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Abstract The rings considered in this paper are commutative with identity which are not
integral domains. Let R be a ring. Let Z(R) denote the set of all zero-divisors of R and we denote
Z(R)\{0} by Z(R)∗. The total zero-divisor graph of R denoted by ZT (R) is an undirected
graph whose vertex set is Z(R)∗ and distinct vertices x and y are adjacent in ZT (R) if and only
if xy = 0 and x + y ∈ Z(R). Let (ZT (R))c denote the complement of ZT (R). The aim of
this paper is to study whether (ZT (R))c is connected implies that (ZT (R[X]))c (respectively,
(ZT (R[[X]]))c) is connected and vice versa and to compare their diameters (respectively, radii)
when both the graphs are connected.

1 Introduction

The rings considered in this paper are commutative with identity and unless otherwise specified,
they are not integral domains. Let R be a ring. Let Z(R) denote the set of all zero-divisors of R
and we denote Z(R)\{0} by Z(R)∗. Motivated by the results proved on the zero-divisor graphs
in commutative rings (see [2]) and by the interesting theorems proved by Anderson and Badawi
on the total graphs of rings (see [3, 4, 5]), the concept of the total zero-divisor graph of R,
denoted by ZT (R) was introduced and investigated by Ðurić et al. in [11]. Recall that the total
zero-divisor graph of R denoted by ZT (R) is an undirected graph whose vertex set is Z(R)∗

and distinct vertices x and y are adjacent in ZT (R) if and only if xy = 0 and x+y ∈ Z(R) [11].
Several interesting results were proved on ZT (R) by Ðurić et al. in [11].

First, it is useful to recall the following definitions and notations from commutative ring
theory before we give a brief account of the results from the literature which motivated this
paper. Let R be a ring. We denote the set of all prime ideals, the set of all maximal ideals, and
the set of all minimal prime ideals of R by Spec(R),Max(R), and Min(R) respectively. We
denote the cardinality of a set A by |A|. If |Max(R)| = 1, then R is said to be quasi-local. A
Noetherian quasi-local ring is called a local ring. Let I be an ideal of R with I ̸= R. Recall that
p ∈ Spec(R) is said to be a maximal N-prime of I if p is maximal with respect to the property
of being contained in ZR(

R
I ) = {r ∈ R | rx ∈ I for some x ∈ R\I} [17]. Thus p ∈ Spec(R)

is a maximal N-prime of (0) if p is maximal with respect to the property of being contained in
Z(R). For convenience, let us denote the set of all maximal N-primes of (0) in R by MNP (R).
Note that S = R\Z(R) is a multiplicatively closed subset of R. If I is an ideal of R with
I ⊆ Z(R), then I ∩ S = ∅. Hence, by Zorn’s lemma and [19, Theorem 1], it follows that there
exists p ∈ MNP (R) with I ⊆ p. In particular, if x ∈ Z(R), then Rx ∩ S = ∅. So, Rx ⊆ p
for some p ∈ MNP (R). This shows that if MNP (R) = {pα}α∈Λ, then Z(R) =

⋃
α∈Λ

pα.
Thus |MNP (R)| = 1 if and only if Z(R) is an ideal of R. We use m.c. subset to denote
multiplicatively closed subset. Let I be an ideal of R with I ̸= R. Recall that p ∈ Spec(R) is
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said to be an associated prime of I in the sense of Bourbaki if p = (I :R x) for some x ∈ R [16].
In such a case, we say that p is a B-prime of I . Recall that an ideal I of R is an annihilating ideal
if there exists r ∈ R\{0} such that Ir = (0). We denote the set of all annihilating ideals of R by
A(R) and A(R)\{(0)} by A(R)∗. If p ∈ MNP (R), then it is clear that p ∈ A(R) if and only if
p is a B-prime of (0) in R. We denote the nilradical of R by nil(R) and R is said to be reduced
if nil(R) = (0). The Krull dimension of R is referred to as the dimension of R and is denoted
by dimR. We denote the group of units of R by U(R) and we denote the set of all non-units of
R by NU(R). If A,B are sets with A is a subset of B and A ̸= B, then we denote it by A ⊂ B
(or by B ⊃ A).

