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Abstract This study provides an overview of recent research concerning the geometric sig-
nificance of the Laplace-Beltrami operator, inherently associated with a Riemannian manifold.
Essentially, it offers an expanded examination of R. Brooks’ expository paper [1], as well as
closely related articles. Beginning with a basic exploration of the isospectrality of flat tori, the
study progresses to elucidate Sunada’s pioneering utilization of various theoretical concepts. It
concludes with a concise portrayal of the fundamental aspects of isospectral deformations on
Riemannian manifolds.

1 Introduction

The Laplace-Beltrami operator, a fundamental concept in differential geometry, plays a central
role in understanding the geometry and topology of Riemannian manifolds [2, 3, 4, 5, 6]. This
operator, canonically associated with a Riemannian manifold, encodes crucial geometric infor-
mation about the manifold, including its spectral properties [7, 8, 9, 10, 11, 12]. The study of
these spectral properties and their geometric implications has been a topic of significant research
interest in recent years. This research aims to provide an overview of the key developments
in the field of geometric analysis related to the Laplace-Beltrami operator. It builds upon the
insights presented in an expository paper in [1], while also delving into closely related articles.
The primary focus of this study is to explore the geometric significance of the Laplace-Beltrami
operator, especially in the context of isospectrality and isospectral deformations. The journey of
this research begins with an elementary treatment of the isospectrality phenomenon observed in
flat tori. Understanding the isospectrality of these simple geometric objects serves as a founda-
tion for more intricate investigations. One of the highlights of this exploration is a presentation of
Sunada’s groundbreaking adaptation of a number-theoretical idea. Sunada’s work has profound
implications for our understanding of isospectral manifolds and the connections between geome-
try, topology, and number theory. The research culminates with an examination of the essentials
of isospectral deformations on Riemannian manifolds. Isospectral deformations are transforma-
tions that preserve the spectrum of the Laplace-Beltrami operator while altering the underlying
geometry. These deformations reveal the intricate interplay between the spectral properties of
the Laplace-Beltrami operator and the geometric structure of the manifold. In summary, this
study provides a comprehensive overview of recent research on the geometric implications of
the Laplace-Beltrami operator. It explores the isospectrality of flat tori, Sunada’s contributions,
and the broader context of isospectral deformations. By shedding light on these fundamental
aspects of Riemannian geometry, this research contributes to our understanding of the rich inter-
play between analysis and geometry on manifolds.
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2 Preliminaries

Definition 2.1. A Riemannian manifold is an ordered pair (M,G) whereM is a smooth manifold,
G is a smooth tensor field on M of bidegree (0, 2) such that for each m ∈ M , Gm is positive
definite.

Definition 2.2. The Levi-Civita connection ∇ on (M,G) is the unique torsion-free connection
on M with respect to which G is parallel that is ∇G = 0. Given a smooth Riemannian manifold
(M,G), let D(M) be the set of all complex valued, smooth functions on M , and X (M) be the
set of smooth complexified vector fields on M . For each φ ∈ D(M) The gradient of φ, denoted
by grad φ is the vector field on M uniquely determined by the relation.

G( grad φ, Y ) = Y φ,

for all Y ∈ X (M). For each Y ∈ X (M) on M , the divergence div Y of Y is an element of
D(M), the value of which at each p ∈M is the trace of the linear map:

(u 7−→ ∇uY ) : TpM 7−→ TpM,

where ∇ is the Levi - Civita connection on (M,G).

Definition 2.3. The Laplace - Beltrami operator

∆ : D(M) 7−→ D(M),

on (M,G) is defined by,
∆φ = − div ( grad φ) .

If x is any chart on M with

G|dom(x) = Gijdxi ⊗ dxj ,

then,

gradφ|dom(x) = Gij ∂φ

∂xj
∂

∂xj
,

where,
GijGkj = δij ,

and

div(Y )|dom(x) =
∂Y i

∂xi
+ Γ

i
ikY

k,

for any φ ∈ C(M) and any Y ∈ X (M) where

Y |dom(x) = Y i ∂

∂xi
,

and Γi
jk are the Christoffel symbols of the second kind associated with the Levi-Civita connection

∇ by

∇(
∂

∂xj
,
∂

∂xk
) = Γ

i
jk

∂

∂xi
.

Thus,
∆φ|dom(x) = −div(grad φ)|dom(x)

= − ∂

∂xi
(Gim ∂φ

∂xm
)− Γ

i
ikG

kn ∂φ

∂xn
,

for any φ ∈ C(M). λ ∈ C is said to be an eigenvalue of ∆ if there exists φ ∈ D(M) such that
∆φ = λφ. A non-vanishing function φ ∈ D(M) is called an eigenfunction of the Laplace -
Beltrami operator ∆ if ∆φ = λφ for some λ ∈ C. Under these circumstances, we refer to φ as an
eigenfunction of ∆ with eigenvalue λ.
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Definition 2.4. Given a group Γ and finite subgroupsA,B ≤ Γ,A andB are said to be equivalent
in the sense Gassmann.[22] if

#(c ∩A) = #(c ∩B),

for every conjugacy class c in ∇Γ.

Remark 2.5. (a) Subgroups equivalent in the sense of Gassmann have the same cardinality.
(b) If A and B are conjugate subgroups, then A and B are clearly equivalent in the sense of
Gassmann.

Definition 2.6. Given a Riemannian manifold (M,G) with the heat kernelH : M×M×R.>0 7−→
R, the theta function associated with (M,G) is a function

Θ = ΘM : R.>0 7−→ R,

defined by:

Θ(t) =

∫
M

H(m,m, t)dµ(m).

Let us illustrate these concepts on the basis of the following two simplest possible examples :
On the flat circle ( R

LZ , dx⊗ dx) of content L > 0, the Laplace - Beltrami operator reduces to

∆ = − ∂2

∂x2

It can routinely be checked that the eigenfunctions of ∆ are of the form

φn(x) = e
2πni
L x

with eigenvalues

λn =
4π2n2

L2 .

for n ∈ Z, as depicted in Figures 1 and 2.

Figure 1. Eigenfunctions of Laplace-Beltrami Operator in Example 2

On the real line (R, dx⊗ dx), the Laplace-Beltrami operator is again of the form

∆ = − ∂2

∂x2 .
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Figure 2. Eigenvalues of Laplace-Beltrami Operator in Example 2

In this case every real number λ ∈ R is an eigenvalue of ∆. Eigenfunctions with eigenvalue λ
are of the form

φ(x) =



Ae
√
−λx +Be−

√
−λx for A,B ∈ R if λ < 0

Cei
√
λx +De−i

√
λx for C,D ∈ R if λ > 0

Ex+ F for E,F ∈ R λ = 0

As it can be readily observed on the basis of the above examples, shown in Figues 3 and 4 the set
of eigenvalues of the Laplace-Beltrami operator on a compact manifold has a markedly different
nature from that on a non-compact manifold. We shall mostly concentrate on compact manifolds
on which the set of eigenvalues of the Laplace-Beltrami operator has a well-understood and tidy
structure: If (M,G) is a compact Riemannian manifold with the Laplace-Beltrami operator ∆,
then the eigenvalues of ∆ constitute a countable, discrete and unbounded set of non-negative real
numbers. Furthermore the set of eigenfunctions corresponding to an eigenvalue λ span a finite
dimensional subspace Hλ of D(M). The dimension of Hλ is the multiplicity of λ. 0 ∈ R always
occurs as an eigenvalue. However, H0 consists of constant functions and thus dim H0 = 1. In
other words, the multiplicity of the eigenvalue 0 is always 1. Thus, in the case of the flat circle
of content L each eigenvalue is of the form,

λn =
4π2n2

L2 ,

and
Hλn = ⟨e 2πin

L x, e
−2πin

L x⟩,

where n ∈ Z≥0.
We may now offer an elucidation of the expression “spectral geometry” [17]: Spectral geometry
done within the framework of Riemannian geometry is essentially the study of Riemannian man-
ifolds on the basis of the information consisting of magnitudes and multiplicities of the eigenval-
ues of the Laplace-Beltrami operator. It is very important to notice that the “information” in this
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Figure 3. φ(x) for λ < 0 in Example 2

Figure 4. φ(x) for λ > 0 in Example 2

question encompasses not only the magnitudes of the eigenvalues but the multiplicities thereof.
Thus, given a compact Riemannian manifold (M,G) we understand the spectrum of (M,G) to be
the set of eigenvalues of the Laplace-Beltrami operator on (M,G) with each eigenvalue tagged
by a number indicating its multiplicity. We shall denote the spectrum of (M,G) by Sp(M,G) or
Sp(M) unless confusion is likely. Observe that, in the case of a compact Riemannian manifold
(M,G), the spectrum Sp(M,G) may be identified with an increasing sequence

0 = λ0 < λ1 ≤ . . . ≤ λn ≤ . . .+∞.

