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Abstract The aim of this work is to apply the standard Galerkin finite element method to
solve the linear integro-differential equation using Lagrange shape functions. In this approach,
the approximate solution is sought in a finite-dimensional space, reducing the solution of the
given problem to the solution of a linear system of algebraic equations. Finally, we illustrate
examples that prove the reliability and efficiency of our method.

1 Introduction

Linear integro-differential equations are important in many branches of functional analysis, ap-
plied mathematics and engineering sciences for example, in physics, chemistry, biology and
mechanics. In general the solution of the linear integro-differential equations is difficult analyti-
cally, therefore a numerical method is required.

Many different types of methods are used to obtain the numerical solution of linear integro-
differential equations, such as Biazar and Porshokouhi [7], which use the Adomian decompo-
sition method to solve initial or boundary conditioned values of the equation. Hosseini and
Shahmorad [12], replaced the operator matrix representation for the differential part of the equa-
tion using the operational Tau method. Danfu and Xufeng [9], used the CAS wavelet approxi-
mating technique to simplify the integro-differential equation into algebraic equations. Darania
and Ebadian [10], applied the differential transform method based on Taylor series expansion.
Kajani et al. [14], compared the homotopy perturbation method with the sine–cosine wavelet
method. Atabakan et al [1], presented the composite Chebyshev finite difference method. Jafri
et al. [13], obtained the operational matrix of derivative by introducing hybrid third-kind Cheby-
shev polynomials and Block-pulse functions. Ghomanjani [11], used the bezier curve method.
Linz [17], used Nystrom’s method to establish numerical procedures. Yusufoglu [19], applied
an improvement of HPM to initial value problems. Mredula and Vakaskar [18], used the wavelet
collocation method on differential equation. Benyoucef and Rahmoune [5] proposed a Legendre
spectral collocation method for the numerical solution of a class of linear Fredholm integro-
differential equations on the half-line. Atkinson et al. [2, 3, 4], tried to purify some results of
the discrete Galerkin method and the discrete iterated Galerkin method for Fredholm integral
equations.

In this paper, we apply the finite element method of degree one or two to solve the bound-
ary value problem of Fredholm integro-differential equations of first order (FIDEs) with non-
homogeneous conditions. In other words, looking for a function u : [0, 1] → R such that,

(CP )

 −u′(x) +

∫ 1

0
k(x, t)u(t)dt = f(x), 0 < x < 1,

u(0) = α, u(1) = β,

(1.1)
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where k and f are given continuous functions on [0, 1] × [0, 1] and [0, 1] respectively, u is un-
known function to be determined. writing the abbreviation of Problem (1.1) by,{

−Au+ T u = f

u(0) = α, u(1) = β,
(1.2)

where A is the differential operator and T is the integral one, given by

Au(x) = u′(x), T u(x) =

∫ 1

0
k(x, t)u(t)dt, x, t ∈ [0, 1]. (1.3)

2 Variational formulation

The conditions of Problem (1.1) are non-homogeneous. Firstly, we transform this problem into
a problem with homogeneous conditions. Put u(x) = ũ(x)+(β−α)x+α, by replacing in (1.1),
we obtain a homogeneous problem

(C̃P )

 −ũ′(x) +

∫ 1

0
k(x, t)ũ(t)dt = g(x), 0 < x < 1,

ũ(0) = ũ(1) = 0,
(2.1)

where

g(x) = f(x) + (β − α)−
∫ 1

0
k(x, t) [(β − α)t+ α] dt.