Recall that the zero-divisor graph of R denoted by Γ(R) is an undirected graph whose vertex
set is Z(R)∗ and distinct vertices x and y are adjacent in Γ(R) if and only if xy = 0 [6]. In [8],
Axtell et al. investigated the preservation of the diameter of zero-divisor graph of a commutative
ring under extension to polynomial and power series rings. We denote the polynomial ring in
one variable X over R by R[X] and the power series ring in one variable X over R by R[[X]].
For f(X) ∈ R[X], we denote the ideal of R generated by the coefficients of f(X) by Af . A
complete characterization of the diameters of Γ(R) and Γ(R[X]) was given by Lucas in [20,
Theorem 3.6]. In [20, Theorem 4.9], he gave a complete characterization of the diameters of
Γ(R),Γ(R[X]), and Γ(R[[X]]) in the case of reduced rings. Several examples were given to
illustrate the behaviour of diam(Γ(R)) and diam(Γ(R[[X]])) in the case of non-reduced rings
(see [20, Section 5]).

The graphs considered in this paper are undirected and simple. For a graph G, we denote the
vertex set of G by V (G) and the edge set of G by E(G). Let G = (V,E) be a simple graph.
Recall that the complement of G denoted by Gc is defined by setting V (Gc) = V (G) = V and
distinct u, v ∈ V are joined by an edge in Gc if and only if there exists no edge in G joining u
and v [9, Definition 1.2.13].

If |Z(R)∗| ≥ 2, then in [26], it was proved that the connectedness of (Γ(R))c depends
on the behaviour of members of MNP (R) (see [26, Theorem 1.1]). Also, we determined
diam((Γ(R))c) when (Γ(R))c is connected and studied whether (Γ(R))c is connected implies
that (Γ(R[X]))c (respectively, (Γ(R[[X]]))c) is connected and vice versa. It is useful to recall
that the total graph of R denoted by T (Γ(R)) is an undirected graph whose vertex set is the
set of all elements of R and distinct vertices x and y are adjacent in T (Γ(R)) if and only if
x + y ∈ Z(R) [3]. For more information on the total graphs of commutative rings, the reader
is referred to [3, 4, 5, 24, 25]. For an excellent and inspiring investigation on several graphs
associated with commutative rings, the reader is referred to [1]. For more detailed exposition
of the total graphs of commutative rings, the graphs from total graphs, and the generalized total
graphs, one can refer chapters 7 to 9 from [1]. Let TZ(R)∗(Γ(R)) denote the subgraph of the
total graph of R induced by Z(R)∗. It is clear that (ZT (R))c = (Γ(R))c ∪ (TZ(R)∗(Γ(R)))

c.
Hence, (Γ(R))c and (TZ(R)∗(Γ(R)))

c are spanning subgraphs of (ZT (R))c. If |Z(R)∗| ≥ 2 and
MNP (R) = {p}, then it was shown in [27] that (ZT (R))c is connected if and only if p /∈ A(R);
if |MNP (R)| ≥ 2, then (ZT (R))c is connected. In [27], we determined diam((ZT (R))c) and
r((ZT (R))c) when (ZT (R))c is connected. In this paper, we determine whether (ZT (R))c is
connected implies that (ZT (R[X]))c (respectively, (ZT (R[[X]]))c) is connected and vice versa
and compare their diameters (respectively, radii) when both the graphs are connected.

For definitions and notations from graph theory that are not mentioned in this paper, one can
refer [9]. Before we give a brief account of results that are proved in this paper, it is desirable to
mention the needed notations from graph theory. Let G = (V,E) be a connected graph. For any
distinct u, v ∈ V , we denote the distance between u and v in G by dG(u, v) or by d(u, v). The
diameter of G is denoted by diam(G). For any v ∈ V , the eccentricity of v in G is denoted by
eG(v) or by e(v). The radius of G is denoted by r(G).