Each eigenvalue occurs in the form of λn and is repeated as many times as its multiplicity. Rie-
mannian manifolds (M,G) and (M ′,G′) are said to be isometric if there exists a diffeomorphism
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φ : M 7−→M ′ satisfying:

Gp(u, v) = G′
φ(p)(Tφp(u), Tφp(v)),

for p ∈M , u,v ∈ TpM .
(M,G) and (M

′
,G

′
) are said to be isospectral if

Sp(M,G) = Sp(M
′
, G

′
) .

It is clear that isometric Riemannian manifolds are isospectral. In spectral geometry of Rieman-
nian manifolds, the principal problem is to determine the extent to which the isometry class of a
Riemannian manifold is determined by its spectrum.
The broaching of the subject of “inverse spectral geometry” is popularly ascribed to M. Kac
[26] who raised now the famous question “Can one hear the shape of a drum?”. However, the
subject seems to have come up earlier in Riemannian geometry in [16]. A negative answer
to the question of whether “The isometry class of a Riemannian manifold is ‘audible’ ” was
provided by Milnor in a curt announcement [27]. Milnor’s pathbreaking work was followed by a
period of “sporadic counterexamples” during which diverse pairs of isospectral but non-isometric
Riemannian manifolds were produced. Good examples of matured products may be found in[36,
25, 21]. Brilliantly constructed and certainly mathematically enriching as these counterexamples
were, they constituted only a collection of individual instances. A general method for producing
isospectrality was invented by Sunada who was inspired by the work of number theorists[35].
Sunada’s method proved to be fruitful not only in understanding isospectrality but was also
of fundamental importance in producing manifolds which “sounded the same while changing
shape” that is, manifolds which were isometrically deformable.[23].

3 The Case of Flat Tori

The extent to which the spectrum can determine the geometry on a Riemannian manifold can be
illustrated in the case of flat tori in a direct and elementary fashion.
For N ⩾ 1, N ∈ Z, consider RN with its obvious additive group and vector space structure over
R . A lattice in RN is a discrete subgroup of RN which contains a basis of RN . Equivalently, a
lattice Λ in RN is a subset of RN of the form

Λ = BZN ,

where B ∈ RN×N is a non - singular matrix. We note that lattices come in pairs: Given a lattice,
Λ = BZN ⊆ RN , the dual of Λ is a lattice Λ∗ ⊆ RN which is defined to be

Λ
∗ = (B−1)TZN .

The dual Λ∗ of Λ is also characterised by an important property of its elements : ℓ∗ ∈ RN lies
in Λ∗ if and only if ℓ∗T ℓ is an integer for all ℓ ∈ Λ. A flat torus is known to be isometric to

TΛ = {R
N

Λ
, δijdxi ⊗ dxj},

for some lattice Λ in RN . We shall refer to TΛ as the flat torus determined by the lattice Λ.
Notice that the content of TΛ is exactly | detB | where Λ = BZN . It can be routinely checked
that the Laplace-Beltrami operator on TΛ is of the form

∆ = −δij
∂2

∂xi∂xj
,

and the eigenfunctions of ∆ are exactly the functions

φℓ∗ = e2πiℓ∗T x,

where ℓ∗ ∈ Λ∗. Clearly the eigenvalue corresponding to φℓ∗ is 4π2|ℓ∗|2 = ℓ∗T ℓ∗. Consequently
the spectrum Sp(TΛ) is a sequence

0 = λ0 < λ1 ≤ . . . ≤ λn . . . ,
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in which, a quantity λ occurs as many times as the number of ℓ∗’s with λ = |ℓ∗|2.
The information contained in Sp(TΛ) can be converted into geometric information as follows :
(A) First we deposit Sp(TΛ) into an analytic function F by writing

F (t) =
∞∑
n=0

e−λnt,

where the right hand side can be checked to be uniformly convergent on each compact subset of
R.>0. (The choice of F will be justified in the next section.) Notice that by thus squeezing the
spectrum of T∧ into F “no information is lost”: Indeed, given F (t), we may read off Sp(Λ)
inductively : Clearly, λ0 = 0 and having inductively determined λ0, . . . , λn we have,

λn+1 = sup {m > o | lim
t→∞

[F (t)−
n∑

k=0

e−λkt]emt = 0}.

(B) Secondly, we remember that for each symmetric, positive definite S ∈ RN×N the Jacobi
theta function ΘS is the analytic function defined by:

ΘS(z) =
∑

n∈ZN

eπi(n
TSn)z,

where the series on the right-hand side is uniformly convergent on each compact subset of {z ∈
C | Im(z) > 0}. Putting Λ = BZN , we easily obtain:

F (t) =
∑

ℓ∗∈Λ∗

e−4π2ℓ∗T ℓ∗ t

=
∑

ℓ∗∈B−1TZN

e−4π2ℓ∗T ℓ∗t

=
∑

n∈ZN

e−4π2nTB−1(B−1)
T
n t

= ΘB−1(B−1)T (4πit).

(C) Thirdly, we employ the Jacobi Inversion Formula

ΘS(z) = (
z

i
)

−N
2

1√
detS

ΘS−1(−
1
z
),

with S = (BTB)−1 = B−1(BT )−1 and z = 4πit to obtain:

F (t) = ΘB−1B−1T (4πit)

= 4πit
i

−N
2

1√
(det B−1)2

ΘBTB(−
1

4πit
)

=
| detB|
(4πt)N

2

∑
n∈ZN

e
−πi(nTBTB n)

1
4πit

=
|detB|
(4πt)N

2

∑
ℓ∈Λ

e
−ℓT ℓ

4t .

(D) Finally, we construct again for purposes of simple and clear exposition the sequence,

0 = µ0 < µ1 ≤ µ2 ≤ . . . ≤ µn ≤ . . .

in which a quantity µ occurs as many times as the number of ℓ ∈ Λ with |ℓ|2 = µ. We have found
in (C) that

F (t) =
| detB |

(4πt)
N
2

∞∑
n=0

e−
µn
4t ,
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from which we can now read off | detB | and the sequence (µk)∞k=0 as follows:
Clearly,

| detB | = lim
t→0+

(4πt)
N
2 F (t).

On the other hand µ0 = 0 and having inductively determined µ0, . . . , µn along with | det B | we
can compute µn+1 by (2)

µn+1 = sup {m > 0 | lim
t→0+

[
F (t)

| detB |
(4πt)

N
2 −

n∑
k=0

e−
µk
4t ] e

m
4t = 0}.

This shows us that the function F (t) , which is presently on our hands still without any motiva-
tion, has the peculiarity of translating spectral information consisting of the sequence λ0, λ1, . . .,
into geometric information consisting of |det B| and µ0, µ1, . . . , µn, . . .

