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Abstract As a generalization of the concepts of an intuitionistic fuzzy prime ideal and a
prime intuitionistic fuzzy ideal, the concepts of an intuitionistic fuzzy 2-absorbing ideal and a 2-
absorbing intuitionistic fuzzy ideal of a lattice are introduced. Some results on such intuitionistic
fuzzy ideals are proved. It is shown that the radical of an intuitionistic fuzzy ideal of L is a 2-
absorbing intuitionistic fuzzy ideal if and only if it is a 2-absorbing primary intuitionistic fuzzy
ideal of L. We also introduce and study these concepts in the product of lattices.

1 Introduction

The concept of intuitionistic fuzzy sets was introduced by Atanassov [5, 6, 7] as a generalization
of fuzzy sets previously introduced by Zadeh [25]. Atanassov and Stoeva [8] generalised this
concept by taking the evaluation set as a lattice. After a few years, Thomas and Nair [22] stud-
ied intuitionistic fuzzy sublattice, intuitionistic fuzzy ideals, and intuitionistic fuzzy filters on a
lattice. For more details, we refer to [1, 2, 3, 13, 14, 16, 19]. Milles, Zedam and Rak in [18]
introduced the notion of prime intuitionistic fuzzy ideal and filter and studied many characteri-
zations of these notions.

The notion of a 2-absorbing ideal of a commutative ring was introduced by Badawi [9]. A
proper ideal I of a commutative ring R is said to be a 2-absorbing, if whenever a,b, c € R such
that abc € 1, then either ab € I or ac € I or bc € I. This concept was generalised by Anderson
and Badawi [4], Badawi and Darani [10], Wasadikar and Gaikwad [23, 24] in other mathematical
structures such as semirings, semigroups, submodules and lattices.

In this paper, we introduce the concepts of an intuitionistic fuzzy 2-absorbing ideal and a
2-absorbing intuitionistic fuzzy ideal of a lattice L. This is a generalization of the concepts of
an intuitionistic fuzzy prime ideal and a prime intuitionistic fuzzy ideal of L introduced by Hur
et al. [16] and Milles et al. [18] respectively. Also, we define a primary intuitionistic fuzzy
ideal and the radical of an intuitionistic fuzzy ideal of L. Some properties of these intuitionistic
fuzzy ideals are proven. We also introduce and study these concepts in the context of product of
lattices.

2 Preliminaries

Throughout in this paper, L = (L, A, V) denotes a bounded lattice with least element 07, and
greatest element 1. We recall some concepts and results.

Definition 2.1. ([5, 6, 7]) An intuitionistic fuzzy set (IFS) A in L can be represented as an object
of the form A = {{x,pa(z),va(z)) : x € L}, where the functions ps : L — [0,1] and v4 :
L — |0, 1] denote the degree of membership (namely 114 (z)) and the degree of non-membership
(namely v4(x)) of each element z € L to A respectively and 0 < pa(z) + va(xz) < 1 for each
r € L.
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Remark 2.2. ([7, 13, 20])

(i) When pa(z) + va(xz) = 1,Va € L. Then A is called a fuzzy set in L.

(ii)) An IFS A = {{z,pa(x),va(x)) : x € X} is briefly written as A(z) = (pa(x),va(x)),
Vz € L. We denote by IFS(L) the set of all IFSs of L.

(iii) If p,q € [0, 1] such that p+ ¢ < 1. Then A € IFS(L) defined by ua(z) = pand va(z) = g,
for all x € L, is called a constant intuitionistic fuzzy set of L. Any IFS of L defined other than
this is referred to as a non-constant intuitionistic fuzzy set.

If A,B € IFS(L),then A C Bifandonly if pa(z) < pup(z) and va(z) > vp(z),Vo € L
and A= B < A C Band B C A. For any subset S of L, the intuitionistic fuzzy characteristic
function x¢ is an intuitionistic fuzzy set of L, defined as xs(z) = (1,0),Vx € S and xs(z) =
(0,1),Vz € L\S. Leta, € [0, 1] witha+3 < 1. Then the crispset A, 5y = {z € L : pa(z) >
aand va(xz) < B} is called the («, 3)-level cut subset of A [20]. Further, if A,B € IFI(L).
Then AN B and A U B represent the intersection and union of intuitionistic fuzzy sets A and B
respectively. These are defined as panp(z) = pa(z) A up(z) ; vans(z) = va(z) V vg(z), for
all z € Land paup(z) = pa(z) V pp(x) s vaus(z) = va(z) Ave(z), forall z € L [13].

Definition 2.3. ([16, 18]) Let L = L; x L, be the direct product of lattices L; and L,. Let
Ay € IFS(Ly) and A, € IFS(L,). Then their direct product is denoted by A; x A, and is an
intuitionistic fuzzy set of L defined by

NA1XA2(x7y) = /'I’Ai(x> /\:qu(y) and VA1><A2(xﬂy) =Va; (LC) \ VAz(y)vv(xvy) € L.

Definition 2.4. ([22]) Let A € IF'S(L). Then A is called an intuitionistic fuzzy lattice (IFL) of
L, if for all =,y € L, the followings are satisfied

(@) pa(zVvy) = min{pua(z), paly)}s

(i) pa(z Ay) = min{pa(z), pa(y)}s

(iii) va(z Vy) < max{va(z),va(y)};

(iviva(z Ay) <max{va(z),va(y)}.

Definition 2.5. ([22]) Let A € IFS(L). Then A is called an intuitionistic fuzzy ideal (IF'I) of
L, if for all =,y € L, the followings are satisfied

() palzVy) =minfpa(z), na(y)}:

(i) pa(z Ay) > max{pa(z), pa(y)};

(iil) va(x Vy) < max{va(z),va(y)};

(ivva(z Ay) <min{va(z),valy)}

Note that g (0r) > pa(z) > pa(1n),pa(0r) < pa(z) < pa(lp),Ve € L. The set of all
intuitionistic fuzzy ideals of L is denoted by I F'I(L).

Theorem 2.6. ([1, 18]) Let L be a lattice and A € IFS(L). Then it holds that A is an IFI on L
if and only if the following two conditions are satisfied:

(i) palz Vy) = min{pua(z), pa(y)}:

(ii) va(x Vy) = max{va(z),va(y)}, for any x,y € L.

Theorem 2.7. ([1, 18]) Let L be a lattice and A € IFI(L). Then it holds that A is an intuition-
istic fuzzy prime ideal (IFPI) on L if and only if the following two conditions are satisfied:

(i) pa(z Ay) = max{pa(z), pa(y)}:

(ii) va(z ANy) = min{va(z),va(y)}, forany z,y € L.

Theorem 2.8. ([16]) Let L = L; X Ly X .... X Ly, be the direct product of lattices Ly, Ly, ...., L.
IfA; € IFS(Ly), (i=1,2,...,k). Then A; x Ay X .... x Ay, € IFI(Ly X Ly X ... x Ly,) and is
defined as pia, x Ay x....x A, (T1, T2, ooy ) = pa, (1) A pay(@2) A ooppa, (z1) and

VA x Ay x A (T1, X2y oy @) = va, (@1) V va,(22) V oo Vvg, (xk), for all (z1,22,....,x1) €
L] X Lz X oo X Lk.
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3 Intuitionistic fuzzy prime ideals and prime intuitionistic fuzzy ideal of a
lattice

Definition 3.1. ([17]) A non-empty subset I of a lattice L is called an ideal if for a,b € L, the
following conditions holds

() Ifa,beI,aVvbeTand
(i) Ifa < bandb € I, thena € I

A proper ideal I (i.e., I # L) is called a prime ideal, if a A b € I implies that either a € I or
bel.

On the line of Koguep et al. [17], we will define prime intuitionistic fuzzy ideal (PIFI) of a
lattice as follow:

Definition 3.2. A proper IFI P of a lattice L is called a prime intuitionistic fuzzy ideal (PIFI) of
L if for any two IFIs A and B of L

AN B C P implies that either A C Por BC P
From the definition of PIFI, following results are easy to derive

Theorem 3.3. Let I be an ideal of L and x denote the IF characteristic function of 1. Then
(i) I is a prime ideal of L if and only if x; is an IFPI of L;
(ii) I is a prime ideal of L if and only if x 1 is a PIFI of L.

Proof. Clearly, x is an IFI of L.
(i) Suppose that I is a prime ideal of L. Let a,b € L, we need to show that

i (0 WD) = iy (@) V i, (8) and v, (a1 b) = vy, (@) A g, ().
If a,b € I,thena Ab € I and we have
Py, (@AD) =1=1V1=p,,(a)Vpy, (b)and vy, (a Ab) =0=0A0=1ry,(a) A vy, ().
If a,b ¢ I, then as I is a prime ideal a A b ¢ I and we have
Py, (@AD) =0=0V0=p,,(a)V i, (b)and v, (a Ab) =1=1A1=1ry,(a) Avy,(b).
If only one of aorbisin I, say a € I and b ¢ I, then a A b € I, we have
by, (@) = 1,0y, (a) =0, gy, (b) = 0,1y, (b) = 1 and py, (a A D) = 1,vy, (a Ab) = 0.