Multiplying the equation in (2.1) by a test function v ∈ H1
0 (]0, 1[), vanish at the end-points

of the interval ]0, 1[ and integrate, we get

−
∫ 1

0
ũ′(x)v(x)dx+

∫ 1

0

(∫ 1

0
k(x, t)ũ(t)dt

)
v(x)dx =

∫ 1

0
g(x)v(x)dx, (2.2)

this expression is called variational formulation of Problem (2.1), and due to the Dirich-
let boundary conditions, we seek the unknown function ũ in the space H1

0 (]0, 1[) . Next, let
V = H1

0 (]0, 1[) be a Hilbert space, we note the bilinear form a(ũ, v) on V×V by

a(ũ, v) = −
∫ 1

0
ũ′(x)v(x)dx+

∫ 1

0

(∫ 1

0
k(x, t)ũ(t)dt

)
v(x)dx, (2.3)

and the linear form l(v) on V by

l(v) =

∫ 1

0
g(x)v(x)dx. (2.4)

Hence, the variational formulation reads

(Ṽ P )


Find ũ ∈ V, such that
a(ũ, v) = l(v), ∀v ∈ V
ũ(0) = ũ(1) = 0.

(2.5)

3 Lagrange Finite element P1 and P2

The approximation of variational problem (Ṽ P ) using Lagrange finite element of degree one or
two, i.e, approximation by Lagrange polynomial of degree equal to one (LFE1) or equal two
(LFE2) respectively.

Let N be a positive integer and i = 0, 1, . . . , N . Define the points x0, x1, . . . , xN on the
interval [0, 1] such that 0 = x0 < x1 < · · · < xN = 1. The points xi are called vertices. We also
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introduce N sub-intervals Ii = [xi−1, xi] , i = 1, 2, . . . , N, where Ii are called elements. The
size of the elements is given by hi = xi − xi−1 and we denote h = max hi.

x0 = 0, xN = 1,
h = 1

N+1 ,

xi+1 = xi + h, i = 0, 1, . . . , N − 1,
xi+ 1

2
= xi +

h
2 , i = 0, 1, . . . , N − 1.

Let Vd
h denote the vector space of all piecewise linear (d = 1) or quadratic (d = 2) continuous

functions vh defined on [0, 1],

Vd
h =

{
vh : vh ∈ H1 and vh|Ii ∈ Pd(Ii)

}
, for d = 1 or 2, (3.1)

and Vd
h,0 denote the vector space of Vd

h with vh(0) = vh(1) = 0,

Vd
h,0 =

{
vh ∈ Vd

h : vh(0) = vh(1) = 0
}
, for d = 1 or 2, (3.2)

where the dimension of the space Vd
h is finite (i.e. equal to dN + 1).

Let φi/d be basis of the space Vd
h, satisfying,

φd
i/d(xj/d) = δi/d,j/d, i, j = 0, 1, . . . , N.d,

where δ.. is the Kronecker delta.

The basis functions
{
φd
i/d

}dN

i=0
characterizing the nodes of the mesh on the interval [0, 1], are

defined by the formula

• For d = 1

φ1
i (x) :=


x−xi−1
xi−xi−1

if x ∈ Ii,
x−xi+1
xi−xi+1

if x ∈ Ii+1,

0 otherwise.

• For d = 2

φ2
i (x) :=


(x−xi−1)(x−xi−1/2)

(xi−xi−1)(xi−xi−1/2)
if x ∈ Ii,

(x−xi+1)(x−xi+1/2)

(xi−xi+1)(xi−xi+1/2)
if x ∈ Ii+1,

0 otherwise.

φ2
i+1/2(x) :=

{
(x−xi)(x−xi+1)

(xi+1/2−xi)(xi+1/2−xi+1)
if x ∈ Ii+1,

0 otherwise.

We remark that the support of φd
i is Ii ∪ Ii+1. The exception is the two basis functions φd

0 and
φd
N at the leftmost and rightmost nodes a x0 = 0 and xN = 1 with support only on one interval

(i.e, I1 and IN respectively).
In terms of basis functions this means that a basis for Vh,0 is obtained by deleting the two

basis φd
0 and φd

N from the usual set
{
φi/d

}dN
i=0 of basis functions spanning Vh.