Theorem 3.1. Two 2-dimensional flat tori are isometric iff they are isospectral.

Proof. Clearly flat tori TΛ1 ,TΛ1 of the same dimension, say N , are isometric iff there exists an
isometry of RN which sends Λ1 to Λ2, that is iff Λ1 and Λ2 are isometric subsets of RN with its
ordinary Euclidean structure. Suppose N = 2 and Sp(TΛ1) = Sp(TΛ2). This means that if e1, f1
and e2, f2 are the vectors of smallest length generating Λ1 and Λ2 respectively then,

|e1| = |e2|,

|f1| = |f2|.
Moreover the areas of the parallelograms spanned by e1, f1 and e2, f2 are equal. Therefore
these parallelograms are congruent in R2 with its ordinary Euclidean structure. Therefore Λ1
is isometric to Λ2, hence TΛ1 is isometric to TΛ2 . Milnor’s historical example [27] consisted in
pointing out that on R16 there were lattices Λ1,Λ2, which were well known among number the-
orists to be non-isometric but representing integers the same number of times, which, translated
into Riemannian geometry means that TΛ1 is isospectral to TΛ2 .[37]. Although there is consider-
able amount of confusion, it seems to be well-established by now that the above theorem is not
valid for N > 2. It is however known that each flat toral isospectral class contains finitely many
isometry classes [31, 18].

4 The Sunada Concept

Given a Riemannian manifold (M,G) with the Laplace-Beltrami operator ∆, the heat equation
associated with (M,G) is the partial differential equation

∆U +
∂U

∂t
= 0

where,
U : M ×R.>0 7−→ R.

The importance of the heat equation lies in its close relationship with the structure of the spec-
trum of the Laplace-Beltrami operator. For any continuous function f : M 7−→ R, the heat
equation has a unique solution U subject to the initial condition,

lim
t→0+

U(x, t) = f(x),

for all x ∈M .
This existence and uniqueness result can be brought into a form which is independent of the
choice of “initial conditions” by means of the concept of the heat kernel. Given a Riemannian
manifold (M,G), the heat kernel is a function,

H : M ×M ×R.>0 7−→ R

such that,

∆|xH +
∂

∂t
H = 0



A Comprehensive Overview of Spectral Geometry 1113

and
lim
t→0+

∫
M

H(x, y, t)f(y)dµ(y) = f(x),

for any continuous f : M 7−→ R where µ stands for the Lebesque measure on M induced by the
Riemannian metric G. Given a continuous f : M 7−→ R , it is clear that

U(x) =

∫
M

H(x, y, t)f(y)dµ(y)

is the unique solution of the heat equation subject to limt→0+ U(x, t) = f(x).
Quite generally, given a compact Riemannian manifold (M,G) where the Laplace-Beltrami op-
erator has the spectrum,

0 = λ0 < λ1 ≤ λ2 ≤ . . . λn ≤ . . .

which correspond to the respective normalized eigenfunctions,

φ0, φ1, φ2, . . . , φn, . . .

When it exists the heat kernel is unique and can be verified by direct computation that when
(M,G) has a heat kernel HM

HM (x, y, t) =
∞∑
n=0

φn(x)φn(y)e
−λnt.

Consider the Euclidean space: (
RN , δijdxi ⊗ dxj

)
.

It can be verified by direct computation that,

HRN (x, y, t) =
1

4πt

N
2

e−
|x−y|2

4t .

is the heat kernel for (
RN , δijdxi ⊗ dxj

)
.

Consider the case of the flat torus
TΛ = (Rn/Λ, δij dxi ⊗ dxj). In view of the remark preceding the above example.

H(x, y, t) =
∑

ℓ∗∈Λ∗

e2πℓ∗T xe−2πℓ∗T ye−4π|ℓ|∗2t.

Of basic importance for the theory which is to be introduced in this section there is another
technique for constructing heat kernels in quotient manifolds. Consider a smooth manifold M
acted upon by a group Γ properly discontinuously. Let M = M/Γ. Clearly, M is a smooth
manifold and the quotient map p : M 7−→ M is a covering projection. We put Riemannian
metrics G,G on M ,M respectively, so that p : M 7−→M becomes a local isometry. It is possible
to do this by choosing G to be invariant under the action of Γ and by defining Γ to be the
quotient Riemannian tensor. Equivalently we may take a Riemannian metric G on M and lift it
to M via p to attain G which is then automatically invariant under Γ. We shall also make the
provision that G be sufficiently generic to exclude non-trivial isometries between open subsets of
M . Such a Riemannian metric is folklorically referred to as “bumpy”: The fact that on smooth
paracompact manifolds bumpy metrics exist (in fact abundantly) has been formulated and proven
by Sunada.[35].
We state the theorem and omit the proof which is rather technical.

Theorem 4.1. Given a smooth paracompact manifold M , there exists a Riemannian metric G on
M such that for any disjoint open subsets U ,V ⊆ M , no map φ : U 7−→ V can be an isometry
with respect to G.
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Figure 5. Heat Kernel HR2(x, y, t) for N = 2 and t = 1 in Example 3

Figure 6. Heat Kernel H(x, y, t) in Example 3

Proposition 4.2. H is invariant under the action of Γ in the sense that

H(gm1, gm2, t) = H(m1,m2, t)

for any m1,m2 ∈M and g ∈ Γ.

Proof. This is a direct consequence of the uniqueness clause for the heat kernel. Indeed, given
g ∈ Γ if we define

H
′

: M ×M ×R.>0 7−→ R,
to be,

H
′

(m1,m2, t) = H(gm1, gm2, t),
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for m1,m2 ∈M , H
′

satisfies all the conditions for the heat kernel:

∆|m1H
′

+
∂H

′

∂t
= 0.

It is obvious by the Γ−invariance of G and hence that of ∆. Trivially

H
′

(m1,m2, t) = H
′

(m2,m1, t).

Finally, given any continuous f : M 7−→ R we have:

lim
t→0+

∫
M

H
′

(m1,m2, t)f(m2)dµ(m2) = lim
t→0+

∫
M

H(gm1, gm2, t)f(m2)dµ(m2)

= lim
t→0+

∫
M

H(gm1,m2, t)f(g
−1m2)dµ(g−1m2)

= lim
t→0+

∫
M

H(gm1,m2, t)f(g
−1m2)dµ(m2)

= f(g−1gm1) = f(m1).

By the uniqueness of heat kernels, we conclude that, H
′

= H .

Proposition 4.3. The heat kernel H on M satisfies

H(m1,m2, t) =
∑
g∈Γ

H(gm1,m2, t),

where m1 ∈ p−1(m1), m2 ∈ p−1(m2) provided that the sum at the right hand side is meaningful.

Proof. It should be noted that the right hand side quantity is well-defined in the sense that it is
independent of the choice of m1 ∈ p−1(m1). Indeed for any m1

′
∈ p−1(m1),m2

′
∈ p−1(m2)

there exist g1,g2 ∈ Γ such that m2
′
= g2m2, m1

′
= g1m1 and

H(m1,m2, t) =
∑
g∈Γ

H(gm1
′
,m2

′
, t)

=
∑
g∈Γ

H(gg1m1, g2m2, t)

=
∑
g∈Γ

H(g2
−1gg1m1,m2, t)

=
∑
g∈Γ

H(gm1,m2, t).

Consider TΛ = (RN/Λ, δijdxi ⊗ dxj) where Λ = BZN . Since the heat kernel of RN is

HR2(x, y, t) =
1

4πt
e

−|x−y|2

4t ,

we obtain:
HTΛ

(x, y, t) =
1

4πt

∑
l∈Λ

e
−|x−y+l|2

4t .