Thus gy, (aAD) =1 =1V0 = py,(a)V py, (b) and vy, (aAb) =0 =0A1 = vy, (a) Avy, (b).
Therefore, x is an IFPI of L.

Conversely, suppose that x; is an IFPI of L. Leta A b € I. Then
Py (@ND) =1=py, (a) Vi, (b) and vy, (a A D) =0 =1y, (@) A vy, (B)ceeeneee. (%)

If both a,b ¢ I, then pu,,(a) = p,,(b) = 0 and v,,(a) = v,,(b) = 1 implies that
fx, (@) V gy, (b) = 0 and vy, (a) A vy, (b) = 1, which contradict (). Hence I must be a prime
ideal of L.

(ii) Suppose that I is a prime ideal of L. Let A, B € IFI(L). Suppose that AN B C x;.
If AZ x1. B € xi, then there exists a,b € L such that i, (a) < pa(a),vy,(a) > va(a) and
fxs (0) < pa(b), vy, (b) > va(b). Then by definition, we conclude that a,b ¢ I. For, if say
a € I, then u,,(a) = 1,vy,(a) =0leads to pa(a) > 1,v4(a) < 0, which is not possible.

Since I is a prime ideal of L, we get a A b ¢ I. Hence u,,(a Ab) = 0,1, (a Ab) = 1.
Since A, B are IFIs of L, we have p4(a) < pa(a Ab),va(a) > valaAb)and pp(b) < ppla A
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b),vp(b) > vp(a Ab). As the image of any element under an IFS is a non-zero number. From
the above, we get

0

s () A s )
pa(a) A pp(b)

pala ANb) A upg(and)
= panp(aNbd)

/’LXI (a’ A b)
0.

,U'XI (a A b)

IN A A

IN

Thus we get 0 < 0. Similarly, we can show 1 > 1, which is not possible. Hence either A C y;
or B C xj.

Conversely, suppose that xr is a PIFI of L. Suppose that for some a,b € L,a Ab € I, but
a,b ¢ I. Define IFSs A and B of L as follows

NA<I):{(1), ifre ) VA(I):{Q if 2 € (d]

otherwise 1, otherwise .
and
1, ifze(b] 0, if z € (b]
(@) = {0, otherwise ’ ve(w) = {1, otherwise .
Then AN B C xj, a contradiction. Hence [ is a prime ideal of L. O

The following example shows that the condition of “primeness" in Theorem 3.3 is necessary.

Example 3.4. Consider the lattice as shown in the figure 1:
We note that the ideal 7 = (0] is not a prime ideal of L, asa Ab=0¢€ I,buta ¢ [ and b ¢ I.

1

a b
0
Figure 1.
(i) We know that uXI(aAb) =1, iy, (a) = py, (b) = Ly vy, (aAD) =0, vy, (a) = 1y, (b) = 0.

Thus sy, (a A b) %MXI )V fiy, (b) and vy, (a A b) ?:LVXI a) A vy, (b).
Hence x; is not an IFPI of L.

(ii) Define IFIs A and B of L as follows:

1, ifx=0 0, ifz=0
palz) =<0.5, ifr=a ; valz)=<04, ifz=aqa
0, ifx=>5,1. 1, ifx=05,1.
and
1, ifx =20 0, ifx=0
pp(z)=<03, ifr=0b ; vp(®)=<06, ifz=0>
0, ifr=a,l. 1, ifr=a,l.

Then AN B C x; but neither A C xy nor B C x;. Thus y; is not a PIFI of L.
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Theorem 3.5. Let L = L x L, be a direct product of lattices Ly, Ly. If P is an IFI of L, then
there exist IFIs Py, P, of Ly, L, respectively such that P = P; x P,. Moreover, if P is an IFPI,
then so are Py and P.

Proof. Define P, € IFS(L;),i=1,2.by Pi(z) = P(x,0) and P>(y) = P(0,y).
Let 1,2, € Ly, we have

pp[(21,0) A (22,0)] = pp(w1 A 22,0) = pp (21 Aa2) 5
vp[(21,0) A (22,0)] = vp(x) A 22,0) = vp (1 A 22)

and
pp[(21,0) V (22,0)] = pp(21 V 22,0) = ppy (21 V a2) 5
vp[(21,0) V (22,0)] = vp(21 V 22,0) = vp (21 V 22).
Hence pip, (21 A 22) A pp (21 V 22) = pp[(21,0) A (22,0)] A pp[(21,0) V (22,0)] and
vp, (x1 Axp) Vvp (z1 Vx) =vp[(21,0) V (22,0)] V vp[(z1,0) V (x2,0)].

As P is an IFI of L, we have

pp (1 Axa) App (21 Vay) = ppl(21,0) A (22,0)] A pp[(z1,0) V (22,0)]
pp(z1,0) A pp(22,0)
= Mpl(xl)AMPl(x2)'

\%

Thus, np, (:Cl A .rz) N p, (171 vV 1‘2) > Up (171) A pp, (xz) ............................ (%%)

Similarly, we can show that vp, (z1 A 22) V up, (21 V 22) < vp (1) V vp (22).

Also, pp, (21 V 22) = pp[(21,0) V (22,0))] = pp(21,0) A pp(22,0) = pp (21) A pp (22).
Similarly, we can have vp (21 V 22) = vp,(21) V vp, (22). Therefore, from (**) we get

wp (x1Az2) > pp (1) App, (x2). Similarly, we can show that vp, (1 Axy) < vp, (z1) Vrp (22).
Thus P is an IFI of ;. Similarly, we can show that P is an IFI of L,.

Next, let x; € Ly, y; € L,, we have

pp(ziy) = pp((z1,0) Vv (0,91)]
= pp(21,0) A pp(0,91)
pp (1) A e, (y1)
= /JPle2($1,y1)~

Similarly, we can show that vp(x1,y1) = vp,x p, (1, y1). This implies that P = Py x P;.
Further, suppose that P is an IFPI of L. Let x;, 2, € L;. Then

pp(x1) vV pp(x2) = pp(21,0)V pp(22,0)
pp[(21,0) A (22,0)]

pp(z1 A x2,0)

= up (1 Ax2).

Similarly, we can show that vp, (1) A vp, (22) = vp, (1 A x2).
This implies that P is an IFPI of L;. In a same way, we can show that P, is an IFPI of L,. m|

The following examples shows that the converse of Theorem 3.5 may not be true.

Example 3.6. Let L = L x L; be a direct product of lattices L, L,. Let P, P, be IFPIs of
Ly, L, respectively. Then P = P; x P; need not be an IFPI of L.

Proof. Consider the lattices L, L, as shown below:

Define IFSs P, € IFS(L;) and P, € IFS(L,) as follows:

( ) ) lfl’:()’b .
i (170)» ifz=0
Py(z) = (05 04), ifz=a ; Px) :{
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Figure 2. Product lattice

We note that P is an IFPI of L; and P is an IFPI of L,. We consider P € TF'S(L; x L;) defined
by

pp(z,y) = pp (2) A pp,(y) and vp(z,y) = pp (x) V vp,(y).
i.e., P = P, x P. We have

(1,0), if (z,y) = (0,0), (b,0)
P(z,y) =< (0.5,04), if (x,y) = (a,0)
(0,1), otherwise .

Now, £p[(0,1) A (1,0)] = pp(0,0) =1 and vp[(0,1) A (1,0)] = vp(0,0) = 0.
Also, 1p(0,1) =0 [Lp(l O) =0,vp(0,1) = 1,vp(1,0) = 1 implies that

up[(0,1) A (1,0)] £ 1p(0,1) V up(1,0) and vp[(0,1) A (1,0)] £ vp(0,1) Avp(1,0).
Hence P is not an IFPI of L. O

In Example (3.6), we have shown that a product of two IFPIs need not be an IFPI. However
we have the following theorem.

Theorem 3.7. Let . = L; x L; be a direct product of lattices Ly, L. Let P, be an IFI of L.
Then the product Py x xp, is an IFPI of L if and only if P, is an IFPI of L.

Proof. Suppose that P, is an IFPI of L;. We have

1P, (@1, 91) A (@2,92)] = e, (21 A 22,91 A )]
= pp (1 A22) Ay, (Y1 A y2)
= pp(z1 Ax) A1
pp (1 A x2)
(1) V pp (22)
1) ANV [pp (22) A1
1) A fixr, (Y] V (e (22) A pyy, (32)]

= HPixxr, (xla yl) v KPixxL, (xZa y2)'

[/J“Pl
= [/’[‘Pl

(
(

Similarly, we can show that vp,«y, [(z1,41) A (22,92)] = VP xxp, (T1,91) A VPixxr, (2, 92).-
Hence Py x x, is an IFPI of L.
The converse part can be similarly proved. O

Theorem 3.8. Let L = L x L; be a direct product of lattices Ly, L,. Let P> be an IFI of L;.
Then the product x1,, x P> is an IFPI of L if and only if P, is an IFPI of L.