4 Approximation variational formulation

The idea is to approximate in the finite dimensional space Vd
h,0. Let v be in the space of approxi-

mation Vd
h,0, we multiplied the integro-differential equations of continuous Problem (2.1) by the

function v and integrated between 0 and 1, we get

−
∫ 1

0
ũ′(x)v(x)dx+

∫ 1

0

(∫ 1

0
k(x, t)ũ(t)dt

)
v(x)dx =

∫ 1

0
g(x)v(x)dx.
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Moreover, an integration by parts (Green’s formula) and using the homogeneous conditions, then
the approximate problem is given by

Find ũ ∈ Vd
h,0, such that

a(ũ, v) = l(v), ∀v ∈ Vd
h,

ũ(0) = ũ(1) = 0,

where a(ũ, v) =

∫ 1

0

[
ũ(x)v′(x) +

(∫ 1

0
k(x, t)ũ(t)dt

)
v(x)

]
dx,

l(v) =

∫ 1

0
g(x)v(x)dx.

Now, the L2-projection Pd
hũ ∈ Vd

h,0 of ũ is defined by∫
I

(ũ− Pd
hũ)vdx = 0, ∀v ∈ Vd

h,0. (4.1)

In order to actually compute the L2-projection Pd
hũ, we first note that the formula (4.1) is equiv-

alent to ∫
I

(ũ− Pd
hũ)φ

d
i/ddx = 0, i = 1, . . . , dN − 1. (4.2)

Then, since Pd
hũ belongs to Vd

h,0 it can be written as the linear combination

ũd
N := Pd

hũ =
dN−1∑
j=1

ujφ
d
j/d, (4.3)

and choosing v(x) = φd
i/d(x), i = 1, . . . , dN − 1, i.e d = 1 or d = 2.

Next, the approximate variational formulation is obtained by substituting approximate functions
ũ, then the expression given by

Find ũ ∈ Vd
h,0([0, 1]), such that

dN−1∑
j=1

∫ 1

0
ujφ

d
j/d(x)φ

d
i/d

′
(x)dx+

dN−1∑
j=1

∫ 1

0

∫ 1

0
ujk(x, t)φ

d
j/d(t)φ

d
i/d(x)dtdx

=

∫ 1

0
g(x)φd

i/d(x)dx, i = 1, . . . , dN − 1.

5 Matrix representations of method

Now, we approximate the functions k and g in the spaces Vd
h ×Vd

h and Vd
h respectively, as

k(x, t) ≈
dN∑
p=0

dN∑
q=0

kpqφ
d
p/d(x)φ

d
q/d(t), kpq = k(xp/d, xq/d),

and

g(x) ≈
dN∑
j=0

gjφ
d
j/d(x), gj = g(xj/d).

This implies,

dN−1∑
j=1

uj

∫ 1

0
φd
j/d(x)φ

d
i/d

′
(x)dx+

dN∑
p=0

dN∑
q=0

kpq

(∫ 1

0
φd
p/d(x)φ

d
i/d(x)dx

)(∫ 1

0
φd
q/d(t)φ

d
j/d(t)dt

)
=

dN∑
j=0

gj

∫ 1

0
φd
j/d(x)φ

d
i/d(x)dx, i = 1, . . . , dN − 1, (5.1)
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we can write the system as follows

dN−1∑
j=1

aji + dN∑
p=0

dN∑
q=0

bipkpqbqj

uj =
dN∑
j=0

bijgj , i = 1, . . . , dN − 1, (5.2)

where, aji =
∫ 1

0
φd
i/d(x)φ

d
j/d

′
(x)dx and bji =

∫ 1

0
φd
i/d(x)φ

d
j/d(x)dx.

Then, (5.2) leads to the matrix system

(A+BKBt)U = BG, (5.3)

where

U = [u1, . . . , udN−1]
t, G = [g(x0), g(x1/d), . . . , g(xdN−1/d), g(xdN )]t, K = [k(xi/d, xj/d)]0≤i,j≤dN ,

if d = 1,

A = [aji]1≤j,i≤N−1 =



0 −1
2 0

1
2 0 −1

2
. . . . . . . . .

1
2 0 −1

2
0 1

2 0

 , B = [bji]1≤j≤N−1
0≤i≤N

=
h

6


1 4 1 0

1 4 1
. . . . . . . . .

0 1 4 1

 ,

and if d = 2,

A = [aji]1≤j,i≤2N−1 =
1
6



0 −4
4 0 −4 1 0

4 0 −4
−1 4 0 −4

4 0 −4 1
. . . . . . . . .