, as shown in Figure 7
For the flat torus TΛ the theta function is easily computed to be:

Θ(t) =
∑

ℓ∗∈Λ∗

e−4π|ℓ∗|2t,

which, at long last, justifies our choice of the function F in section 5. The fundamental observa-
tion of Sunada [35] is that, when Γ is a finite group,the relationship between H and H allows us
to obtain the theta function Θ = ΘM of M in terms of H and Γ. For any set K, let #(K) denote
the cardinality of K:
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Figure 7. Heat kernel in Example 3

Lemma 4.4.

Θ(t) =

∫
M

H(m,m, t)dµ(m) =
∑
g∈Γ

1
#(Γ)

Ig(t)

where,

Ig(t) =
∫
M

H(gm,m, t)dµ(m).

Proof. Obvious. It is important to notice that Ig(t) is constant across conjugacy classes in Γ:
That is, given g, g

′ ∈ Γ with g
′
= h−1gh for some h ∈ Γ, we have,

Ig′ (t) =

∫
M

H(g
′
m,m, t)dµ(m)

=

∫
M

H(h−1ghm,m, t)dµ(m)

=

∫
M

H(h−1ghm,m, t)dµ(m)

=

∫
M

H(ghm, hm, t)dµ(m)

=

∫
M

H(ghm, hm, t)dµ(hm)

=

∫
M

H(gm,m, t)dµ(m)

= Ig(t)

Let’s denote the set of conjugacy classes in Γ by Con(Γ) and put

I[c](t) = Ig(t)

for c ∈ Con(Γ) where g ∈ c. The left hand side is well-defined owing to the constancy of Ig
across conjugacy classes.
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Lemma 4.5.

Θ(t) =
∑

c∈Con(Γ)

#(c)
#(Γ)

I[c](t).

Proof. This is quite simple in view of the previous lemma and the above observations:

Θ(t) =
1

#(Γ)

∑
g∈G

Ig(t)

=
1

#(Γ)

∑
c∈Con(Γ)

#(c)I[c](t)

=
∑

c∈Con(Γ)

#(c)
#(Γ)

I[c](t).

Given a subgroup A ≤ Γ, let MA = M/A, with its canonical Riemannian tensor GA obtained
either by lifting G on M =M/Γ or by lowering G on M .
We can now obtain the theta function ΘA(t) of (MA,GA) by employing similar arguments :

Lemma 4.6.

ΘA(t) =
∑

c∈Con(A)

#(c ∩A)
#(A)

I[c](t).

Proof. Clearly the heat kernel HA of MA =M/A satisfies,

HA(m1,m2, t) =
∑
a∈A

H(am1,m2, t),

with m1 ∈ pA
−1(m1),m1 ∈ pA

−1(m2) where pA : M 7−→ MA = M/A is the obvious covering
projection. Let µA denote the Lebesque measure induced on MA by GA. We have,

ΘA(t) =

∫
MA

H(m,m, t)dµA(m)

=
1

#(A)

∫
M

∑
a∈A

H(am, am, t)dµ(m).

=
∑
a∈A

1
#(A)

Ia(t).

Once again we notice that Ia(t) is constant across conjugacy classes and consequently,

ΘA(t) =
∑

c∈Con(Γ)

#(c)
#(A)

I[c](t),

hence,

ΘA(t) =
∑

c∈Con(Γ)

#(c ∩A)
#(A)

I[c](t).

Theorem 4.7. Let G be a “bumpy” Riemannian metric on M = M/Γ, A,B ≤ Γ be subgroups
of Γ, let MA =M/A,MB =M/B with respective natural Riemannian metrics.

(i) MA is isometric to MB iff A and B are conjugate subgroups of Γ .

(ii) ΘA(t) = ΘB(t) if A and B are equivalent in the sense of Gassmann.
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Proof. ii is now clear by the observations preceding this theorem. As for i : Each element of
M =M/Γ is an equivalence class under the equivalence relation ∼Γ where m1∼Γ m2 if ∃ g ∈ Γ

such that m2 = gm1. Let’s denote the ∼Γ the equivalence class containing m by [m]Γ. Similarly,
we introduce the notations [m]A , [m]B . Suppose first that A and B are conjugate groups.There
exists γ ∈ Γ such that

B = γAγ−1.

Define Fγ : MA 7−→ MB by Fγ([m]A) = [γ m]B First check that this is well defined. Indeed if
m1 ∼A m2 then there exists a ∈M such that m2 = am1. Hence,

γm2 = γa m2 = γaγ−1γm1.

As γ aγ−1 ∈ γ Aγ−1 = B, we conclude γm2 ∼B γm1. Therefore Fγ is well-defined. As
m 7−→ γ m is an isometry, so is Fγ : MA 7−→ MB an isometry. Suppose, conversely, that
MA, MB are isometric, that is there exists an isometry F : MA 7−→ MB . Let p̂A : MA =
M/A 7−→ M = MΓ = M/Γ be the obvious covering projection sending [m]A into [m]

Γ
.

Similarly define p̂B : MB 7−→ M . Take [m]A ∈ MA and assume that F ([m]A) = [m
′
]B .

If m = p̂A([m]A) = [m]
Γ
̸= [m

′
]
Γ
= p̂B([m]B) = m

′
then we may choose open disjoint

neighbourhoods U ,V of m,m
′

and open neighbourhoods Û ,V̂ of [m]A, [m]
Γ

such that:

p̂A|Û : Û 7−→ U,

F |Û : Û 7−→ V̂ ,

p̂B |V̂ : V̂ 7−→ V,

are isometries. Consequently,

p̂B |V̂ ◦ F |Û ◦ (p̂A|Û )
−1 : U 7−→ V

is an isometry. This is impossible since G is a “bumpy” metric. We conclude m = m
′

that is

[m]
Γ
= p̂A([m]A) = p̂B([m

′
]B) = [m

′
]
Γ
.

This being true for any [m]A ∈MA,we conclude that F has to be a lifting of the identity map on
M , that is

p̂B ◦ F = p̂A

Thus for a given [m]A ∈ MA, if F ([m]A) = [m
′
]B then [m]

Γ
= [m

′
]
Γ

and there exists γ ∈ Γ

with
m

′
= γm.

By the uniqueness of liftings with a given action on a single point we conclude that,

F = Fγ .

and
B = γAγ−1.

For any commutative ring R with 1, let U(R) denote the multiplicative group of units in R.
Given groups G,H where G acts upon H on the left by φ : G 7−→ Aut(H), let us write for
simplicity gh instead of φ(g)(h). The semi-direct product G⋉φH ( or simply G⋉H) of G and
H consists of pairs (g, h) ∈ G×H with the binary operation.

(g, h)(g
′
, h

′
) = (gg

′
, h(gh

′
)).

The group structure can be routinely checked.
Consider now the group Z/8Z = {0, 1, 2, 3, 4, 5, 6, 7} of integers modulo 8. U(Z/8Z) = {1,
3, 5, 7} acts on Z/8Z by multiplication. Consider the group Γ = U(Z/8Z) ⋉ Z/8Z. In plain
language, Γ is the group consisting of pairs (32 in all!),

(x, y) ∈ {1, 3, 5, 7} × {0, 1, 2, 3, 4, 5, 6, 7},
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with a binary operation,
(x, y)(x

′
, y

′
) = (xx

′
, y + xy

′
).

It can be readily checked that (1, 0) ∈ Γ is the identity element, that is,

(1, 0)(x, y) = (1x, 0 + 1y) = (x, y).

(x, y)(1, 0) = (x1, y + x0) = (x, y)

and the inverse element,
(x, y)−1 = (x−1,−x−1y).

Now we consider A,B ≤ Γ where,

A = {1, 3, 5, 7} × {0}

B = {(1, 0), (3, 4), (5, 4), (7, 0)}.

