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Abstract In this paper, we deal with the unique solvability and numerical solution of the generalized absolute value
matrix equation (GAVME) AX −B |X| = C, (A,B,C,X ∈ Rn×n). For its unique solvability some sufficient conditions
are given. On the other hand, for its numerical solution, Picard’s fixed point iterative method is proposed to compute an
approximated solution of some uniquely solvable GAVME problems where its globally linear convergence is guaranteed.
Finally, some numerical results are given to confirm the efficiency of our suggested approach for solving the GAVME.

1 Introduction
In this paper, we consider the generalized absolute value matrix equation (abbreviated as GAVME) of type:

AX −B |X| = C, (1.1)

where A,B,C are given matrices in Rn×n, |X| denotes the absolute value of the unknown matrix solution X . The GAVME
is a generalization form of the following generalized absolute value equations (GAVE)

Ax−B |x| = b, (1.2)

where A,B ∈ Rn×n are given, b ∈ Rn and x ∈ Rn is the unknown variable. When B = I the identity matrix then GAVE
becomes

Ax− |x| = b. (1.3)

The importance of absolute value equations GAVEs is due to their broad applications in many mathematics and applied
sciences domains. For instance, the linear complementarity problem, bimatrix games, mixed integer programming, system
of linear interval matrix, and convex quadratic optimization can be formulated as GAVEs. Because of that reason, GAVEs
attract the attention of researchers in this field. For the unique solvability of the GAVEs (1.2), there are many different types
of conditions, we cite the most well-known established results until today. In [10], Mangasarian and Meyer presented a
sufficient condition, namely, 1 < σmin(A) for GAVE. In [12], Rohn generalized this result to the unique solvability of GAVE
where he imposed the following sufficient condition:

σmax(|B|) < σmin(A),

where σmax(|B|) denotes the maximal singular value of matrix |B| = (|bij |) and the σmin(A) denotes the smallest singular
values of matrix A. Furthermore, Lotfi and Veiseh [9], imposed other sufficient conditions that if the following matrix

ATA− ∥|B|∥2 I,

is positive definite, then GAVE (1.2) is uniquely solvable for any b ∈ Rn.
In [2] Achache and Anane, have weakened the conditions of Rohn, Lotfi and, Veiseh, in assuming that the GAVE (1.2)

satisfies the following sufficient conditions:

(i) σmin(A) > σmax(B),

(ii)
∥∥A−1B

∥∥ < 1, provided A is non singular,

(iii) The matrix ATA− ∥B∥2 I is positive definite, then the GAVE (1.2) is uniquely solvable for any b.

In [14] Shubham. K and Deepmala present a sufficient condition for the unique solvability of the GAVME. They provided if
ρ(
∣∣A−1

∣∣ |B|) < 1, then GAVME has an unique solution for every matrix C. It is worth mentioning that no numerical results
are given by them.
In this paper, on the one hand, to guarantee the unique solvability of the GAVME (1.1). we extend those conditions given
by [2] for GAVE (1.2). On the other hand, for its numerical solution, we propose a simple Picard’s iterative method [8,
18], to compute numerically an approximated solution for some uniquely solvable GAVME problems. The globally linear
convergence of the latter from any starting initial point is guaranteed via the sufficient condition

∥∥A−1B
∥∥ < 1, provided A

is nonsingular. Finally, some numerical results are given to confirm the efficiency of our proposed approach for solving the
GAVME.