Proof. Straightforward. O

Theorem 3.9. Let L = L x L be a direct product of lattices Ly, L. Let P;, Q; be IFIs of L;
and L, respectively. Let R;; = P; x Q;. Then NR;; = (NF;) x (NQ;).
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Proof. Let (z,y) € L, we have

ok, (Ty) = Nijlppix; (T, y)]
Nijlip, () A pg, ()]
[Nij{pr (@)} A [Nijlug; (¥)}]
(Nifpp (@)} A [N{rg, ()}
[kap, ()] A g, ()]
= MnPimej(may)'

Similarly, we can show that vng,, (z,y) = vap,xnq, (,Y)-
Hence NR;; = (NP;) x (NQ;). o

4 Intuitionistic fuzzy primary ideals and primary intuitionistic fuzzy ideal of
a lattice

Definition 4.1. [24] “Let L be a lattice with 0. An ideal I of L is called a primary ideal, if for
a,b € L,a ANb € I implies that eithera € [ or b € VI, where /T denotes the radical of T (i.e.,
the intersection of all prime ideals of L containing I).

If there does not exist a prime ideal containing an ideal I in a lattice L, then we have /T = L."

We define the radical of an IFI. Since there are two concepts of primeness (namely an IFPI
and a PIFI), we can introduce two concepts, of the radical and primeness. For the radical of an
IFS, we use the notation v/A. The content will decide the radical (i.e., whether IF prime radical
or prime IF radical).

Definition 4.2. Let () be an IFI of a lattice L. We define the IF prime radical (respectively, prime
IF radical) of () as the intersection of all IFPIs (respectively, PIFIs) containing () and we denote

it by /Q.
We note that for an IFI Q of L always @ C +/Q. It can be shown that for an I of L we have
VvVXI = XTI

Definition 4.3. A proper IFI Q) of a lattice L is called an IF primary ideal of L, if for a,b € L the
following holds:

pqaAb) < pgla) vV pg(B)and vg(a Ab) > vo(a) Av (D).

Lemma 4.4. Let I be a proper ideal of L. Then I is a primary ideal of L if and only if x is an
IF primary ideal of L.

Proof. Suppose that I is a primary ideal of L. Let a,b € L
(i) If a A b € I, then as [ is a primary ideal of L, eithera € [ or b € V/I. Thus, we have

,U'XI (a A b) S MXI ((Z) v MXﬁ(b) and VXI (a A b) Z I/XI (a) A l/Xﬁ(b)'
(i) Ifa Ab ¢ I, thenclearly a ¢ I and b ¢ I. In this case also, we have
,U'XI (a A b) S MXI ((Z) v /Lx\ﬁ(b) and VXI (a A b) Z I/XI (a) A l/Xﬁ(b)'
Hence y; is an IF primary ideal of L.

Conversely, suppose that x 7 is an IF primary ideal of L. Let a A b € I. Then
fix, (@A D) < gy, (@) V oy, (D) and vy, (a A D) = vy, (a) Avy (D)

implies that either 1y, (a) = 1,vy, (a) = 0or iy . (b) = 1,1y . (b) = 0.
This further implies that either @ € I or b € v/I. Hence I is a primary ideal of L. O

Now we give a relationship between an IFPI and an IF primary ideal.
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Lemma 4.5. If Q is an IFPI of L, then Q is an IF primary ideal.
Proof. Let Q be an IFPI of L. For all a,b € L, we have

nq(anb) = pg(a) vV pg(b) and vg(a A b) = vo(a) Avg(b).
Since Q C /Q, we get ug(b) < p s5(b) and vg(b) > v /5(b). Thus we have

Ha(a A b) < iga) V pyg(b) and v(a A b) > vo(a) Avyg(h)
Hence @ is an IF Primary ideal. O

The following example shows that the converse of the Lemma (4.5) does not hold.

Example 4.6. Consider the ideal 7 = (a] of the following lattice as shown in figure 3. We note

1

dQQ O f

a( Mec

0
Figure 3.

that J = (d] is the only prime ideal of L containing I. Hence v/ = .J. We know that for any
ideal K of L, \/Xx = x5 Hence \/x1 = x 7 = xu-. Since J is a prime ideal, x s is an IFPI
and so x; is an IF primary ideal of L. Also, because b,c ¢ I, we have p,, (b A ¢) = 1, but
o, (B) V gy, (¢) = 0. Similarly, v, (b A ¢) = 0, but vy, (b) A vy, (¢) = 1. Thus x; is not an IFPI
of L.

Theorem 4.7. Let () be an IFI of L. Then Q) is an IF primary ideal if and only if the level cut set
Q1,s), where t,s € [0, 1] such that t + s < 1 is a primary ideal of L.

Proof. Suppose that () is an IF primary ideal of L. Let a,b € L be such thata A b € Q4,5 and
a & Qt,s),0 & \/Q(,s)- Then we have

pq(aAb) >tvglaAb) <sandt < pg(a),s > vg(a),t < pg(b),s > v g(b).
Since @ is an IF primary ideal, we have
H(a AB) < pg(a) V yg(h) and vo(a Ab) > vo(a) Avyg(b).
Thus, we gett < t and s > s, which is not possible. Hence Q, ,) is a primary ideal of L.

Conversely, suppose that @, ,) is a primary ideal of L. Let a,b € L be such that

Ho(a nb) % 1g(a) V pigb) and vo(a Ab) F vola) Av,g(b).

Let ug(a Ab) =t,vg(a Ab) = s. Then pg(a) <t,pu5(b) < tandvg(a) > s,v 5(b) > s.
Since Q) is a primary ideal of L, a A b € Q) implies that either a € Q; ;) or b € /Q4,4)
i.e., either g (a) > tor p, 5(b) > tand vg(a) < sorv 4(b) < s, a contradiction.

Hence @ is an IF primary ideal of L. O

From this onwards, L will be a complemented lattice.

Definition 4.8. A proper IFI Q of a lattice L is called a primary IFI of L if for A, B € IFI(L)
such that

AN B C Q implies that either A C Q or B C /Q.
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Now we give a relationship between a PIFI and a primary IFI.
Lemma 4.9. If Q is a PIFI of L, then Q is a primary IFI of L.

Proof. Let Q isaPIFI of L. Let AN B C Q for some A, B € IFI(L). Since @ is a prime IFI,
either A C Q or B C Q. Since Q C /Q always, we get the result. ]

The following result gives the existence of primary IFIs which are not PIFI.

Theorem 4.10. Let I be a primary ideal of L, I # L. The IFS Q of L defined by

1, ifzxel 0, ifzel
pg(w) = : covgle) =9
o, frelL—-1 a, ifreLl—1.

where o is the complement of ocin L (i.e., a Aa =0,V o = 1) is an IF primary ideal of L.

Proof. Clearly, Q is an IFI of L. Since @ C /Q, we have pq(z) < p jg(x) and vg(z) >
v g(z) forall x € L. Therefore, if z € I, then p 5(x) = 1 and v /5(x) = 0 and

ifz ¢ I, then pu 5(x) =t > aand v 5(z) =s<a.
Let A and B be IFIs of L such that AN B C Q. Suppose that A ¢ Q and B € Q. let
x € L be such that pa(x) > pg(x),va(z) < vo(x). This implies that x € I, for otherwise

pa(z) > 1,v4(x) < 0 which is not possible.

Let pa(z) > ki > a = pg(z),va(z) <l <a =vg(x).
Lety € L such that p(y) > pyg(y),ve(y) < vygy).

Clearly, y ¢ V1, otherwise g (y) > nyg(y) > poly) = 1and vp(y) < vgly) < ne(y) =0,
which is not possible.

Let ua(y) = kr and va(y) = . Then ky > aand [ < «'. Since I is primary, z Ay ¢ I
Hence 1o (z Ay) = a,vo(z Ay) = a’, we get

prans(@ Ay) > min{pa(2), pp(y)} = min{ki, k2} > a = pe(z Ay) and
vans(z Ay) < max{va(z),vs(y)} = max{l;, b} < &' =vo(z Ay)

which is not possible. Thus @ is a primary IFI of L. O

Theorem 4.11. If Q) is a primary IFI of L, then the level cut set Q( ), where t,s € [0, 1] such
that t + s < 1 is a primary ideal of L.