A routine tabulation of the conjugacy classes in Γ shows that A and B are equivalent in the sense
of Gassmann.

Let Sn be the symmetric group of degree n which consists of the permutations of n objects.
Every finite group G of order n can be embedded as a subgroup of the group of permutations
SG ≃ Sn of the carrier set of G by means of the so-called Cayley representation which is a group
monomorphism.

G
i7−→ SG,

where i(g) is defined to be:
i(g)(x) = g(x),

for all x ∈ G.
Let p be a prime number and consider the groups:

A = Z/pZ⊕ Z/pZ⊕ Z/pZ.

B = {


1 x y

0 1 z

0 0 1

 | x, y, z ∈ Z/pZ} .

which are both finite groups of order p3 which we consider to be subgroups of Sp3 by means of
the above described procedure.
Clearly the order of each non-zero element of A is p. The same holds for the elements of B
since, 

1 a b

0 1 c

0 0 1


n

=


1 na nb+

n(n− 1)
2

ac

0 1 nb

0 0 1

 ,
which can be obtained by a simple induction as,

1 na nb+
n(n− 1)

2
ac

0 1 nb

0 0 1




1 a b

0 1 c

0 0 1


n

=


1 (n+ 1)a (n+ 1)b+

n(n+ 1)
2

ac

0 1 (n+ 1)c

0 0 1

 .
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This means that all non-identity elements of A,B ≤ Sp3 are products p2 disjoint cycles of length
p. Consequently, given g ∈ Sp3 , either g = e and

#([g] ∩A) = #([g] ∩B) = 1

or g ̸= e and
#([g] ∩A) = #([g] ∩B) = p3 − 1 .

Therefore A,B are subgroups of Sp3 which are equivalent in the sense of Gassmann. On the
other hand, let alone being conjugate, A,B are not even isomorphic since A is Abelian but B is
not.

Let, n ≥ 3 G = SL(n,Z/pZ) and consider:

A = {[aij ]1≤i,j≤n ∈ SL(n,Z/pZ) | ai1 = 0 for i ≥ 2}

B = {[bij ]1≤i,j≤n ∈ SL(n,Z/pZ) | b1j = 0 for j ≥ 2} .

Let

a =



1

0

0
...

0


∈ (Z/pZ)n .

Clearly x ∈ A iff xa = λa for some λ ∈ Z/pZ − {0}. In other words, x ∈ A is a (right)
eigenvector of x. Similarly y ∈ B iff aT y = µaT for some µ ∈ Z/pZ− {0}. Again, this means
that y ∈ B iff aT occurs as a (left) eigenvector of y. Since, for any g ∈ SL(n,Z/pZ) a occurs
as a right eigenvector of xgx−1 if and only if aT occurs as a left eigenvector of (x−1)

T
g. These

show that A and B are not conjugate but equivalent in the sense of Gassmann. Since any finite
group is known to arise as the fundamental group of a compact, smooth manifold of dimension
4 ( in fact as the fundamental group of a compact complex projective algebraic surface) [34], in
view of theorem 4.7, examples 3, 3 and 3 above provides us with isospectral but non-isometric
Riemannian manifolds.

5 Isospectral Deformations on Nilmanifolds

Having produced isospectral Riemannian manifolds which are not isometric, it is natural to ask
whether it is possible to find continuous families of isospectral manifolds which are naturally
isometrically distinct. Rephrased in the manner of Kac, we ask, whether it is possible for a Rie-
mannian manifold to change its shape continuously while sounding the same. To be precise, the
problem is to find a continuously parametrised family Gt of Riemannian metrics on a manifold
M for t ∈ [0, 1] such that (M,Gt) and (M,Gt′ ) are isospectral for any t, t

′ ∈ [0, 1], isometric
only when t = t

′
. The manifolds (M,Gt) are said to constitute isospectral deformations from

G0 to G1. To emphasize the requirement that (M,Gt) and (M,Gt′ ) are not isometric for t ̸= t
′
,

one may talk about non-trivial isospectral deformations. Non-trivial isospectral deformations
are known not to exist on flat tori[31] and the so called Heisenberg manifolds[32] and compact
manifolds of negative sectional curvature [24, 28] In this section we present a method allied to
that of Sunada by means of which it is possible to produce non-trivial isospectral deformations
on a special but large class of Riemannian manifolds. Given a Lie group G with Lie algebra
G, the group Aut(G) of Lie group automorphisms of G is a Lie group. If G is connected then
Aut(G) can be naturally immersed in Aut[G]. If G is connected and simply connected then
Aut(G) may be naturally identified with Aut[G]. The Lie algebra of Aut[G] and hence that of
Aut(G) can be identified with the algebra Der[G] of derivations of G, that is, of vector space
endomorphisms.

φ : G 7−→ G
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such that:
φ([X,Y ]) = [θX, Y ] + [X, θY ] .

φ ∈ Aut(G) is said to be an inner automorphism if there exists g ∈ G such that

φ(x) = gxg−1,

for all x ∈ G. We shall denote such φ ∈ Aut(G) by ig. It can be readily checked that inner
automorphisms of G constitute a normal Lie subgroup Inn(G) of G. The Lie algebra of Inn(G)
can be identified with the ideal ad[G] of Der[G] which consists of derivations of the form ad[X],
for X ∈ G where ad[X] : G 7−→ G is defined by:

ad[X](Y ) = [X,Y ] .

The fact that ad[X] is a derivation is tantamount to the Jacobi identity for Lie brackets. If Z, z
denote the centers of G,G respectively, that is,

Z = {x ∈ G | xg = gx ∀ g ∈ G},

z = {X ∈ G | [X,Y ] = 0 ∀ Y ∈ G},
then it can be easily checked that,

Inn(G) ≃ G/Z

ad[G] ≃ G/z .

Let’s abbreviate the matrix 
1 x y

0 1 z

0 0 1

 ,

by


x

y

z

 and consider the Heisenberg group of degree 1 defined by:

G = {


x

y

z

 | x, y, z ∈ R}.

It can be easily checked that the Lie algebra G ofG is generated by the left-invariant vector fields,

X =
∂

∂x
,

Y =
∂

∂y
+ x

∂

∂z
,

Z =
∂

∂z
,

with
[X,Y ] = Z,

[Y,Z] = [Z,X] = 0.

Clearly,

Z = {


0

0

z

 | z ∈ R} ≤ G.
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z =< Z > ≤ G
It can be readily checked that each θ ∈ Der[G] is of the form

θ(X) = aX + bY + cZ

θ(Y ) = a
′
X + b

′
Y + c

′
Z

θ(Z) = (a+ b
′
)Z.

Therefore
dim(Aut(G)) = dimAut[G] = dim(Der[G]) = 6

whereas
dim(Inn(G)) = dim(Ad[G])

= dim(G)− dim(Z) = dim(G)− dim(z)

= 3 − 1 = 2 .

Proceeding more directly we can easily check that each φ ∈ Aut[G] is of the form:

(∗)



φ(X) = aX + bY + cZ

φ(Y ) = a
′
X + b

′
Y + c

′
Z

φ(Z) = (ab
′ − a

′
b)Z

,

where ab
′ − a

′
b ̸= 0, from which we observe once again that,

dim(Aut[G]) = dim(Aut(G)) = dim(Der[G]) = 6 .

In this particular example whereG is connected, simply connected and nilpotent, the relationship
between G and G is very simple. The maps:

exp : G 7−→ G

log : G 7−→ G
are diffeomorphisms and can be explicitly given by:

exp(aX + bY + cZ) =


a

b

c+ 1
2ab

 ,

log(


x

y

z

) = xX + yY + (z − xy

2
)Z.