At the end of this section, some notations are presented. Let Rn×n be the set of all n × n real matrices. The scalar
product and the Euclidean norm are denoted, respectively, by xT y, x, y ∈ Rn and ∥x∥ =

√
xT x. Recall that a subordinate

matrix norm for A ∈ Rn×n is defined as follows: ∥A∥ := max {∥Ax∥ : x ∈ Rn, ∥x∥ = 1} , this definition implies:

∥Ax∥ ≤ ∥A∥ ∥x∥ , ∥AB∥ ≤ ∥A∥ ∥B∥ , ∀A,B ∈ Rn×n andx ∈ Rn.
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The sign(x) denotes a vector with the components equal to −1, 0 or 1 depending on whether the corresponding component
is negative, zero, or positive. In addition, D(x) := Diag(sign(x)) will denote a diagonal matrix corresponding to sign(x).
The absolute value of a matrix A = (aij) ∈ Rn×n and the vector of all ones are denoted by |A| = (|aij |) ∈ Rn×n and
e ∈ Rn, respectively. σmin(A), σmax(A) represent, respectively, the smallest and the largest singular value of matrix A. As
is well known, σ2

min(A) = min∥x∥=1 x
TATAx, and σ2

max(A) = max∥x∥=1 x
TATAx.

The remaining part of the paper is organized as follows. The main results are stated in Section 2. In Section 3, Picard’s
iterative method is suggested to provide an approximated solution for GAVME (1.1). In Section 4, some numerical results
are reported. A conclusion is drawn in Section 5.

2 Main results
In this section, for our main result, the following Lemma is required.

Lemma 2.1. If matrices A and B satisfy the following conditions
(i) σmin(A) > σmax(B),

(ii)
∥∥A−1B

∥∥ < 1, provided A is non singular,

(iii) The matrix ATA− ∥B∥2 I is positive definite.
Then the matrix A−BD is non singular for all diagonal matrix D whose elements are ±1 and 0.

Proof. The proof is similar to the one given in [2]

Theorem 2.2. If matrices A and B satisfy the following conditions
(i) σmin(A) > σmax(B),

(ii)
∥∥A−1B

∥∥ < 1, provided A is non singular,

(iii) The matrix ATA− ∥B∥2 I is positive definite, then the GAVME (1.1) is uniquely solvable for any matrix C.

Proof. To prove our main results, we may partition the matrices X , |X| and C as follows: X = (x1, · · · , xn), |X| =
(
∣∣x1

∣∣ , ∣∣x2
∣∣ , · · · , |xn|) and C = (c1, · · · , cn) where xl,

∣∣xl
∣∣ and cl are the l-th column of the matrices X, |X| and C,

respectively. Then the GAVME (1.1) can be formulated as l vectorial absolute value equations (GAVE (1.2)):

Axl −B
∣∣∣xl

∣∣∣ = cl, l = 1, · · · , n. (2.1)

According to D(xl)xl =
∣∣xl

∣∣ where D =: Diag(sign(xl)), each equation in (2.1) can be rewritten as the following linear
system of equations:

(A−BD)xl = cl, l = 1, · · · , n, (2.2)
for all diagonal matrix D with its components are ±1 and 0. So it is clear that (2.1) is uniquely solvable if the system (2.2)
has a unique solution, i.e., if the matrix (A−BD) is non singular. Applying Lemma 2.1, for each equation l, then GAVME
(1.1) is uniquely solvable for any C. This completes the proof.

3 Picard’s iterative method
In this section, to provide an approximated solution of some uniquely solvable GAVME problems, a simple Picard’s fixed
point iterative method is proposed. First, we state the Banach fixed point theorem which will be used for proving the conver-
gence of the proposed method, one can see [6] for its details proof.

Theorem 3.1. (Banach’s fixed point theorem). Let (X, d) be a non-empty complete metric space, 0 ≤ α < 1 and T : X →
X a mapping satisfying

d(T (x), T (y)) ≤ αd(x, y), for all x, y ∈ X.

Then there exists a unique x ∈ X such that T (x) = x. Furthermore, x can be found as follows: start with an arbitrary
element x0 ∈ X and define a sequence {xk} by

xk+1 = T (xk),

then
lim

k 7→∞
xk = x,

and the following inequalities hold:

d(x, xk+1) ≤
α

1 − α
d(xk+1, xk), d(x, xk+1) ≤ αd(x, xk).

