.1) has at least two solutions
u1 and u2 so that

‖u1‖ = L < ‖u2‖ < R1

or
r < ‖u1‖ < L < ‖u2‖ < R1.
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5 An Example

Below, we will illustrate our main results. Let k = 2,

n = T = B = 1, t1 =
1
4
, t2 =

1
2
, p1 = 2, p2 = 3, l = 2.

and
R1 =

9
10
, L =

3
5
, r =

2
5
, m = 1050, A =

1
10B1

.

Then

B1 = 2 + 3 + 1 = 6.

Next,

r < L < R1 < B, AB1 <
L

5
.

i.e., (A5) holds. Take

h(s) = log
1 + s11

√
2 + s22

1− s11
√

2 + s22
, l(s) = arctan

s11
√

2
1− s22 , s ∈ R, s 6= ±1.

Then

h′(s) =
22
√

2s10(1− s22)

(1− s11
√

2 + s22)(1 + s11
√

2 + s22)
,

l′(s) =
11
√

2s10(1 + s22)

1 + s44 , s ∈ R, s 6= ±1.

Therefore

−∞ < lim
s→±∞

(1 + s+ s2)3h(s) <∞,

−∞ < lim
s→±∞

(1 + s+ s2)3l(s) <∞.

Hence, there exists a positive constant C1 so that

(1 + s+ s2)3
(

1
44
√

2
log 1+s11√2+s22

1−s11
√

2+s22 +
1

22
√

2
arctan s11√2

1−s22

)
≤ C1,

s ∈ R. Note that lim
s→±1

l(s) = π
2 and by [14] (pp. 707, Integral 79), we have

∫
dz

1 + z4 =
1

4
√

2
log

1 + z
√

2 + z2

1− z
√

2 + z2
+

1
2
√

2
arctan

z
√

2
1− z2 .

Let

Q(s) =
s10

(1 + s44)(1 + s+ s2)2 , s ∈ R,

and
g1(t, x) = Q(t)Q(x1) . . . Q(xn), t ∈ J, x ∈ Rn.

Then there exists a constant C > 0 such that

2n(1 + t)
n∏
j=1

(1 + |xj |)
∫ t

0

∣∣∣∣ ∫ x

0
g1(τ, z)dz

∣∣∣∣∣dτ ≤ C, (t, x) ∈ J ×Rn.

Let
g(t, x) =

A

C
g1(t, x), (t, x) ∈ J ×Rn.
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Then

2n(1 + t)
n∏
j=1

(1 + |xj |)
∫ t

0

∣∣∣∣ ∫ x

0
g(τ, z)dz

∣∣∣∣∣dτ ≤ A, (t, x) ∈ J ×Rn,

i.e., (A4) holds. Therefore for the problem

ut −
√
tux − u2

1+x4 = 0, t ∈ [0, 1], x ∈ R,

u(t+1 , x)− u(t
−
1 , x) = (u(t1,x))

2

1+x10 , x ∈ R,

u(t+2 , x)− u(t
−
2 , x) = (u(t2,x))

3

1+x18 , x ∈ R,

u(0, x) = 1
1+x4 , x ∈ R,

are fulfilled all conditions of Theorem 3.6 and Theorem 4.1. Note that for the above problem we
can not apply the results in [11] because the Hamiltonian is not Lipschitzian in the variable t.
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