Proof. Leta,b € Lbesuchthata Ab € Q) and a ¢ Q ). Define IFls A, B of L as follows:

) (ts), ifz<a. ) (t,s), ifx<b
A(x)_{(o,m ifo£a’ B(x)_{(o,l), ifz £ b,

Then ANB C Q. Also, AZ Qas a ¢ Q5 implies pug(a) < t = pa(a),vg(a) > s =rva(a).
Since Q is a primary IFI, we have B C \/Q. Hence t = up(b) < p1/q(b),s = vp(b) > v /5(b)
and s0 b € \/Q( ). Thus Q4 ) is a primary ideal of L.

The following example shows that the converse of Theorem (4.11) does not hold.

Example 4.12. Consider the set N of natural numbers. Then (N, divisibility) form a partially
ordered set and thus a lattice under the join (V) and meet (A) operations defined as

aVb=Ilem{a,b} and a A b= gcd{a,b}; forall a,b € N.

Let p be any prime number. Consider ¢;,s; € (0,1),0 < i < mbe such thatt; >, > ...... > tm
and s; < 55 < ..... < 8,, with the condition ¢; + s; < 1.
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Consider the IFI @) of N defined as

Qz) = {(tovso), ifx e (pm]

(tiysi), ifze (- (pm,i=1,2,..m.

Then we have

. (to,S()), if.%‘E(p]
\/é(x)_{(ti,si), ifz € N— (pl.

Define IFIs A and B of N by

(0,1),  otherwise .

Al) = {(a,a ), ifze (p™]
and B(z) = (o, so) for all z € N. Then

[ (to,50), ifx e (p™]
(AN B)(z) = {(0’ 1),  otherwise .

Thus ANB C Q C /Qand A Z Q. We note that if z € N — (p], then
po(x) =ty < to = pp(z) and vg(z) = sm > so = vp(x)
Thus B ;C_ VQ. Hence Q is not primary IFI. However, each level cut ideal Qu,,s;) of Q is

primary, i = 1,2, ..., m.

Theorem 4.13. Let Q be a non-constant IFI of a lattice L. Then +/Q is a PIFI of L if and only if
VQ is a primary IFI of L.
Proof. Let/Qbe aPIFlof L. Let A, B € IFI(L) be suchthat AN B C /Q. As /Q is a prime

IFI of L, either A C +/Q or B C /Q. Since v/+/Q = +/Q. We conclude that 1/Q is a primary
IFI of L.

Conversely, suppose that /@ is a primary IFl of L. Let A, B € I FI(L) be such that ANB C /Q.
As /Q is primary IFI, either A C /Q or B C \/+/@Q = +/Q. Hence +/Q is a PIFI of L. m]

Remark 4.14. From Example (3.6), we conclude that in general v/P x Q # v/ P x /Q.

Theorem 4.15. Let L. = L; x L, be a direct product of lattices Ly, L.
(i) Let Py be an IFI of Ly. Then /P X x5, = VP X XL,-
(ii) Let P; be an IFI of L. Then \/x1, X P, = xr, X VP>

Proof. (i) Let P be an IFI of L such that P; x x, C P . By Theorem (3.5), P = @ x @, for
some IFIs ); of L; and @) of L. Then P, C @) and x,, C Q. It follows that Q2 = x,. Thus

P CQ x XL,- This shows that /P; x XL, = VP x XL,-

(ii) can be similarly proved. O

5 Intuitionistic fuzzy 2-absorbing ideals and 2-absorbing intuitionistic fuzzy
ideals

Definition 5.1. ([9]) “Let L be a lattice with 0. An ideal I of L is called a 2-absorbing ideal, if
fora,b,c€ L,

a AbAc e limplies thateitheraAbe TorbAcelorchac .

We extend the concept of a 2-absorbing ideals, in the context of an IFI of a lattice and prove
some properties of intuitionistic fuzzy 2-absorbing ideals of a lattice.

Definition 5.2. A proper IFI A of a lattice L is called an intuitionistic fuzzy 2-absorbing ideal
(IF2AI) of L, if for a,b,c € L,
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palaAbAc) <max{pa(aAb),pa(dbAc),ualcAa)}and
valaANbAc)>min{va(aAb),va(bAc),valcAha)}.

Since pa(a A b),ua(bAc),palcAa),vala Ab),va(bAc),valcA a) are all non-negative
real numbers, the definition of an IF2AI is equivalent to : A is an IF2AI if and only if for all
a,b,ce L,

palaNbAC) <palaNd)V pa(bAc)V palcAa)} and
val@aANbAc) >valaNb) Ava(bAc)Avalcha)l.
Infact, A is an IF2AT if and only if for all a, b, ¢ € L,

palaNbAc)=paland)V pua(bAc)V palea)and
valanbAc)=valaAb) Ava(bAc) AvalcAa).

Lemma 5.3. Let I be an ideal of L. Then I is a 2-absorbing ideal of L if and only if x is an
IF2AI of L.

Proof. Suppose that I is a 2-absorbing ideal of L. Let a, b, c € L.
IfanbAcel, thenas [ is an 2-absorbing ideal, eithera Ab e TorbAcelTorcAa €.
Thus in this case,

MXI(a/\b/\C) < MXI(aAb) \//’(‘XI(b/\C) \/MXI(C/\CL)} and
Uy (aNDAC) > vy (aND) Ay, (DAC) Ay, (cAa)}.

IfaAnbAcé¢ I, thenclearlyaAbé I,bAc ¢ I, cAa ¢ I. Thusin this case,

fix (@ NbAC) < pi, (@A) V iy, (bA )V py, (cAa)} and
Uy (@NbAe) > vy, (and) Avy, (bAC) Avy, (e Aa)}.

Hence x; is an IF2AI of L.

Conversely, suppose that y; is an IF2Al of L. Let a,b,c € L such that a Ab A c € I, but
anNbé¢ I, bAc ¢ I, cAa e I Thisimplies that ua(a AbAc) = 1,va(aAbAc) =0 and
Pors (@A D) = py, (A C) = iy, (e Na) =05 vy, (aAND) = vy, (DA ¢) = vy, (¢ Aa) = 1. Then

,UXI(a/\b/\C) =1 %O:.UXI(a/\b)\/HXI(b/\C)\/UXI(C/\a')} and
Uy, (aNDAC) :0% L=vy,(aNb) Avy, (bAC) Avy, (e ANa)l,

a contradiction, as x; is an IF2AI of L. Therefore, eithera Ab € TorbAc € TorcAa € 1.
Hence [ is a 2-absorbing ideal of L. O

Lemma 5.4. An IFI A of L is an IF2AI if and only if each level cut set A ) is a 2-absorbing
ideal of L, where t, s € [0, 1] such thatt + s < 1.

Proof. (i) Let A be an IF2AI of L. Let a,b,c € L be such that a AbAc € Ay,). Then
palanbAc)>tandva(aAbAc) < s. Since A is an IF2AT of L,

t<palaAbAc) <palaAND)Vua(bAc)V pa(cAa)} and
s>valanbAc) >valaAb) Ava(bAc)AvalcAa)}.

Since t, s, pa(aAb), pa(bAc),palcAa),va(anb),va(bAc),va(cAa) are all non-negative real
numbers. Therefore, pa(aAb) < t,ua(bAc) <t,pa(cAa) <tandva(aAb) > s,va(bAc)>
s,va(c A a) > s, then

palaANbAC) <palaNd)Vpa(bAc)V palcAa)} and
valaANbAc)>valaNb) Ava(bAc) Ava(eAa).

This leads to ¢t < ¢ and s > s, which is not possible. Hence ¢ < pa(a Ab)ort < pa(bAc)or
t <pa(cAa)and s > va(aAb)ors>va(bAc)ors>wva(cAa). ThuseitheraAb e Ay g or
bAc€e Ay g orcha€ Ay i.e., Ay is a 2-absorbing ideal of L.

(43) Let A, ;) be a 2-absorbing ideal of L. Let a,b,c € Land pa(anbAc) = t,va(aNbAc) =
s. Thena AbAc € Agyy. Since A ,) is a 2-absorbing ideal of L, either a Ab € A ) or
bAc€ Ay orcAa€ Agy. This implies that



Generalizations of prime intuitionistic fuzzy ideals of a lattice 1171

t<palaAbAc) <palaNb)Vua(bAc)Vpa(cAa)} and
s>valaNbAc)>valaAb) Ava(bAc) AvaleAa).

Thus A is an IF2Al of L. O
Now we show that every IFPI of L is an IF2AL
Lemma 5.5. Let P be an IFPI of L. Then P is an IF2AI of L.

Proof. Let P be an IFPI of L. Then for all a,b € L, we have
up(anb) < pp(a)Vup(b)and vp(a Ab) > vp(a) Avp(b).
Hence for all a, b, c € L, we have

pp(aANbAc) <pup(aAb)Vpup(c)andvp(aAbAc) > vp(aAb) Avp(c)
pp(aNbAC) <pup(bAc)Vup(a)andvp(a AbAC) > vp(bAc)Avp(a)
pp(aNbAc) < ppleAa)Vup)andvp(a AbAC) > vp(eAa) Avp(b).