Next, for solving the equation GAVME (1.1), we solve n equations of the following form:

Axl −B
∣∣∣xl

∣∣∣ = cl, l = 1, · · · , n. (3.1)

based on the fixed point principle, the sequence of iterations for solving (3.1) is given by

xl
k+1 = A−1B

∣∣∣xl
k

∣∣∣ +A−1cl, k = 0, 1, 2, . . . (3.2)

Next under the condition 2 (Theorem 1 )[2], we provide a sufficient condition for the linearly global convergence of the fixed
point iterations (3.2).
Now, we can formally describe the corresponding point fixed algorithm for solving the GAVME (1.1) as follows:
Algorithm
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Input:
An accuracy ϵ > 0;
for l = 1, 2, · · · , n;
an initial starting point xl

0 ∈ Rn;
given matrices A, B and C in Rn×n;

set k := 0;
while

∥∥xl
k+1 − xl

k

∥∥ ≥ ϵ do
begin
compute xl

k from the linear system xl
k+1 = A−1B

∣∣xl
k

∣∣ +A−1cl, l = 1, · · · , n;
update k := k + 1;
end.

A Picard’s fixed point algorithm for the GAVME.

Theorem 3.2. Let A be a nonsingular matrix and if ∥∥∥A−1B
∥∥∥ < 1,

then the sequence
{
xl
k

}
converges to the unique solution xl

⋆ of the GAVE for any arbitrary xl
0 ∈ Rn. In this case the error

bound is given by ∥∥∥xl
k+1 − xl

⋆

∥∥∥ ≤
∥∥A−1B

∥∥
1 − ∥A−1B∥

∥∥∥xl
k+1 − xl

k

∥∥∥ . (3.3)

Moreover, the sequence
{
xl
k

}
converges linearly to xl

⋆ as follows∥∥∥xl
k+1 − xl

⋆

∥∥∥ ≤
∥∥∥A−1B

∥∥∥∥∥∥xl
k − xl

⋆

∥∥∥ , k = 0, 1, 2, . . . (3.4)

Proof. First, if the condition
∥∥A−1B

∥∥ < 1 holds then Theorem 2.1, implies that the GAVME (1.1) is uniquely solvable for
any square matrix C. Next, to prove the convergence for the sequence

{
xl
k

}
to xl

⋆, we define the function φ : Rn→ Rn by

φ(xl) = A−1B
∣∣∣xl

∣∣∣ +A−1b, l = 1, · · · , n.

Then, it is easy to see with the help of the following inequality

∥|x| − |y|∥ ≤ ∥x− y∥, for allx, y ∈ Rn,

that
∥φ(x)− φ(y)∥ ≤

∥∥∥A−1B
∥∥∥ ∥x− y∥ , for all x, y ∈ Rn.

Using Theorem 3.1 with X = Rn, T = φ, d(x, y) = ∥x− y∥ for all x, y ∈ Rn and α =
∥∥A−1B

∥∥ < 1, we deduce the
convergence of the sequence

{
xl
k

}
l=1,2,...,n given by

xl
k+1 = φ(xl

k), k = 0, 1, 2, . . .

to the unique fixed point xl
⋆ to φ(xl) which is in turn the unique solution of the GAVME (1.1). Moreover, the inequalities

(3.3) and (3.4) hold which lead to the the linearly global convergence of the method. This completes the proof.

4 Numerical experiments
In this section, we present some examples of GAVME problems where their unique solvability is checked. Also by applying
Picard’s iterative method, we compute an approximated solution of these examples. Our implementation is done by using the
software MATLAB 7.9 and carried out on a personal PC where we set ϵ = 10−8. The starting matrix and the unique solution
of the GAVME are denoted, respectively, by X0 and X⋆, where xl

0 and xl
⋆ are the l-th column of the matrices X0 and X⋆,

respectively. In the tables of numerical results, we display the following notations: "Iter" and "CPU" state for the number of
iterations and the elapsed times. The termination of the algorithm is when the following stopping criterion:∥∥∥xl

k+1 − xl
k

∥∥∥ ≤ ϵ

holds where ϵ > 0 is a given accuracy. Further, we can take the residue RSD = ∥Axl
k −B|xl

k| − clk∥.
Example 1. Consider the GAVME (1.1) where A,B ∈ R3×3 are given by:

A =

 4 0 0
−4 4 0
0 2 3

 , B =

 1 0 0
1 1 0
0 0.5 1

 .