4 0 −4 0
0 −1 4 0 −4

4 0


,

B = [bji]1≤j≤2N−1
0≤i≤2N

=
h

30



2 16 2 0
−1 2 8 2 −1

2 16 2
−1 2 8 2 −1

. . . . . . . . .
−1 2 8 2 −1

0 2 16 2


.

Which is a linear system of (dN − 1) algebraic equations for (dN − 1) unknown coefficients
u1, u2, . . . , udN−1. System (5.3) can be summarized as

MU = G or
[

M G
]
, (5.4)

where
M = A−BKBt and G = BG,

then,
U = M−1G. (5.5)

Finally, after finding the unknown coefficients, we substitute them into formula (4.3) to obtain
the general solution for Problem (2.1). Then can be write the solution of Problem (1.1) as

ud
N (x) =

dN−1∑
i=1

uiφ
d
i/d(x) + (β − α)x+ α. (5.6)
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6 Error analysis

In this section, we perform error analysis in the space Vd
h, because Vd

h,0 ⊂ Vd
h and we have,

u(x)− ud
N (x) = ũ(x)− ũd

N (x).

Firstly, we start with some propositions for interpolation.

Proposition 6.1. The interpolant Id
Nu in the space Vd

h satisfies the estimates

∥u− Id
Nu∥L2(I1) ≤ Chd+1∥u(d+1)∥L2(I1), (6.1)

∥(u− Id
Nu)′∥L2(I1) ≤ Chd∥u(d+1)∥L2(I1), (6.2)

where C is a constant positive, and h = x1 − x0.

Proof. (see [15] page 6). Indication, for d = 2 we have (I2
Nu)(3) = 0.

Proposition 6.2. The interpolant Id
Nu satisfies the estimates

∥u− Id
Nu∥2

L2(I) ≤ C

N∑
i=1

h2d+2
i ∥u(d+1)∥2

L2(Ii)
, (6.3)

∥(u− Id
Nu)′∥2

L2(I) ≤ C

N∑
i=1

h2d
i ∥u(d+1)∥2

L2(Ii)
, (6.4)

where C is a constant positive, and hi = xi − xi−1.

Proof. Using the Triangle inequality and Proposition 6.1, we have

∥u− Id
Nu∥2

L2(I) =

∫
I

(u(x)− Id
Nu(x))2dx

=
N∑
i=1

∫
Ii

(u(x)− Id
Nu(x))2dx

=
N∑
i=1

∥u− Id
Nu∥2

L2(Ii)

≤ C

N∑
i=1

h2d+2
i ∥u(d+1)∥2

L2(Ii)
.

This confirms the first estimate. We follow the same steps to prove the second estimate.

Now, in flowing the error estimate for projection.

Lemma 6.3 ([15]). The L2-projection Pd
Nu, defined by (4.1), satisfies the best approximation

result

∥u− Pd
Nu∥2

L2(I) ≤ ∥u− v∥2
L2(I), ∀v ∈ Vd

h, (6.5)

∥(u− Pd
Nu)′∥2

L2(I) ≤ ∥(u− v)′∥2
L2(I), ∀v ∈ Vd

h. (6.6)

Proof. (see [15], page 12).

Lemma 6.4. The L2-projection Pd
Nu satisfies the estimate

∥u− Pd
Nu∥2

L2(I) ≤ C

N∑
i=1

h2d+2
i ∥u(d+1)∥2

L2(Ii)
, (6.7)

∥(u− Pd
Nu)′∥2

L2(I) ≤ C

N∑
i=1

h2d
i ∥u(d+1)∥2

L2(Ii)
. (6.8)
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Proof. Commencing with the optimal approximation result, selecting v = Id
Nu as the interpolant

for u, and applying the interpolation error estimate inequality (6.1) from Proposition 6.1, we
obtain

∥u− Pd
Nu∥2

L2(I) ≤ ∥u− Id
Nu∥2

L2(I) (6.9)

≤
N∑
i=1

∥u− Id
Nu∥2

L2(Ii)
(6.10)

≤ C

N∑
i=1

h2d+2
i ∥u(d+1)∥2

L2(Ii)
, (6.11)

which proves the estimate. Using the same steps, we obtain the second inequality by applying
inequality (6.2).