Hence

pp(aNbAC) <pup(laAb)V up(bAC)V pup(cAa)V up(a)V pp(d)V pp(c) and
vplaANbAc) >vp(aAb) Avp(bAc)Avp(cAa) Avp(a) A Z/P( ) Avp(c).

By the definition of IFI, it follows that for any =,y € L, pp(z) < pp(z Ay) and vp(z) >
vp(z Ay). Thus we have

pup(aNbAC) <puplaAb)V up(bAc)V pp(cAa)} and
vp(aANbAc) >vp(anb) Avp(bAc) Avp(cAa)}.

Thus P is an IF2AT of L. O
The following example shows that the converse of Lemma (5.5) does not hold.

Example 5.6. Consider the lattice L as shown in figure 1. Let P be an IFS on L defined by

1, ifx=0 0, ifx=0
pup(z) =405, ifr=b ; vp(z)=404, ifz=0>
0, ifr=a,l. 1, ifr=a,l.

Then P is an IF2AI of L. However, P is not an IFPI of L as 1 = up(0) = up(a Ab) # 0.5 =
0VvO0.5=pp(a)Vupb)and0=vp(0) =vp(aAb) £04=1A04=vp(a) Avp(D).

Lemma 5.7. The intersection of any two distinct IFPIs of L is an IF2AI of L.

Proof. Let P, and P; be two distinct IFPIs of L. We know that for any a € L,
/llePZ(a) = HKp (CL) A lp, (a‘) and I/lepz(a) =Vp (a‘) Vvp, ((l)
Let a,b,c € L, we have

wpap(@aNbAC)=pup(aNbAc)App,(aAbAc)and
vpnp(aANbAc) =vp(aANbAc)Vp(aAbAc).

Since every IFPI is an IF2AI, so we have

,ulepz(a/\b/\C) < [/‘LPI (a/\b)\/upl (b/\C)\//J,pl (C/\a’)] A [sz(aAb)\//J‘Pz(b/\c)vupz(C/\a)]
and
vpnp(aANbAC) > [vp (aNb) Avp (bAc) Avp (cAa)|V [vp(a Ab) Avp (bAc) Avp(cAa)l.

Since P;,i = 1,2 are IFPIs, so we can write

Hp; (a’ A b) V up; (b A C) V up; (C A CL) < pp (a’) V up, (b) V up; (C) and
vp,(aNb) Avp,(bAc) Avp, (e Aa) > vp,(a) Avp,(b) Avp,(c)

We note that all the terms in the R.H.S. of the above inequalities belong to the distributive lattice
[0, 1]. Hence we can write
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tpnp(aNbA ) < [up(a) Ve (0) V e (€)] Alwup(a) V e, (b) V p, (c)]
= [up (a) A pp ()] V (e (a) A pp,(0)] V (e (@) A pip,(c)]
Ve, (0) A ppy(a)] V [ipy (b) A pip, ()] V [1py (b) A pip, (c)]

\/[/‘LPI (C) N 1P, a)] [MP] /\ /’LPZ( ] [Npl /\ up, (a)]

O]V [pp (@) A ppy(e)]
b) Ay (c)]
c) A ppy(a)]

ie., KpPnp, (a ANbA C) [:LLP1 (a> N [P, (a)] [N“Pl (a) A pep,
[:U’Pl( ) A Mpz( )] \ [IU’PI (b) A /’[’PZ( )] \ [IUPI(
Viup () A ppy(a)] Ve () A pp, ()] V [1p (

Similarly, we can have

venp,(aNbAc) > [vp (a) Vup(a)] Alve (a) Ve (D) Alve (a) vV vp(c)]
Alvp, (b) Vvp,(a)] A [ve (b) V vp,(D)] A [vp (b) V vp, (c)]
Alvp, () Vvp(a)] Alvp (e) Vv, (D)] A [vp (c) V vp(a)]

Now, for any IFI A of L, we have pa(y) < pa(z Ay) and va(y) > va(z Ay) forall z,y € L.
This implies that

e (2) A pp,(y) < pp( Ay) A e, (x Ay) = ppap (e Ay) and
vp () Ve (y) > vp (@ Ay) Ve (zAy) =vpap(zAYy).

Using these, we get

ﬂplmpz(a AbA C) < [PnP, (a N b) V Upnp, (b N C) V PP, (C N a) and
vpnp,(a NbAC) > vpnp(aAb) Avpap, (bAC) Avpnp(cAa).

Since P; N P, is an IF], for all =,y € L, we have

,uplﬂpz(x) < :L"Plﬂpz(x A y) and VPlﬁpz(z) > l/lepz(fﬂ A y)

Using these, we get

ppinp, (aNbAC) < pupnp,(a AD)V ppap,(bA )V upap,(cAa)} and
vpinp,(a ANOAC) > vpnp,(a AD) Avpap (bAc) Avpap(cAa)l.

Thus P, N P; is an IF2AI of L. O

The following example shows that the condition of “primeness" in Lemma (5.7) is necessary.
This example also shows that in general the intersection of two IF2AIs need not be an IF2AI.

Example 5.8. Consider the lattice as shown in the following figure 4:
Define IFS A; and A, as follows

Figure 4.
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1, ifr=0 0, ifz=20
0.5, ifz=a,cd 04, ifz=a,cd
ma@ =006 ite=p 0 =00 ife=s
0, otherwise 1, otherwise
and
1, ifx=0 0, ifx=0
pa, () =403, ifz=a,bce; va(z)=<06, ifzx=abce
0, otherwise 1, otherwise .

‘We note that A; and A, ae IF2AIs of L. For

MAl(d/\e/\f) :MAI(C) andMAl(d/\e) :/'LA](e/\f) :uAl(f/\d) :MAl(C)
va,(dAeN f)=wva,(c)andva, (dNe) =va, (e A f) =va, (fAd) =va,(c).

pa (g AN AG) = pa,(c) = 0.5and pa, (g Ah) = pia,(d) = 0.5, pa, (W A i) = pa, (f) =0,
pa, (i A g) = pa,(e) = 0.

va,(gANhANi)=va(c)=04andva, (9 Ah) =va,(d) =05,va,(hAi)=va,(f) =1,
va,(iNg) =va,(e) =1.

Similarly for other elements. Note that
1, ifz=0 0, ifz=0

pana, () =403, ifz=abc; vana(x)=<06, ifz=ab,c
0, otherwise 1, otherwise .

Thus ,UA]mAz(g AR A ’L) = ,LLA]mAZ(C) = 0.3. But

maX{/U'AlﬁAz (f A h)a HANA, (h A i)v HANA, (Z A g)} = max{:u'AlﬁAz(d)a ILLA]mAZ(f)v NAlﬂAz(e)}
=max{0,0,0} = 0. Thus

pana,(gAhAT) =03 % 0 =max{ua,na,(f AR),pa,na, (R A, wana,(iAg)lt.
Similarly, we can show that

vana, (g AR AT =0.6 2 1=min{vana,(f AR),vana,(hAi),vana,(iAg)}
Hence A; N A, is not an IF2AI of L.

Now we introduce the concept of a 2-absorbing intuitionistic fuzzy ideal (2-AIFI) on the lines
of a prime intuitionistic fuzzy ideal (PIFI).

Definition 5.9. A proper IFI P of L is called 2-absorbing intuitionistic fuzzy ideal (2-AIFI) of L
if whenever for some A, B,C € IFI(L) we have

ANBNC C Pimplies thateither ANBC PorBNC C PorCNACP.

The following example shows that the concept of a “IF2AI" is different from that of a “2-
AIFT".

Example 5.10. Consider the following IFIs of the Lattice L as shown in figure 1.

(0.80,0.10), ifx=0 (1,0), ifx =0
A(z) =< (.35,0.50), ifz=ua,1; B(z)=1<(0.80,0.15), ifx=a,l
(0.75,0.20), ifx =b. (0.25,0.55), ifxz =b.
and
(1,0), ifz =0 (0.80,0.10), ifx=0
C(z) =< (0.66,0.25), ifz=a,1; P(z)=1(0.75,0.20), ifz=a,l
(0.75,0.20), ifz =b. (0.80,0.15), ifz =b.

We note that (i) P is an IF2Al and (ii) ANBNC C P. BuuAnB ¢ P, BNC ¢ P and
CNA¢ P. Thus P is not a 2-AIFI of L.
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Lemma 5.11. Let I be an ideal of L. If x1 is a 2-AIFI of L, then I is a 2-Al of L.

Proof. Suppose that x; is a 2-AIFI of L. Let a A b A ¢ € I for some a,b,c € L. Suppose that
anNbg I, bAc¢ IamdcAa ¢ I. Define IFIs

A(x):{(l,o), ifee(a B(x):{(l,o), ifre® C(x):{(l,o), if 2 € (d

(0.1), otherwise (0,1), otherwise (0,1), otherwise .