By Theorem 2.1, and with the help of Matlab, we get
∥∥A−1B

∥∥ = 0.7017 < 1, so this problem is uniquely solvable for any
matrix C. For this example, tha matrix C is given by

C =

 −1 0 0
0 1 0
0 0 2


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and th initial starting matrix is defined as follows:

X0 =

 1 0 0
0 2 0
0 0 3

 .

The obtained numerical results are summarized in Table 1

Iter CPU(s) RSD
16 0.007161 9.5430e− 008

Table 1.

The approximated unique solution of this problem is given by

X⋆ =

 −0.2000 0 0
−0.1200 0.3333 0
0.1500 −0.1250 1

 .

Example 2. Consider the following GAVME problem, with A,B ∈ R5×5 are given by

A =


8 0 −1 1 −20
1 1 1 4 25
1 −5 0 8 −10
0 8 1 −6 1
3 5 −3 0 10

 , B =


−1.5 0 1.5 0.5 0.1

0 0.25 1 0 0.5
1 0.6 1 0.4 0.5
0 0.3 1 1 0
1 0 1 0 0

 .

In this example, the matrices A and B are not symmetric. Further,
∥∥A−1B

∥∥ = 0.6859 < 1, which implies that the problem
has a unique solution for any given C ∈ R5×5. It is worth to notice that the condition given by [14] is not satisfied since
ρ(
∣∣A−1

∣∣ |B|) = 1.2308 > 1. This implies that our condition is more reliable in detecting the unique solvability for this
example. Here, the matrix C is given by

C =


1 2 3 0 5
−1 1 2 1 0
8 7 1 3 2

0.5 3 9 1 3
2 −1 0 −2 1

 .

The initial starting matrix is defined as follows:

X0 =


1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5

 ,

.

The iterations number and the CPU time are summarized in Table 2.

Iter CPU(s) RSD
35 0.006729 5.9890e− 009

Table 2.

The unique approximated solution of this problem is given by:

X∗ =


−1.5915 −0.6566 0.1199 −0.1978 0.2450
2.7282 3.4302 3.7566 1.5069 1.5671
0.0556 2.5104 3.5740 1.6113 1.1984
2.8574 3.2663 2.7790 1.4819 1.2590
−0.5053 −0.5483 −0.4727 −0.2298 −0.2532

 .

Example 3. In this problem, A,B ∈ R10×10 are given by

A =



101 1 1 1 1 1 1 1 1 1
−1 102 1 1 1 1 1 1 1 1
−1 −1 103 1 1 1 1 1 1 1
−1 −1 −1 104 1 1 1 1 1 1
−1 −1 −1 −1 105 1 1 1 1 1
−1 −1 −1 −1 −1 106 1 1 1 1
−1 −1 −1 −1 −1 −1 107 1 1 1
−1 −1 −1 −1 −1 −1 −1 108 1 1
−1 −1 −1 −1 −1 −1 −1 −1 109 1
−1 −1 −1 −1 −1 −1 −1 −1 −1 110


, B = I.
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Here,
∥∥A−1B

∥∥ = 0.0099 < 1, which implies that this problem is also uniquely solvable for any matrix C ∈ R10×10. For

C =



109 109 109 109 109 109 109 109 109 109
108 108 108 108 108 108 108 108 108 108
107 107 107 107 107 107 107 107 107 107
106 106 106 106 106 106 106 106 106 106
105 105 105 105 105 105 105 105 105 105
104 104 104 104 104 104 104 104 104 104
103 103 103 103 103 103 103 103 103 103
102 102 102 102 102 102 102 102 102 102
101 101 101 101 101 101 101 101 101 101
100 100 100 100 100 100 100 100 100 100


,

the initial starting matrix is defined as follows:

X0 =



1 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0
0 0 3 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0 0
0 0 0 0 5 0 0 0 0 0
0 0 0 0 0 6 0 0 0 0
0 0 0 0 0 0 7 0 0 0
0 0 0 0 0 0 0 8 0 0
0 0 0 0 0 0 0 0 9 0
0 0 0 0 0 0 0 0 0 10


.