This allows us to write down the general form of the automorphisms of G: Indeed each F ∈
Aut(G) is of the form F = Fφ ∈ Aut(G) where,

Fφ = exp ◦ φ ◦ log,

for some φ ∈ Aut(G). Explicitly, we employ the general form of φ as given in (∗) and put

F (


x

y

z

) = exp ◦ φ ◦ log(


x

y

z

),
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= exp ◦ φ[xX + yY + (z − xy

2
)Z]

= exp[x(aX + bY + cZ) + y(a
′
X + b

′
Y + c

′
Z) + (z − xy

2
)(ab

′
− a

′
b)Z]

= exp{(ax+ a
′
y)X + (bx+ b

′
y)Y + [cx+ c

′
y + ∆(z − xy

2
)]Z},

where ∆ = ab
′ − a

′
b. Thus,

F (


x

y

z

) =


ax+ a
′
y

bx+ b
′
y

cx+ c
′
y + ∆z − (ab

′
− a

′
b)
xy

2
+

1
2
abx2 +

1
2
ab

′
xy +

1
2
a

′
bxy +

1
2
a

′
b
′
y2



=


ax+ a

′
y

bx+ b
′
y

cx+ c
′
y + ∆z +

1
2
(abx2 + 2a

′
bxy + a

′
b
′
y2)

 .
[23, 20]

Let’s abbreviate the matrix, 

1 x1 x2 z1 0 0 0

0 1 0 y1 0 0 0

0 0 1 y2 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 x1 z2

0 0 0 0 0 1 y2

0 0 0 0 0 0 1


,

by 

x1

x2

y1

y2

z1

z2


,

and consider the Lie group,

G = {



x1

x2

y1

y2

z1

z2


| x1, x2, y1, y2, z1, z2 ∈ R}.
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It can be readily checked that,

x1

x2

y1

y2

z1

z2





x1
′

x2
′

y1
′

y2
′

z1
′

z2
′


=



x1 + x1
′

x2 + x2
′

y1 + y1
′

y2 + y2
′

z1 + z1
′
+ x1y1

′
+ x2y2

′

z2 + z2
′
+ x1y2

′


and 

x1

x2

y1

y2

z1

z2



−1

=



−x1

−x2

−y1

−y2

−z1 + x1y1 + x2y2

−z2 + x1y2


.

The Lie algebra G of G is generated by the left invariant vector fields:

X1 =
∂

∂x1
,

X2 =
∂

∂x2
,

Y1 =
∂

∂y1
+ x1

∂

∂z1
,

Y2 =
∂

∂y2
+ x2

∂

∂z1
+ x1

∂

∂z2
,

Z1 =
∂

∂z1
,

Z2 =
∂

∂z2
,

which obey:
[X1, Y1] = Z1,

[X2, Y2] = Z1,

[X1, Y2] = Z2,

all the remaining brackets being zero. It can be readily checked that,

Z = {



0

0

0

0

z1

z2


| z1, z2 ∈ R},
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and
z =< Z1, Z2 > .

Consequently

dim Inn(G) = dim Ad[G] = dimG/Z = dim G/z = 6 − 2 = 4.

It is not easy to express the elements of Aut(G) explicitly. On the other hand, it is relatively
easier to investigate the elements of Aut(G) and to conclude that,

dim(Aut(G)) = dim(Aut[G]) = dim(Aut[G]) = 22 .

An inner automorphism ig of G is of the form:

ig(



x1

x2

y1

y2

z1

z2


) =



x1

x2

y1

y2

z1 + a1y1 + a2y2 − b1x1 − b2x2

z2 + a1y2 − b2x1


,

where,

g =



a1

a2

b1

b2

c1

c2


.

The logarithm and the exponential can be computed routinely :

exp[a1X1 + a2X2 + b1Y1 + b2Y2 + c1Z1 + c2Z2]

=



a1

a2

b1

b2

c1 +
1
2(a1b1 + a2b2)

c2 +
1
2a1b2


.

log(



x1

x2

y1

y2

z1

z2


) = x1X1 + x2X2 + y1Y1 + y2Y2 + (z1 −

x1y1 + x2y2

2
)Z1 + (z2 −

x1y2

2
)Z2.



1126 S. Başaran and D. Amilo

Intuitively each derivation θ ∈ Der[G] of G is an“infinitesimal” automorphism of G, hence of
G. Similarly elements of Ad[G] may be regarded as “infinitesimal” inner automorphisms. Now,
let us revisit the case of finite G. Let φ : G 7−→ G be an automorphism with the property that
for each g ∈ G, there exists x = x(g) ∈ G with φ(g) = xgx−1. It can be easily checked that
for any subgroup A ≤ G, A is equivalent in the sense of Gassmann to φ(A) ≤ G. An obvious
analogue of the above situation can be formulated as follows: [23] Given a Lie group G with Lie
algebra G, φ ∈ Aut(G) is said to be an almost inner automorphism if for each g ∈ G , there
exists x = x(g) ∈ G such that φ(g) = xgx−1. A derivative ξ ∈ Der[G] is called an almost inner
derivative if for each Y ∈ G, there exists X = X(Y ) ∈ G such that

ξ(Y ) = [X,Y ] .

We denote the set of almost inner automorphisms of G by AIA(G) , the set of almost inner
derivatives of G by AID(G) Clearly

Inn(G) ⊆ AIA(G) ⊆ Aut(G),

Ad[G] ⊆ AID[G] ⊆ Der[G].
The Heisenberg group admits no non-trivial almost inner automorphism. To be precise, each

almost inner automorphism in the Heisenberg group is an inner automorphism. To see this, note
that for any

g =


α

β

γ

 ,

ig(


x

y

z

) =

α

β

γ



x

y

z



α

β

γ


−1

=


α

β

γ



x

y

z




−α

−β

−γ + αβ



=


α+ x

β + y

γ + z + αy




−α

−β

−γ + αβ



=


x

y

z + αy + αβ + (α+ x)(−β)



=


x

y

z + αy − βx

 .
Given any automorphism φ of G defined by:

φ(


x

y

z

) =


ax+ a
′
y

bx+ b
′
y

cx+ c
′
y + ∆z + 1

2 [abx
2 + 2a

′
bxy + a

′
b
′
y2]

 .
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In order for φ to be an almost inner automorphism it is clear that a = b
′
= 1, a

′
= b = 0 in

which case
φ = ig,

where g may be chosen to be of the form:

g =


c
′

−c

γ

 .
for arbitrary γ ∈ R.

In the six-dimensional nilpotent Lie group of Example 2 it is fairly easy to work out the
general form of an almost inner derivative : Since all Lie brackets take their values in z =<
Z1, Z2 >, we conclude that for an almost inner derivative δ ∈ AID[z], δ(X) ∈ z for all X ∈ G.
On the other hand δ |z≡ 0. Therefore an almost inner derivative δ must have the form:

δ :



X1 7−→ a11Z1 + a12Z2

X2 7−→ a21Z1 + a22Z2

Y1 7−→ b11Z1 + b12Z2

Y2 7−→ b21Z1 + b22Z2

Z1 7−→ 0

Z2 7−→ 0

However, as Lie brackets containing X2 or Y1 can take values only in < Z1, Z2 > we conclude
that a22 = b22 = 0. It is easy to check now that an endomorphism δ of G is an almost inner
derivative iff δ is of the form:

δ :



X1 7−→ a11Z1 + a12Z2

X2 7−→ a21Z1

Y1 7−→ b11Z1

Y2 7−→ b21Z1 + b22Z2

Z1 7−→ 0

Z2 7−→ 0
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This shows that AID[G] is a six dimensional subalgebra of Der[G]. In view of the four linearly
independent inner derivatives,

Ad[X1] :



X1 7−→ 0

X2 7−→ 0

Y1 7−→ Z1

Y2 7−→ Z2

Z1 7−→ 0

Z2 7−→ 0

Ad[X2] :