We note that
(1,0), ifze (anbA(]
(0.1), otherwise .

(AmBﬁC)(x):{

Thus ANBNC C xrbut ANB ¢ x;, BNC € xrand CNA € x;. This contradict the
assumption that y is a 2-AIFI of L. O

Remark 5.12. However, we are unable to prove or disprove that if I is 2-Al of L, then x; is
2-AIFI of L.

Lemma 5.13. Every PIFI of a lattice L is a 2-AIFI of L.

Proof. Let P be a PIFI of L. Suppose that A, B,C € IFI(L)and ANBNC C P. AsPisa
prime IFI of [, we have either

(HDANBCPorCCP,or

2) BNC CPorACP,or

B)YCNACPorBCP.

Without loss of generality, suppose that AN B C Por C C P.
If An B C P, then the proof is obvious and if C' C P,then ANC C Pand C N B C P. Thus
Pisa?2-AlFI of L. O

We are unable to give an example to show that the converse of Lemma (5.13) does not hold.
Proposition 5.14. The intersection of two PIFls of L is a 2-AIFI of L.

Proof. Let P; and P, be two distinct PIFIs of L. Assume that A, B, C' are IFIs of L such that
ANBNCCPNPbutANBE PANP,BNCZ PNP,andCNAYZ P NP,

Clearly, ANBNC C Prand ANBNC C P. Since P, and P; are prime [FIs of L, we have
(i) ANBC Pior BNC C ProrCNAC Pyand (i) ANBC P,or BNC C P,orCNAC P,.
We have the following cases:-
Case(1): If ANBNC C Ppand AN B C P, then we have AN B C P, N P, a contradiction.
Case2: IfCNAC P andCNAC P,wegetC C PPNPandhenceCNAC PNP,a
contradiction.
Case(3): Let ANBNC C Prand CNAC P,. As P is a prime IFI, we get either A C P, or
B C P,. Hence either ANC C PN P,or BNC C PN P,, acontradiction in either case.
Case(d): Let CNAC Ppand AN B C P,. As P is a PIFI, we get either A C P, or B C P;.
Hence either ANC C PN P,or BNC C P, N P, acontradiction in either case.

Hence at least one of the AN B or BN C or C N A must be a subset of P; N P,. Therefore
Py N P;is a2-AlFT of L. |

Definition 5.15. A proper IFI A of a lattice L is called an intuitionistic fuzzy 2-absorbing primary
ideal (IF2API) of L, if for a,b,c € L

palaNbAc) <palaNb)V p 700NV z(cAa)and
valanbAc) >valaAND) Av z(bAe) Av z(cAa).

Lemma 5.16. A proper ideal I of L is a 2-absorbing primary ideal(2-API), if and only if x is
an IF2API of L.
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Proof. Suppose that I is a 2-absorbing prime ideal of L. Let a, b, c € L.
IfanbAcel then puy,(aANbAc)=1vy,(aANbAc)=0.

As I is 2-APL, we have eithera Abe TorbAce VIorcAa € VI.
Hence either py, (a AD) = 1,y (a AD) = 00r i 7 (bAc) = py (bAC) =Ly s7(0Ac) =

Uy s (ONc)=00rp srlcha) =y (cha)=1,v 55(cNa) =vy (cAa)=0.
Thus

px(@AbAe)=1<1=py, (anb)Vpuy (bAc)V iy, (cAa)and
Vi (@nbAe)=0>0=uvy,(anb) Avy (bAc)Avy (cAa).

IfaAbAcé I, then pu,,(aNbAc)=0,vy,(aNbDAC) =1
Clearly,a A b ¢ I and so i, (a Ab) = 0,v,,(a Ab) = 1. Hence

i (@AbAC)=0< iy, (anb)V iy (bAC)V py . (cAa)and
v(anbae)=12>vy, (anb) Avy (bAc)Avy (cAa).

Thus x; is an IF2API of L.
Conversely, suppose that y; is an IF2API of L.

LetaAbAcel. Then py,(aNbAc)=1,vy,(aNbAc)=0.
Suppose thata Ab ¢ I,bAc ¢ IandcAa ¢ I. Since g is an IF2API of L, we have

1= py,(@nbAc) <y, (@nb)Vipy (bAC)V py . (cAa)and
0=vy,(aNbAc)>rvy, (anb) Avy (bAC)Avy (cAa)

Since each of iy, (a A b), iy (b A ),y (¢ Aa) and vy, (a A D), vy (b Ac) vy (cAa)
belongs to [0, 1], so atleast one of iy, (a A D), p1y (b A ),y -(c Aa)is 1 and atleast one of
vy (anb),vy (bAc),vy .(cAa) mustbe 0. This implies that eithera Ab € TorbAc € VI
orcAa € VI. Thus I is a 2-APL o

Lemma 5.17. Let Q) is an intuitionistic fuzzy primary ideal of L, then Q) is an IF2API of L
Proof. Let @ be an IF primary ideal of L. Let a,b,c € L. Then

balarbAS) = wal(anb)A(bAC)
< Q@ nt)V uyg(bAc)
< paAd) Vi gbAe)V i gleAa).

Thus pg(a AbAe) < pglanbd)V gl Ac)V p g(cAa). Similarly, we can show that
vola NbAc) > vg(anb) Av g(bAc) Av g(cAa). Hence Q is an IF2APT of L. i

The following example shows that an IF2API of L need not be an IF primary ideal of L.

Example 5.18. Consider the ideal I = (0] of the lattice as shown in figure 5. We note that the
ideal (h] = {z € L : 2 < h} = {0,a,b,¢,d,e, f,g,h} and (i] = {0,b,¢,d, g,i} and the only
prime ideal of L. Hence v/T = (h] N (i] = (g].

We note that [ is a 2-absorbing primary ideal as for any z,y,z € L,z Ay A z € I implies that
eitherz Ay € Tory Az € VT orz Az €+/I. Hence by Lemma (5.16), x; is an IF2API of L.
We note that p1y, (h Ai) = 1y, (R Ad) = 0but py, (h) = 0,1y, (k) = 1 as well as p, (i) =
0,vy (i) = 1. Thus

P (RAT) =1 i 0= iy, (h) V px (i) and vy, (h A i) =0 7% 0= vy, (h) Avy , (0).
Hence yx; is not an IF primary ideal of L.
Lemma 5.19. If A is an IF2AI of L, then A is an IF2API of L.
Proof. Let Abe an IF2Al of L. Let a,b,c € L, we have

palaNbAC) <paland)Vpa(bAc)V paleAa)and
valaNbAc)>valanb) Ava(bAc) Ava(eAa).
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Figure 5.

Since A C VA, we get the result.
The following example shows that an IF2API of L need not be an IF2AI.

Example 5.20. Consider the ideal I = (0] of the lattice as shown in figure 6.

Figure 6.

Consider the ideal I = (0]. The only prime ideals of L are (j], (k], [I].
We have v/I = (5] (k] N [I] = (d]. Also, \/x1 = x,/7 = X, Where J = (d].
We note that I is a 2-API of L. Hence by Lemma (5.16), xr is an IF2API of L.
We note that [ isnota2-Alof L,asdAeA f=0c,butdhe¢ I, eNf¢gTanddA f¢1I.
Thus we have
px(dAenf)=1 %ﬂxz(d/\e)vﬂxz(e/\f)\/:uxz(d/\f) and
vy, (dNeN f)=0 z v (dNe) Aoy, (e N f) Aoy, (dA f).

Thus x; is not an IF2AI of L.
Lemma 5.21. Let A be an IFI of L. If \/A is an IFPI, then A is an IF2API.

Proof. Let A be an IFI of L. Suppose that v/A is an IFPL
If A is not an IF2API, then there exist a, b, ¢ € L such that

palaNbAc) % palaNb)V pz(bAc)V i z(cAa)and
valaAbAc) ?lf vala AD) Av z(bAc) Av z(cAa).
This implies that
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palaAb)V p z(bAc)V pz(cNa) < palaNbAc)and
vala Nb) Av z(bAc) Avz(cNa) >valaNbAc).

Since v/ A is an IFPI, we have

— i/z(@n Q) V ()
vyalane) Av (D)

pyalaNbAe)=p z(0NC)V p4(a)
vyalaANbAc)=v z(bAc) AV z(a)

Hence

pyzON)V pglane)=p z0N)V pz(a)Vpz(c) =pyzaNbAc)Vp () and
vyalbne) ANv glance) =v z(bAc)Nv z(a) Av z(c) =v zlanbAace) Av z(c).

Therefor, we get

palaAb)V p g(aNbAC)V pz(c) < palaANbAc)and
vala Nb) Av z(aANbAC) Av z(c) > valaNbAc).