The obtained iterations number and the elapsed times are summarized in Table 3.

Iter CPU(s) RSD
5 0.0065307 6.7567e− 008

Table 3.

The unique approximated solution of this problem is given by:

X⋆ =



1.0199 1.0199 1.0199 1.0199 ... 1.0199 1.0199
1.0201 1.0201 1.0201 1.0201 ... 1.0201 1.0201
1.0203 1.0203 1.0203 1.0203 ... 1.0203 1.0203
1.0205 1.0205 1.0205 1.0205 ... 1.0205 1.0205
1.0207 1.0207 1.0207 1.0207 ... 1.0207 1.0207
−1.0016 −1.0016 −1.0016 −1.0016 ... −1.0016 −1.0016
0.9826 0.9826 0.9826 0.9826 ... 0.9826 0.9826
0.9824 0.9824 0.9824 0.9824 ... 0.9824 0.9824
0.9822 0.9822 0.9822 0.9822 ... 0.9822 0.9822
0.9821 0.9821 0.9821 0.9821 ... 0.9821 0.9821


.

Example 4. Consider the GAVME (1.1) where A,B,C ∈ Rn×n are given by:

A =



5 0 0 · · · 0 0
1 5 0 · · · 0 0
1 1 5 · · · 0 0
...

...
. . .

. . .
...

...
1 1 1 · · · 5 0
1 1 1 · · · 1 5


, B =



1 2 0 · · · 0 0
2 1 2 · · · 0 0
0 2 1 · · · 0 0
...

...
. . .

. . .
...

...
0 0 0 · · · 1 2
0 0 0 · · · 2 1


,

and

C =



4 −2 · · · · · · −2 −2
3 4 −2 · · · −2 −2

3 3
. . . −2 · · · −2

...
...

. . .
. . .

...
...

3 3 · · · · · · 4 −2
3 3 · · · · · · 3 4


.
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The initial starting matrix is defined as follows:

X0 =



5 0 0 · · · 0 0
0 5 0 · · · 0 0
0 0 5 · · · 0 0
...

...
. . .

. . .
...

...
0 0 0 · · · 5 0
0 0 0 · · · 0 5


.

The obtained numerical results for different size of n, are summarized in Table 4:

Size (n) Iter CPU(s) RSD
7 39 0.007291 8.4976e-009

100 165 1.309203 8.9322e-009
500 226 10:896324 7.4673e-009

1000 233 86:611503 9.1917e-009
1500 235 624:745192 9.9543e-009
2000 237 1165.224035 9.9110e-009

Table 4.

For n = 7, the unique approximated solution of this problem is given by:

X∗ =



1.7946 0.3975 −0.1499 −0.3254 −0.2698 −0.2938 −0.2880
1.5892 1.7951 0.5504 0.0237 −0.1905 −0.1186 −0.1360
0.7810 1.3914 1.8761 0.5592 0.0238 −0.2035 −0.1599
0.1647 0.5840 1.4020 1.9439 0.6268 0.0648 −0.1722
−0.1308 0.0687 0.5663 1.4572 2.0116 0.6181 −0.0314
−0.1075 −0.1374 0.0698 0.5713 1.4916 1.8959 0.3555
−0.1460 −0.1374 −0.1958 −0.0145 0.5724 1.2072 1.2858


.

Example 5. Consider the GAVME (1.1) where A,B ∈ Rn×n are given by:

A =



50 5 0 · · · 0 0
5 50 5 · · · 0 0
0 5 50 · · · 0 0
...

...
. . .

. . .
...

...
0 0 0 · · · 50 5
0 0 0 · · · 5 50


, B =



−25.5 −2.5 0 · · · 0 0
−2.5 −25.5 −2.5 · · · 0 0

0 −2.5 −25.5 · · · 0 0
...