Corollary 6.5. Recalling the definition h = maxhi we conclude that,

∥u− Pd
Nu∥L2(I) ≤ Chd+1∥u(d+1)∥L2(I), (6.12)

∥(u− Pd
Nu)′∥L2(I) ≤ Chd∥u(d+1)∥L2(I). (6.13)

Theorem 6.6. Let u the exact solution of to Problem (1.1) and the approximated solution uN be
obtained by using the finite element method (5.6). If u ∈ H1

0 (]0, 1[), then for

∥(u− ud
N )′∥L2(I) ≤ Chd+1

(
∥g(d+1)∥L2(I) + λd,N∥ũ(d+1)∥L2(I) + θd,N∥ũ∥L2(I)

)
,

where

λd,N = max
0≤i,j≤dN

|k(xi, xj)|,

θd,N = max
x,t∈I

|∂d+1
t k(x, t)|.

Proof. Let the Fredholm integro-differential equations in (1.1),

−u′(x) +

∫
I

k(x, t)u(t)dt = f(x), (6.14)

while using the transformation we apply (2.1),

−ũ′(x) = g(x)−
∫
I

k(x, t)ũ(t)dt. (6.15)

Now, we have the approximation solution of this equation as,

−(ũd
N )′(x) = Pd

Ng(x)−
∫
I

Pd,d
N,Nk(x, t)ũd

N (t)dt. (6.16)

Subtracting (6.16) from (6.15), we get the error equation

ũ′(x)− (ũd
N )′(x) = Pd

Ng(x)− g(x) +

∫
I

k(x, t)ũ(t)dt−
∫
I

Pd,d
N,Nk(x, t)PN ũ(t)dt, (6.17)

which can be rewritten as,

(ũ− ũd
N )′(x) = Pd

Ng(x)− g(x) +

∫
I

Pd,d
N,Nk(x, t)(ũ(t)− Pd

N ũ(t))dt

+

∫
I

(
k(x, t)− Pd,d

N,Nk(x, t)
)
ũ(t)dt

= E1(x) +E2(x) +E3(x),
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where

E1(x) = Pd
Ng(x)− g(x) (6.18)

E2(x) =

∫
I

Pd,d
N,Nk(x, t)(ũ(t)− ũd

N (t))dt (6.19)

E3(x) =

∫
I

(
k(x, t)− Pd,d

N,Nk(x, t)
)
ũ(t)dt. (6.20)

We have by the triangle inequality

∥(ũ− ũd
N )′∥L2(I) ≤ ∥E1∥L2(I) + ∥E2∥L2(I) + ∥E3∥L2(I). (6.21)

Corollary 6.5 implies directly that

∥E1∥L2(I) = ∥g(x)− PNg(x)∥L2(I) ≤ Chd+1∥g(d+1)∥L2(I). (6.22)

By using Cauchy-Schwarz together with Corollary 6.5, we have

|E2(x)| =

∣∣∣∣∫
I

Pd,d
N,Nk(x, t)(ũ(t)− ũd

N (t))dt

∣∣∣∣
≤

(∫
I

|Pd,d
N,Nk(x, t)|2dt

)1/2(∫
I

|ũ(t)− ũd
N (t)|2dt)

)1/2

≤ Chd+1∥ũ(d+1)∥L2(I)

(∫
I

|Pd,d
N,Nk(x, t)|2dt

)1/2

,

then

∥E2(x)∥L2(I) =

(∫
I

|E2(x)|2dx
)1/2

≤ Chd+1∥ũ(d+1)∥L2(I)

(∫
I

∫
I

|Pd,d
N,Nk(x, t)|2dtdx

)1/2

≤ Chd+1 max
0≤i,j≤dN

|k(xi, xj)|.∥ũ(d+1)∥L2(I).