This paper consists of five sections including the introduction. For a ring R, we use R1 to
denote either R[X] or R[[X]]. In Section 2, with the assumption |Z(R)∗| ≥ 2, we provide several
sufficient conditions such that both (ZT (R))c and (ZT (R1))c are connected.

In Section 3, we consider R such that |MNP (R)| = 1 and study whether (ZT (R))c is
connected implies that (ZT (R1))c is connected and vice versa and determine their diameters
(respectively, radii) when both the graphs are connected.

In Section 4, we consider R such that |MNP (R)| ≥ 2. It is proved that both (ZT (R))c and
(ZT (R1))c are connected and we compare their diameters (respectively, radii).
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In Section 5, the rings R considered are von Neumann regular which are not fields. It is
proved that diam((ZT (R))c) = diam((ZT (R1))c) ∈ {1, 2}. Moreover, necessary and sufficient
conditions are determined in order that r((ZT (R))c) = 2.

Several examples are presented to illustrate the results proved in this paper.

2 Some sufficient conditions under which both (ZT (R))c and
(ZT (R[X]))c (respectively, (ZT (R[[X]]))c) are connected

Unless otherwise specified, the rings considered in this paper are commutative with identity
which are not integral domains. For a ring R, with R1 = R[X] or R[[X]], the aim of this section
is to provide some sufficient conditions under which both the graphs (ZT (R))c and (ZT (R1))c

are connected and to determine the bounds for their diameters and radii in the case when both
the graphs are connected. First, we state and prove some lemmas that we need for the proofs of
main results. We often use in our discussion that (ZT (R))c is the union of its spanning subgraphs
(Γ(R))c and (TZ(R)∗(Γ(R)))

c.

Lemma 2.1. If R is a ring and S is a subset of Z(R) such that S ̸⊆ ((0) :R a) ∪ ((0) :R b) for
some distinct a, b ∈ Z(R)∗, then there exists a path of length at most two between a and b in
(Γ(R))c and hence, in (ZT (R))c.

Proof. Suppose that a and b are not adjacent in (ZT (R))c. By the assumption on S, S ⊆ Z(R)
and there exists s ∈ S with sa ̸= 0 and sb ̸= 0. Thus s ∈ Z(R)∗ and a− s− b is a path of length
two between a and b in (Γ(R))c and hence, in (ZT (R))c.

Lemma 2.2. If R is a ring, then for any nonzero f(X) ∈ R1, there exists r ∈ R\{0} such that
((0) :R1 f(X)) ∩R ⊆ ((0) :R r).

Proof. Let j ≥ 0 be least with the property that the coefficient rj of Xj in f(X) is nonzero.
Then it is clear that ((0) :R1 f(X)) ∩R ⊆ ((0) :R rj).

Proposition 2.3. If R is a ring and I an ideal of R such that I ⊆ Z(R) but I /∈ A(R), then both
(ZT (R))c and (ZT (R1))c are connected with diam((ZT (R))c) ≤ 2 and diam((ZT (R1))c) ≤
2.

Proof. Let a, b ∈ Z(R)∗ be distinct. Since I /∈ A(R) by hypothesis, I ̸⊆ ((0) :R a) ∪ ((0) :R b).
Hence, there exists a path of length at most two between a and b in (ZT (R))c by Lemma 2.1.
Therefore, (ZT (R))c is connected and diam((ZT (R))c) ≤ 2.

Let f(X), g(X) ∈ Z(R1)∗ be distinct. Assume that they are not adjacent in (ZT (R1))c.
By Lemma 2.2, there exist r, s ∈ R\{0} such that ((0) :R1 f(X)) ∩ R ⊆ ((0) :R r) and
((0) :R1 g(X)) ∩ R ⊆ ((0) :R s). As I /∈ A(R), I ⊈ ((0) :R r) ∪ ((0) :R s). Hence,
I ⊈ J ∪K, where J = ((0) :R1 f(X))∩R and K = ((0) :R1 g(X))∩R. Therefore, there exists
a ∈ I\{0} ⊆ Z(R)∗ ⊂ Z(R1)∗ such that f(X)−a−g(X) is a path of length two between f(X)
and g(X) in (Γ(R1))c and hence, in (ZT (R1))c. This shows that (ZT (R1))c is connected and
diam((ZT (R1))c) ≤ 2.