...
. . .

. . .
...

...
0 0 0 · · · −25.5 −2.5
0 0 0 · · · −2.5 −25.5


.

Applying Theorem 2.1, we have,
∥∥A−1B

∥∥ = 0.5122 < 1, then this problem is uniquely solvable for any C ∈ Rn×n. For

C =



83 83 · · · · · · 83 83
90.5 90.5 · · · · · · 90.5 90.5

90.5 90.5
. . . 90.5 · · · 90.5

...
...

. . .
. . . 90.5 90.5

90.5 90.5 · · · · · · 90.5 90.5
83 83 · · · · · · 83 83


.

The initial starting matrix is defined as follows:

X0 =



1 0 0 · · · 0 0
0 2 0 · · · 0 0
0 0 3 · · · 0 0
...

...
. . .

. . .
...

...
0 0 0 · · · n− 1 0
0 0 0 · · · 0 n


.

The obtained numerical results for different size of n, are summarized in Table 5.
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Size (n) Iter CPU(s) RSD
10 29 0.007484 9.2122e− 008

100 33 0.198235 5.6576e− 008
500 35 12.866245 7.4837e− 008
800 36 45.073777 6.6896e− 008

1000 36 84.541511 8.1442e− 008
2000 37 584.544999 7.9778e− 008
2700 38 1345.011038 5.7970e− 008

Table 5.

The obtained approximated solution of this problem is given by:

X⋆ =



1 1 1 · · · 1 1
1 1 1 · · · 1 1
1 1 1 · · · 1 1
...

...
. . .

. . .
...

...
1 1 1 · · · 1 1
1 1 1 · · · 1 1


.

Example 6. Consider the GAVME (1.1) where A,B ∈ Rn×n are given by:

A =



6 0.5 0.5 . . . 0.5 0
0.5 6 0.5 . . . 0.5 0

0.5 0.5 6 . . . 0.5
...

...
...

. . .
. . . 0.5 0

0.5 0.5 0.5 . . . 6 0
0 0 . . . 0 0 6


, B =



−1 0.5 0.5 . . . 0.5 0
0.5 −1 0.5 . . . 0.5 0

0.5 0.5 −1 . . . 0.5
...

...
...

. . .
. . . 0.5 0

0.5 0.5 0.5 . . . −1 0
0 0 . . . 0 0 −1


.

This problem is uniquely solvable for any matrix C ∈ Rn×n, since
∥∥A−1B

∥∥ = 0.2727 < 1. For

C =



7 7 · · · · · · 7 7
7 7 · · · · · · 7 7

7 7
. . . 7 · · · 7

...
...

. . .
. . . 7 7

7 7 · · · · · · 7 7
0 0 · · · · · · 0 0


.

The initial starting matrix is given by:

X0 =



1 0 . . . . . . 0 0
0 1 0 . . . . . . 0

0 0
. . . 0 . . . 0

...
...

. . .
. . . 0 0

0 0 . . . . . . 1 0
0 0 . . . . . . 0 1


.

The obtained numerical results for different size of n, are summarized in Table 6.

Size (n) Iter CPU(s) RSD
10 16 0.007875 8.5818e− 008
40 58 0.051512 7.9557e− 008

500 675 160.873560 9.7311e− 008
1000 1344 4160.793441 9.9917e− 008

Table 6.

The unique approximated solution to this problem is given by:

X⋆ =



1 1 · · · · · · · · · 1
1 1 · · · · · · 1 1

1 1
. . . · · · 1 1

...
...

. . .
. . .

...
...

1 1 · · · · · · 1 1
0 0 · · · · · · 0 1


.



On the unique solvability of the AVME its numerical solution 1145

5 Conclusion
In this paper, we have presented some weaker sufficient conditions that guarantee the unique solvability of the generalized
absolute value matrix equation. Numerically, the proposed Picard’s iterative method is efficient for providing an approximated
solution of some uniquely solvable GAVME.
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