This implies that y1 /z(a AbAc) < pa(aAbAc)and v z(a ADAc) > va(aAbAc). Which is
not possible. Hence A os an IF2API. O

The following example shows that the converse of Lemma (5.21) does not hold.

Example 5.22. Consider the lattice as shown in figure 7. The only prime ideals of L containing

Figure 7.

the ideal I = (c] are (h] and (i]. Hence v/T = (h] N (i] = (f].

Forany z,y,2 € I,z Ay A z € I implies that either s Ay € Tory Az e VIorzAz € VI
Hence I is 2-API and so by Lemma (5.16), x is an IF2API. We note that d A e = a € /T but
d ¢ VT and e ¢ VI. Thus VT is not a prime ideal of L. Hence by Theorem (3.3). \/x7 = X7
is not an IFPI of L.

‘We omit the easy proof of the following Lemma.

Lemma 5.23. Let A be an IFI of L. Then /A = v/ VA.

Theorem 5.24. Let A be an IFI of L. Then \/A is an IFPI if and only if /A is an IF primary
ideal.

Proof. Tt follows from Lemma (4.5), that if v/A is an IFPI, then v/A is an IF primary ideal. The
converse follows from the definition of an IF primary ideal and by Lemma (5.23). O

The proof of the following Theorem follows from the definition of an IF2AI, an IF2API and
Lemma (5.23).

Theorem 5.25. Let A be an IFI of L. Then \/A is an IF2AI if and only if \/A is an IF2PI.

Definition 5.26. A proper IFI () of a lattice L is called a 2-absorbing primary intuitionistic fuzzy
ideal (2-APIFI) of L, if for any A, B,C € IFI(L) such that
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ANBNC C Q implies that either ANBC QorBNC C/QorCNACVQ.
Lemma 5.27. Let I be a ideal of L. If x1 is an 2-APIFI of L, then I is a 2-Al of L.

Proof. Suppose that x is a 2-APIFL of L. Leta A b A ¢ € I for some a,b,c € L.
Suppose that a Ab ¢ I,bAc¢ TandcAa ¢ I. Thenclearly, a ¢ T and b,c ¢ /1.
Define IFIs A, B, C of L as

A(x)_{(l,()), ifre(a B(x>_{(1,0), ifxe (b C(x)_{(l,o), if z € (]

(0.1), otherwise (0,1), otherwise ’ (0,1), otherwise .

We note that
(1,0), ifze(anbAd
(0.1), otherwise .

(AmBmC)(x):{

Thus ANBNC C x;but ANB Z x;, BNC € x 5and C N A E x 7. This contradicts the
assumption that y; is a 2-APIFI of L. O

Remark 5.28. However, we are unable to prove or disprove that if I is a 2-Al of L, then x is a
2-APIFI of L.

Lemma 5.29. If Q) is a primary IFI of L, then Q is a 2-APIFI of L.

Proof. Let Q be a primary IFI of L. Let for any A, B,C € IFI(L) suchthat AN BN C C Q.
Then we have either

i) ANBC QorC C+/Q;or
(i) ACQorBNC C+/Q;or
(iiil) AC+/QorBNC C Q;or
(iv) BCQorAnC C+/Q.

These possibilities imply that either (i) AN B C Q or (ii) BN C C /Q or (iii)) C N A C v/Q.
Hence @ is 2-APIFI of L. O

Lemma 5.30. Let Q is a 2-AIFI of L, then Q is a 2-APIFI of L.

Proof. LetQisa2-AIFlof L. Let A, B,C € IFI(L) such that AN BN C C Q. Then we have
either ANBC QorBNC CQorCNACQ.Since Q C +/Q, we get the required result. O

Definition 5.31. Let @@ be an IFI of L. If P is the only PIFI containing (), then we say that Q) is
P-primary IFI of L.

Theorem 5.32. Let Q1, Q, be IFIs and Py, P, be PIFIs of L. Suppose that Q1 is a P,- primary
IFI and Q)5 is a Ps- primary IFI. Then Q, N Q, is a 2-APIFI of L.

Proof. Since, Q; is a P;-primary IFL, for i = 1,2. We get /Q; = P;.

Let Q = Q1 N Q,. Then /Q = P, N P,. Now suppose that AN BN C C Q for some
A,B,C € IFI(L). Assume that ANB € /@ and BNC £ /Q. Then A, B,C € /Q = PiNP.
By proposition (5.14), /Q = Py N P; is a 2-AIFl of L. Since ANB £ \/Q and BN C £ /Q,
we have ANC C/Q.

We show that ANC C Q.

Since ANC C +/Q C P, we assume that A C P;. As A g VQand ANC C+/QC P, we
conclude that A € P, and C C Ps.
Since C C P, and C € +/Q we have C € P.
IfACQand C C @, then ANC C @ and we are done.
We may assume that A g Q1. Since C C P, and BN C C /@ which is a contradiction.
Thus, A C Q.
Since @, is a Py-primary IFL, and C' € Q,, we get AN B C P.
Since A C Py and AN B C P, we have AN B C +/Q which is a contradiction.
Thus, C' C Q5.
Hence AN C C Q. Therefore, Q is a 2-APIFI of L. O
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Theorem 5.33. Suppose that Q is a non-constant IFI of L such that +/Q is a PIFL. Then Q is a
2-APIFI of L.

Proof. Suppose that for some A, B,C € IFI(L), ANBNC CQand ANB g Q.

(i) : Wenote that ANBNC CQ C +/Q. Hence, if AN B g Q, then as /@ is PIFI, we get
CC+vQandso BNC C+/Q.

(ii) : If AN B C /Q, then as 1/Q is PIFI, either A C /Q or B C /Q.
Hence either ANC C +/Q or C N B C +/Q. Thus, Q IS A 2-APIFI of L. ]

Now we give a characterization for /@ to be a PIFI.

Theorem 5.34. Let Q be a non-constant IFI of a lattice L. Then +/Q is a PIFI of L if and only if
\/Q is a primary IFI of L.

Proof. Let /Q be a PIFL of L. Let A, B,C € IFI(L) be suchthat AN B C /Q. As y/Q is a
PIFI of L, either A C /Q or B C v/Q = +/+/Q. We conclude that /@ is a primary IFI of L.

Conversely, suppose that 1/Q is a primary IFl of L. Let A, B,C € I FI(L) be such that
AN B C+/Q. As /Q is primary IFI of L, either A C /Q or B C 1//Q = +/Q. Hence \/>15
a prime IFI of L.

Now we prove the following characterization.

Theorem 5.35. Let () be a non-constant IFI of a lattice L. Then \/Q is a 2-AIFI of L if and only
if \/Q is a 2-APIFI of L.

Proof. Let \/Q) be a 2-AIFL of L. Let A, B,C € IFI(L) be such that AN B C /Q.
As /Qisa2-AlFl of L, either ANB C/QorBNC C/QorCNAC Q.
Using v/Q = +/+/Q, we conclude that /@ is a 2-APIFI of L.

Conversely, suppose that /@ is a 2-APIFI of L. Let A, B,C € IFI(L) be such that A N
BnNC C Q. As \/Q is 2-APIFI of L, either AN B C y/Qor BNC C /v/Q = /Q or
CNAC\VQ=+/Q. Hence \/Q is a 2-AIFI of L. ]

Theorem 5.36. Let . = L; x L, be a direct product of lattices Ly, L,. Let Ay, Ay be an IFI of
Ly and L, respectively. Suppose that pa,(01) = pa,(02) = 1, v4,(01) = va,(02) = 0, where
01,0, is the least element of Ly, L, respectively. If A = Ay x Ay is an IF2AI of L, then A, is an
IF2AI of Ly and A, is an IF2AI of L.

Proof. Leta,b,c € L. Since A is an IF2AI of L, we have

wala NONC,02) < paland,0)Vpa(bAc,02)V pa(cAa,0,)and
valaAbAc,02) >va(anb 0) Ava(bAc,02) AvaleAa,0,)

By using the definition for A; x A,, we can write

pa, (@NbAC) A pray (02) < [pra, (@Ab) A pay(02)]V [pa, (bAC) Apray (02)] V [pa, (e Aa) Apa,(02)]
va,(aNbAC)Vva,(02) > [va, (aAD)Vva,(02)]Alva, (bAc)Vra,(02)] Alva, (eAa)Via,(02)]

By using p4,(02) = 1,v4,(02) = 0, we get

/LLAI((L/\b/\C) S“Al(aAb)vﬂAl(bAc)\//LAl(C/\a)
va(anNbAc)>va(anNb) Ava,(bAc) Ava, (cAa).

Thus A; is an IF2AI of L. In a same way we can show that A, is an IF2AI of L,. O
By using the similar steps, we can prove the following theorem.