X1 7−→ 0

X2 7−→ 0

Y1 7−→ 0

Y2 7−→ Z1

Z1 7−→ 0

Z2 7−→ 0

Ad[Y1] :



X1 7−→ −Z1

X2 7−→ 0

Y1 7−→ 0

Y2 7−→ 0

Z1 7−→ 0

Z2 7−→ 0
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Ad[Y2] :



X1 7−→ −Z2

X2 7−→ −Z1

Y1 7−→ 0

Y2 7−→ 0

Z1 7−→ 0

Z2 7−→ 0

it is clear that,
AID[G] =< Ad[X1], Ad[X2], Ad[Y1], Ad[Y2], δ, ε >

where,

δ :



X1 7−→ Z2

X2 7−→ 0

Y1 7−→ 0

Y2 7−→ 0

Z1 7−→ 0

Z2 7−→ 0

ε :



X1 7−→ 0

X2 7−→ 0

Y1 7−→ 0

Y2 7−→ Z2

Z1 7−→ 0

Z2 7−→ 0
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It can be directly checked that automorphisms of G obtained by exponentiation from elements
of AID[G] are almost inner automorphisms. At this stage, we content ourselves by noticing that
the maps

φ = exp ◦ expG(δ) ◦ log = exp ◦ (I + δ) ◦ log

ψ = exp ◦ expG(ε) ◦ log = exp ◦ (I + ε) ◦ log

are both almost inner automorphisms. Indeed,

φ(



x1

x2

y1

y2

z1

z2


) =



x1

x2

y1

y2

z1

z2 + x1


= ig(



x1

x2

y1

y2

z1

z2


),

where,

g =



0

0

x2/x1

−1

0

0


,

if x1 ̸= 0, otherwise g = eG.
Again

ψ(



x1

x2

y1

y2

z1

z2


) =



x1

x2

y1

y2

z1

z2 + y2


= ih(



x1

x2

y1

y2

z1

z2


),

where

h =



1

−y1/y2

0

0

0

0


,

if y2 ̸= 0, otherwise h = eG.

Theorem 5.1. Almost inner automorphisms of G constitute a normal subgroup of Aut(G).
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Proof. Clearly IdG
∈ AIA(G). Suppose φ,ψ ∈ Aut(G). Given x ∈ G, ∃ g = g(x) and

h = h(x) such that
φ(x) = gxg−1

ψ(x) = hxh−1 .

hence
ψ ◦ φ(x) = ψ(φ(x))

= ψ(gxg−1)

= ψ(g)ψ(x)ψ(g)−1

= ψ(g)hx(ψ(g)h)−1.

This being true for arbitrary x ∈ G, it is seen that ψ ◦ φ ∈ AIA(G). Therefore AIA(G) ≤
Aut(G).

As for normality:
Given φ ∈ AIA(G) and α ∈ Aut(G), consider x ∈ G and choose g = g(α−1(x)) Thus

α ◦ φ ◦ α−1(x) = α ◦ φ(α−1(x))

= α(gα−1(x)g−1)

= α(g) x α(g)−1.

This being true for each x ∈ G, we conclude that α ◦ φ ◦ α−1 ∈ AIA(G). Consequently
AIA(G)�Aut(G)

Theorem 5.2. Let G∗ stands for the dual of G. Given a simply connected Lie group G and
φ ∈ Aut(G), the following are equivalent:

(i) φ is an almost inner automorphism.
(ii) For each X ∈ G there exists g = g(x) ∈ G such that

φ∗(X) = (ig)∗(X).

(iii) For each ξ ∈ G∗ there exists g = g(ξ) ∈ G such that

ξ ◦ φ∗ = ζ ◦ (ig)∗

Proof. (i) =⇒ (ii) : Given X ∈ G

φ∗(X)(e) = Teφ(X(e)) =
d
dt

|t=0 φ(γ(t)),

where γ : (−ε, ε) −→ G is any smooth path with γ(0) = e and γ̇(0) = X(e). We choose
γ(t), t ∈ R to be the one-parameter subgroup of G generated by X ∈ G. There exists g ∈ G such
that

φ(γ(1)) = ig(γ(1)).

It can be checked that
φ(γ(1)) = ig(γ(t)),

for all t ∈ R. Consequently
φ(X) = (ig)∗(X).

(ii) =⇒ (iii) : Choose a left-invariant Riemannian metric G on G. Equivalently G may be
understood to be an innerproduct on G. Given ξ ∈ G∗, there exists unique X ∈ G such that

ξ = G(X, .).

Therefore, for any Y ∈ G,
ξ ◦ φ∗(Y ) = G(X,φ∗(Y ))

= G(φ∗(X), Y )

= G((ig)∗(X), Y )
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for some g = g(X) ∈ G. This being true for arbitrary Y ∈ G, we find

ξ ◦ φ∗ = ξ ◦ (ig)∗.

It is obvious that the dual of this argument allows us to conclude that
(iii) =⇒ (ii).

(ii) =⇒ (i) : Consider x ∈ G. Choose X ∈ G such that γ(1) = x where γ(t) is the
one-parameter subgroup generated by X ∈ G. Choose g = g(X) ∈ G with

φ∗(X) = (ig)∗(X).

It can now be checked that φ(γ(t)) is the one parameter subgroup generated by (ig)∗(X) and

φ(x) = φ(γ(1)) = gγ(1)g−1 = gxg−1.

Theorem 5.3. In a connected, simply connected Lie group G, AIA(G) is a Lie subgroup of
Aut(G).

Proof. By a standard theorem of E. Cartan a closed subgroup of a real Lie group is a Lie sub-
group [29]. We have already shown that AIA(G) is a subgroup (in fact a normal subgroup)
of Aut(G). Therefore, it will be sufficient to show that AIA(G) is closed in Aut(G). To this
end notice that G is nilpotent and there exists m ∈ N such that for all X ∈ G , Ad[X]m ≡ 0.
Consequently exp(Ad[X]) is a polynomial in Ad[X] which has an order independent of X ∈ G.
As a result, the orbits of Inn(G) on G are closed in G. Since the orbits of AIA(G) on G coincide
with those of Inn(G) we conclude that the orbits of AIA(G) on G are closed in G. Therefore
AIA(G) is closed in Aut(G) ≃ Aut[G].

Theorem 5.4. Given a connected, simply connected nilpotent Lie group G, the Lie subalgebra
corresponding to the Lie subgroup AIA(G) of almost inner derivations.

Proof. Assume G is of nilpotence length m. Let {Gk}mk=0 be the central series of G consisting of
the iterated derived subalgebras Gk defined inductively by

G0 = G . . .Gk+1 = [G,Gk].

Consider any φ ∈ AIA(G). Clearly,

(φ∗ − I)Gk ⊆ Gk+1,

for each k ≥ 0. In other words, φ∗ − I is nilpotent on G. If φ = expGD for some D ∈ Der[G].
Again we have,

DGk ⊆ Gk+1,

for each k ≥ 0. Given X ∈ G, there exists Y ∈ G such that,

φ∗X = expG(Ad[Y ])X.

Consequently,
expG(−Ad[Y ])expG(D)X = X. (∗),

Now, remember that Ad[G] is an ideal in Der[G],in fact [D,Ad[Y ]]G = Ad[D(y)]. Employing
the Hausdorff-Campbell formula on the left hand side of (∗) we obtain

expG(D −Ad[Z])X = X, (∗∗),

where Z = Y − 1
2D(Y ) + · · · which terminates after finitely many terms involving powers of

D. But, D − Ad[Z] is again nilpotent on G and f(D − Ad[Z]) is invertible where f : CC is the
entire function defined by

f(z) =


ez − 1
z

for z̸= 0

1 for z = 0 .
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By (∗∗) we have,
f(D −Ad[Z])(D −Ad[Z])X

= expG(D −Ad[Z])X = X,

from which we conclude by the invertibility of f(D −Ad[Z]) that,

(D −Ad[Z])X = 0,

or equivalently
DX = Ad[Z]X,

which, being true for arbitrary X implies that,

D ∈ AID[G].