Additionally, employing Cauchy-Schwarz once more

|E3(x)| =

∣∣∣∣∫
I

(
k(x, t)− Pd,d

N,Nk(x, t)
)
ũ(t)dt

∣∣∣∣
≤

(∫
I

∣∣∣k(x, t)− Pd,d
N,Nk(x, t)

∣∣∣2 dt)1/2(∫
I

|ũ(t)|2dt
)1/2

≤ Chd+1∥ũ∥L2(I)

(∫
I

|∂d+1
t k(x, t)|2dt

)1/2

.

Hence,

∥E3∥L2(I) =

(∫
I

|E3(x)|2dx
)1/2

≤ Chd+1∥ũ∥L2(I)

(∫
I

∫
I

|∂d+1
t k(x, t)|2dtdx

)1/2

≤ Chd+1 max
x,t∈I

|∂d+1
t k(x, t)|.∥ũ∥L2(I).

In conclusion, the theorem’s assertion is a consequence of the triangle inequality.
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7 Illustrative Examples

In this section, we show the numerical results and absolute errors for some examples are given.
All computations were carried out by software MATLAB. Now we define the maximum absolute
error for ud

N (x) as

EN := ∥u(x)− ud
N (x)∥∞ = max

i=0,100

∣∣u(xi)− ud
N (xi)

∣∣ , 0 ≤ xi ≤ 1.

Example 7.1. Let us first consider the integro-differential equation −u′(x) +

∫ 1

0
xtu(t)dt =

−7
4

x, 0 < x < 1,

u(0) = 0, u(1) = 1,
(7.1)

whose exact solution is u(x) = x2. We apply the methods that was explained in previous Section
for N = 3.

Firstly, for LFE1 method, the vrertices is {xi}3
i=0 = {0, 1

3 ,
2
3 , 1}. Then the augmented matrix

is [
M G

]
=

[
1/81 −77/162 11/108

85/162 4/81 −7/54

]
.

By solving this system,
U = [−55/243 − 107/486]T ,

then the approximate solution of Problem (7.1) is given by

u1
3(x) =

2∑
i=1

uNφ1
i (x) + x

= −55/243.φ1
1(x)− 107/486.φ1

2(x) + x

=


26x/81 if 0 ≤ x ≤ 1

3 ,

55x/54 − 113/486 if 1
3 ≤ x ≤ 2

3 ,

269x/162 − 107/162 if 2
3 ≤ x ≤ 1.

Now, for LFE2 method, the vrertices is {xi}6
i=0 = {0, 1

6 ,
1
3 ,

1
2 ,

2
3 ,

5
6 , 1}. Then the augmented

matrix is,

[
M G

]
=



1
729

−485
729

1
243

2
729

5
729

47
324

487
729

1
729

−161
243

247
1458

5
729

11
324

1
243

163
243

1
81

−160
243

5
243

−1
108

2
729

−239
1458

164
243

4
729

−476
729

−7
162

5
729

5
729

5
243

496
729

25
729

−53
324

 .

By solving this system,

U = [−5/36 − 2/9 − 1/4 − 2/9 − 5/36]T ,

then the approximate solution of Problem (7.1) is given by

u2
3(x) = −5/36φ2

1/2(x)− 2/9φ2
1(x)− 1/4φ2

3/2(x)− 2/9φ2
2(x)− 5/36φ2

5/2(x) + x

= x2,

it is also the exact solution to the problem. The results in Table 1 shows the numerical solutions
are in a very good agreement with the exact solution.