Theorem 5.37. Let L = Ly X Ly X ...... X Ly be a direct product of lattices Ly, Lo, ...... , L. Let
A;(1 < i < k) be an IFIs of L; respectively. Suppose that for each i = 1,2,...k, pa,(02) =
1,v4,(02) = 0, where 0; is the least element of L;. If A = Ay x Ay X ...... x Ay, is an IF2AI of
L, then each A;, is an IF2AI of L;.
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The following example shows that the converse of the Theorem 5.36 need not hold.

Example 5.38. Consider the lattices L;, L, and L = L; x L, as in Example 3.6.
Define IFSs A, € IFS(Ly) and A, € IFS(L,) as follows:

(1,0), ifz =0 .
1,0), ifz=0
Ai(z) =<(0.16,0.7), ifz=a ; Az(l‘)—{go’];’ ?fx |
1 = 1.
(0.25,0.5), ifz=b,1. oy BT

We note that A; is an [F2AI of L; and A, is an IF2AI of L,. We consider A € TFS(Ly X L;)
defined by

pa(z,y) = pa, () A pa,(y) and va(z,y) = pa, () Vva,(y).
ie., A= A x A,. Itis easy to check that

(1,0), if (z,y) = (0,0)
~](0.25,05), i (z,y) = (b,0),(1,0)
A®Y) =11016,07), if (2,9 = (a,0)
(0,1), otherwise .
We have
pal(a, 1) A (1,0) A (b,1)] = pa(0,0) = 1;v4[(a, 1) A (1,0) A (b, 1)] = v4(0,0) =0
pal(a, 1) A (1,0)] = pa(a,0) = 0.16;v4(a, 1) A (1,0)] = va(a,0) = 0.70.
pal(1,0) A (b,1)] = pa(b,0) = 0.25;v4[(1,0) A (b,1)] = v4(b,0) = 0.50.
palla, ) A (0, 1)] = palaAb, 1) = pa(0,1) =0;v4[(a, 1) A (b,1)] =valaAd, 1) =
4(0,1) = 1
Thus

pal(a, DALO)A(, D] = 1 £ 0.25 = pal(a, DAL 0)]Vjral(1,0)A (b, D]V pal(a, DA, D]
val(a, 1)A(1,0)A (b, 1)] = 0 2 0.5 = va[(a, 1)V (1,0)] Aval(1,0)V (b, )] Aval(a, 1)V (b, 1)].

Hence A is not an IF2AI of L.

Theorem 5.39. Let . = L X L be a direct product of lattices Ly and L,. Let Py, P, be IFI of
Ly and L, respectively. Suppose that

(i) pp, (01) = pp,(02) = 1,vp (01) = vp,(0) = 0, where 01,0, is the least element of Ly, L,
respectively.

(ii) pp, (11) = pp,(12) = 0,vp, (01) = vp,(02) = 1, where 14, 15 is the greatest element of Ly, L,
respectively.

If P = Py x Pyisan IF2AI of L, then P, and P, are IFPI of Ly and L, respectively.

Proof. Suppose that P is not an IFPI of L;, then there exists a, b, ¢ € L; such that
Hp (a’ A b) % Hnp (a‘) V pp, (b) and Vp (a A b) % vp (a‘) AVp (b)
Consider the element x = (a, 15),y = (11,0,) and z = (b, 1;) from L. We note the following

up(@ ANyAz)=pp(anb02) =pp(aAb)Vup (02) = pp (a Ab)and
vp(x AyAz) =vp(aAb,0y) =vp (aAb)Avp (02) =vp (aAb).

Now MP(x A y) = /J‘P(aa 02) = [P (a’> N pp, (02) = Hp (a);
vp(x ANy) =vp(a,0,) =vp (a) Ve (02) =vp (a) and
,uP(y A Z) = uP(ba 02) = KUp (b) A lp, (02) = HKP (b)’
vp(y A z) =vp(b,02) = vp (b) Ve (0;) = vp (b) and
pp(z Ax) = pp(anb 1) = pp(aAb) A pp,(l2) = 0;
vp(zAz) =vp(aAb12) =vp(aAb)Vrp(ly)=1.

Since P is an IF2AI, we have
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pp(eANyAz) <pp(xAy)Vup(yAz)Vupp(zAz)and
vp(x AyANz)>vp(xAy) Avp(yAz) Avp(z Az).
ie., /J/Pl(a/\b)SILLP]( )\/MPl( )\/0 I’LPI( )vlupl(b)and
VPl(a/\b) ZVPI( )/\Vpl(b)/\l:Vpl(a)/\ypl(b)’

a contradiction. Hence P is an IFPI of L;. Similarly, we can show that P; is an IFPI of L,. O

Theorem 5.40. Let L = L X L, be a direct product of lattices Ly, L,. Let Py, P, be an IFPI of
Ly and L, respectively. If P = P| x P», then P is an IF2AI of L.

Proof. Let (a,x), (b,y), (c,z) € L. To show that P is an IF2AI, we need to show that

,uP[(avx) A (b, y) A (e, Z)} < /LP[(CL"T> A (b, y)] v MP[(ba y) A (e, Z)] v ,UP[(C, Z) A (aax)];
vp((a,2) A (b,y) A (e, 2)] > vpl(a,z) A (b, y)] Ave[(by) A e, 2)] Avp|(e, 2) A (a, )]

i.e., to show that

pp(aNONc,x AyAz) <pplanbz Ay)Vup(bAc,y Az)V up(cAa,zAx);
vp(aNbAc,x ANyANz) >vp(anNbx Ay) Avp(bAc,yAz) Avp(cAa,z Ax).

Also, by using definition of P; x P, we have

pp(a NOANc,x ANy Az)=pp(aNbAc)Aup,(zAyAz2);
vplaNbAc,z AyAz)=vp(aANbAc)Vup(zAyAz).

As Pj and P, are IFPIs of L; and L, respectively, we have

/Ufpl(a/\b/\c) :ILLpl(a)\/,upl(b)VMPI(C);Vpl(aAbAC) :l/Pl(a’)/\VPI(b)/\VPI(C)'

and

/‘Pz(x/\y/\z) = ILLPZ(x) \/NPZ(?J) \/ILLPZ(Z); VPz(xAy/\Z) = l/Pz(x) /\sz(y) /\l/Pz(Z)'

Thus, we have

[wp(aNb,x ANY)|V [up(bAc,y A2)]V [up(cAa,z A x))

— [py(a A D) A (e A )]V py (b €) A gursy A 2)]V [y (e A ) A (2 A )]

Similarly, we have

vp(a b,z Ay Avp(bAc,y A2)|Avp(cAa,z Az

=[vp(aNb)Vup(zAy)|Avp (bAC)Vp(yAz)Alvp (cAa)Vep(zAz).

Since P; and P, are IFPIs of L; and L, respectively, we can write

up(aNb,x Ay)V pup(bAc,yAz)V up(cAa,zAx)

= {lup (@) Vv pp, O A lpp (2) V e, )]V A1 (0) V ppy ()] Al () V py (2)]} V[ () V
Hp, ((Z)] A [N“Pl (Z) V P, ({E)]}

By using distributivity law, R.H.S of it can be written as

[ep (@) V pp (b) V pp ()] A lppy (2) V pip, (y) V e, (2)]

Thus, [up,(a) V pp (0) V pp ()] A lup, () V ppy (y) V e, (2)] = ppla Ab A,z Ay A z) =
pr(@nbAC) App,(w Ay Az) = [up,(a) V ip, (D) V i (€)] A [, () V i, (y) V o (2)]. Which
is true. Similarly, we can show that

[vp,(a) Avp (D) Avp (A)] V [vp, () Ave, (y) Avp, (2)] Svp(aAbAc,c AyAz) =vp(aANbA
)Vup,(xAyAz)=lvp(a) Avp (b) Avp ()] V v (z) Avp,(y) Avp,(2)]. Which is also true.
Hence P is an IF2AI of L. O

Theorem 5.41. Let L. = Ly x L, be a direct product of lattices Ly, L,. Let Q be an IFI of L.
Then Q x xr, is a 2-AIFPI of L, if and only if Q) is a 2-AIFPI of L.

Proof. Suppose that Q x xr, is a 2-AIFPI of L.

Let Ay, Ay, A3 € IFI(Ly) be such that Ay N A, N A3 C Q.

Consider (A; N A, N A3) x x1, € Q X xr,- This implies that

(A1 x x5,) N (A2 X x1,) N (A3 X x1,) € Q X xL,- Since Q x xp, is a 2-AIFPI of L, we get either
(A1 x x2,) N (A2 X x1,) € Q X X1, or (A2 X X1,) N (A3 X X1,) € /Q X X1, = VQ X XL, OF
(A3 x x1,) N (A1 X x1,) € /Q X X1, = V@ X XL, -

Thus (A1 n Az) - Q or (A2 n A3) - \/@01’ (A3 N Al) - \/@

Hence @ is a 2-AIFPI of L.

The converse follows by retracing similar steps. O
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