We conclude that,
AIA(G) ⊆ exp(AID[G]).

A similar argument can be employed to reverse this inclusion.

Remark 5.5. The proof of the above theorem, rephrased in slightly greater detail will allow us
to observe that for a nilpotent Lie group G of nilpotence length m,AIA(G) is a nilpotent group
of nilpotence length at most m− 1. A similar result is valid for AID[G].

Remark 5.6. In view of the fact that AIA(G) is normal, we conclude that AID[G] is a Lie ideal
in Der[G]. A nilmanifold M is a quotient manifold of right cosets M = Γ\G where G is a
simply connected nilpotent Lie group, Γ is a discrete cocompact subgroup of G.

Notice that a right coset of Γ inG is nothing but an orbit of the action of Γ onG by multiplication
on the left. Consequently a tangent vector of M = Γ\G can be regarded as an equivalence class
of tangent vectors on G where u ∈ TxG and v ∈ TyG are are understood to be equivalent if there
exists γ ∈ Γ such that

y = γx,

and
v = TxLg(u).

The equivalence class containing u ∈ TxG which we denote by [u]Γ can be identified with
a tangent vector at Γx ∈ M = Γ\G. Thus, a left-invariant Riemannian metric G on G will
naturally induce a Riemannian metric GΓ on M = Γ\G defined by

GΓ([u]Γ, [v]Γ) = G(u, v).

By an obvious and convenient use of notation we shall simply write u , G instead of [u]Γ,GΓ in
the sequel.
A Riemannian nilmanifold is a pair (Γ\G,G) where G is a Riemannian metric which is induced
by a left invariant one on G in the manner described above.

Lemma 5.7. On a Lie group G with left invariant metric G, the Laplacian ∆ = ∆G is of the form

∆f =
n∑

i=1

{−EiEif + (∇Ei
Ei)f},

for each f ∈ D(G), where {Ei}1≤i≤n is any basis for G that is orthonormal with respect to G
and ∇ is the Levi-Civita connection attached to G.

Proof. Notice that for any smooth f : G 7−→ R we have

grad(f) =
n∑

i=1

(Eif)Ei .
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Now, given A = AiEi ∈ X (G),

div(A) = trace{Er∇Er(A
iEi)}

= trace{Er(ErA
i)Ei + (Ai

Γri
m)Em},

where we put Γri
mEm for ∇Er

(Ei). Thus we conclude,

div(A) = ErA
r +Ai

Γri
r.

The result follows from the observation Γij
k = −Γik

j for any 1 ≤ j, k ≤ n, which can be
derived by noticing that ∇G = 0,G is left invariant and hence

G(∇Ei
Ej , Ek) +G(Ej ,∇Ei

Ek) = 0.

The following theorems are best derived by means of standard but heavy techniques. We offer
sketches of proofs.

Theorem 5.8. If G is a bi-invariant Riemannian metric on the nilpotent Lie group G, then the
Riemannian nilmanifolds (Γ\G,G) and (Γ\G,φ∗G) are isospectral for each φ ∈ AIA(G).

Proof. When G on the nilpotent Lie group G is biinvariant( such tensors exist on G since G
admits cocompact subgroups!) then the Levi-Civita connection ∇ obeys ∇XY = 0 for all
X,Y ∈ G and ∆ reduces to the form

∆f = −
n∑

i=1

EiEif,

for each f ∈ C(G) where {Ei}1≤i≤n is any basis for G which is orthonormal with respect to
G. By Kirillov’s theory on the unitary representations of nilpotent Lie groups [33], each unitary
irreducible representation of G on the Hilbert space of functions which are square integrable
by the Lebesque measure induced by G, are parametrised by elements of G, any almost inner
automorphism induces well-behaved unitary transformations between these. Since, in the pres-
ence of a biinvariant metric, the effect of each X ∈ G on D(G) can be expressed in terms of
irreducible representations, the same applies to the above mentioned Ei’s and to ∆.

Theorem 5.9. Riemannian nilmanifolds (Γ\G,G1) and (Γ\G,G2) are isometric iff there exists
g ∈ G and φ ∈ Aut(G) with φ(Γ) = Γ such that

G2 = (ig ◦ φ)∗G1.

Proof. Suppose G2 = (ig ◦ φ)∗G1 where g ∈ G and φ ∈ Aut(G) with φ(Γ) = Γ. Clearly

ig ◦ φ = Lg ◦Rg−1 ◦ φ,

where Lx and Ry represent multiplications in G by x and y on the left and right respectively. G1
being left invariant we find

G2 = (Rg−1 ◦ φ)∗G1.

But Rg−1 ◦ φ = f is the lifting of a map f : Γ\G 7−→ Γ\G which is an isometry from (Γ\G,G1)
to (Γ\G,G2).

Conversely suppose
f : (Γ\G,G1) 7−→ (Γ\G,G2)

is an isometry. f lifts to an isometry

f : (Γ\G,G1) 7−→ (Γ\G,G2).
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By a standard result of [13] G1 = Ψ∗G2, for some Ψ ∈ Aut(G) with Ψ(Γ) = Γ. Thus f ◦ Ψ−1

is an isometry of (Γ\G,G2). Let
σ = Lg ◦ f ◦ Ψ

−1,

where g−1 = f ◦ Ψ−1(e) ∈ Γ. Therefore σ is an isometry of (Γ\G,G2). with σ(e) = e. Again
from [14, 15], we conclude that σ ∈ Aut(G). Consequently

σ ◦ Ψ = Lg ◦Rg−1(Rg ◦ f).

= ig ◦ (Rg ◦ f).

But Rg ◦ f(Γ) = Γ.

Remark 5.10. It is possible to give a direct but not quite as natural a proof for theorem 5.9 in the
case where G is of nilpotence length 2[20].

Remark 5.11. The theorems 5.8 and 5.9 indicate that on nilmanifolds like that in Example 5 on
which inner automorphisms have sufficiently large codimension inside the group of almost inner
automorphisms, one can trivially obtain non-trivial isospectral deformations.

6 Conclusion

This study highlighted that the spectrum gives fairly detailed and complete information on large
families of Riemannian manifolds such as flat tori, Heisenberg spaces and manifolds of nega-
tive sectional curvature. This is what should perhaps be called the realm of “spectral rigidity”.
Moreover, away from spectral rigidity, (which we consider to be “generic”) that is where the
possibility of spectral deformations take over, a meagre category of highly structured manifolds
await exploration. It would be interesting to develop criteria distinguishing these situations more
clearly.
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matica 75( 1991)211-223

[32] H. Pesce : “Déformations isospectrales sur certaine nilvariétés et finitude spectrale des variétés de Heisen-
berg” Annales Scientifiques d’École Normale Superieure 25(1992)515-538

[33] L. Pukanszky : LEÇONS SUR LES REPRÉSENTATIONS DES GROUPES Dunod, Paris ( 1967)

[34] A. I. Shafarevic : BASIC ALGEBRAIC GEOMETRY Springer Verlag, Berlin (1994)

[35] T. Sunada : “Riemannian Coverings and Isospectral Manifolds”, Annals of Mathematics 121( 1985)169-
186

[36] M.F. Vigneras : “Varieté s Riemanniennes isospectrales et non isométriques” Annals of Mathematics 112
( 1980) 21-32

[37] E. Witt: “Eine Identität zwischen Modulformen zweiten Grades” Abhandlungen des mathematischen Sem-
inars der Universität Hamburg 14( 1941) 323-337 (or Gesammelte Abhandlungen 313-328 )

Author information
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