Example 7.2. [19] Consider the integro-differential

−u′(x) +

∫ 1

0
xu(t)dt = x− (x+ 1)ex, 0 < x < 1, (7.2)
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x Exact Solution LFE1(N = 3) LFE2(N = 3)
0.0 0.00000000 0.00000000 0.00000000
0.1 0.01000000 0.03209877 0.01000000
0.2 0.04000000 0.06419753 0.04000000
0.3 0.09000000 0.09629630 0.09000000
0.4 0.16000000 0.17489712 0.16000000
0.5 0.25000000 0.27674897 0.25000000
0.6 0.36000000 0.37860082 0.36000000
0.7 0.49000000 0.50185185 0.49000000
0.8 0.64000000 0.66790123 0.64000000
0.9 0.81000000 0.83395062 0.81000000
1.0 1.00000000 1.00000000 1.00000000

Table 1. Approximate and exact solutions of Example 7.1.

with u(0) = 0, u(1) = e1. The exact solution of this problem is u(x) = xex. In Table 2, absolute
errors in solutions obtained by Lagrange finite element P1 and P2 for N = 64 are compared
with differential transfer method [10], Hybrid function method [13] and Improved homotopy
perturbation method [19]. In Fig.1 a, we plot the exact solution against the numerical solution
obtained by LFE1 and LFE2 with N = 4, and in Fig.1 b, we depict the rate of convergence.

Present Methods
x DTM [10] HFM [13] IHPM [19] LFE1 LFE2

0.0 0.00000e+ 00 1.11022e− 16 0.00000e+ 00 0.00000e+ 00 0.00000e+ 00
0.1 1.00118e− 02 9.07270e− 03 2.31481e− 05 4.11506e− 06 6.09093e− 05
0.2 2.78651e− 02 1.13773e− 02 9.25926e− 05 9.21840e− 05 4.10075e− 05
0.3 5.08730e− 02 9.84041e− 03 2.08333e− 04 8.35173e− 05 4.20896e− 05
0.4 7.55356e− 02 6.87421e− 03 3.70370e− 04 3.25261e− 05 6.69726e− 05
0.5 9.71888e− 02 4.30919e− 03 5.78704e− 04 3.38208e− 10 2.37256e− 06
0.6 1.09551e− 01 3.31778e− 03 8.33333e− 04 6.67817e− 05 7.39818e− 05
0.7 1.04133e− 01 4.32872e− 03 1.13426e− 03 3.86874e− 05 5.18724e− 05
0.8 6.94512e− 02 6.93055e− 03 1.48148e− 03 2.22010e− 05 5.53054e− 05
0.9 1.00034e− 02 9.76311e− 03 1.87500e− 03 1.36465e− 04 8.96383e− 05
1.0 1.55147e− 01 1.03954e− 02 2.31481e− 03 0.00000e+ 00 0.00000e+ 00

Table 2. A comparison of absolute errors between DTM, HFM, IHPM and present methods
(N = 64) of Example 7.2.

Example 7.3. Consider the integro-differential

 −u′(x) +

∫ 1

0
(x2 + t)u(t)dt = f(x), 0 < x < 1,

u(0) = 1, u(1) = ln(2),

where f(x) is chosen so that the exact solution is u(x) = ln(x + 1). Table 3 we show the
maximum absolute errors obtained by using present methods LFE1 and LFE2 for different values
of N . The absolute errors are presented in Fig.2 for N = 8.
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a Numerical vs Exact b Maximum Absolute Errors.
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Figure 1. (a) The exact and numerical solution of Example 7.2 with N = 4. (b) Maximum
absolute errors EN of Example 7.2 for different values of N .

n LFE1 LFE2
4 4.36448e− 03 1.78173e− 03
8 1.24007e− 03 4.72214e− 04
16 3.32892e− 04 1.21201e− 04
32 8.63913e− 05 3.06506e− 05
64 2.19744e− 05 7.71055e− 06
128 5.50337e− 06 1.93355e− 06
256 1.37258e− 06 4.84120e− 07

Table 3. The maximum errors EN for different values of N for Example 7.3.
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Figure 2. The absolute error of Example 7.3 for N = 8.
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8 Conclusion

We transformed Problem (1.1) into a problem with homogeneous conditions. By employing
the standard Galerkin method with Lagrange finite element, we derived a system of (dN − 1)
equations with (dN − 1) unknowns. We easily verified that the coercivity of the bilinear form
implies the invertibility of the system’s matrix. Consequently, we are assured of solving Problem
(1.1). The convergence of the finite element solutions to the exact one is guaranteed, and we
tested and compared the efficiency of this method by solving several examples.
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