The following Remarks 2.4, 2.5, and Lemma 2.6 are needed in our future discussion.

Remark 2.4. For a ring R, (ZT (R))c = (Γ(R))c if and only if (TZ(R)∗(Γ(R)))
c is a subgraph of

(Γ(R))c if and only if (C) is satisfied, where (C) is: if x, y ∈ Z(R)∗ are such that x+y /∈ Z(R),
then xy ̸= 0.

Remark 2.5. If R is a ring with |MNP (R)| = 1, then for any x, y ∈ Z(R), x+ y ∈ Z(R), since
Z(R) is an ideal of R. Therefore, (C) holds trivially, where (C) is as in Remark 2.4. Hence,
(ZT (R))c = (Γ(R))c.

Lemma 2.6. For a simple graph G = (V,E) with |V | ≥ 2, if both G and Gc are connected, then
r(Gc) ≥ 2 and r(G) ≥ 2.

Proof. Since |V | ≥ 2 and G is connected by assumption, for any v ∈ V , there exists w ∈ V \{v}
such that v and w are adjacent in G. Hence, d(v, w) ≥ 2 in Gc. Thus e(v) ≥ 2 in Gc for each
v ∈ V and so, r(Gc) ≥ 2. Similarly, it can be shown that r(G) ≥ 2.
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Proposition 2.7. For a ring R with |Z(R)∗| ≥ 2 and MNP (R) = {p}, the following statements
hold:
(1) (ZT (R))c = (Γ(R))c.
(2) (ZT (R))c is connected if and only if p /∈ A(R).
(3) If p /∈ A(R), then (ZT (R1))c is also connected with diam((ZT (R))c) = r((ZT (R))c) =
diam((ZT (R1))c) = 2 and r((ZT (R1))c) ≤ 2.

Proof. (1) Note that (ZT (R))c = (Γ(R))c by Remark 2.5.
(2) If p ∈ A(R), then pr = (0) for some r ∈ R\{0}. It is clear that r ∈ Z(R)∗. As |Z(R)∗| ≥ 2
by hypothesis, there exists x ∈ Z(R)∗ with x ̸= r. Since ry = 0 for any y ∈ Z(R) = p, there
is no path in (Γ(R))c between x and r. Hence, (ZT (R))c is not connected if p ∈ A(R). If
p /∈ A(R), then (ZT (R))c is connected by Proposition 2.3.
(3) If p /∈ A(R), then by Proposition 2.3, both (ZT (R))c and (ZT (R1))c are connected with
diam((ZT (R))c) ≤ 2 and diam((ZT (R1))c) ≤ 2. As Γ(R) is connected by [6, Theorem 2.3], it
follows from Lemma 2.6 that r((Γ(R))c) ≥ 2. Therefore, diam((ZT (R))c) = r((ZT (R))c) =
2. Let a ∈ Z(R)∗. Since Γ(R) is connected, we can find x ∈ Z(R)∗\{a} with ax = 0. Observe
that a + x ∈ Z(R) ⊂ Z(R1). Hence, a and x are not adjacent in (ZT (R1))c. Therefore,
diam((ZT (R1))c) ≥ 2 and so, diam((ZT (R1))c) = 2. It is clear that r((ZT (R1))c) ≤ 2.

Proposition 2.8. If R is a ring with nil(R) /∈ A(R), then diam((ZT (R))c) = r((ZT (R))c) =
diam((ZT (R1))c) = r((ZT (R1))c) = 2.

Proof. Note that nil(R) ⊆ Z(R). Since nil(R) /∈ A(R) by hypothesis, nil(R) is not finitely
generated and so, Z(R)∗ is infinite. By Proposition 2.3, both (ZT (R))c and (ZT (R1))c are
connected with diam((ZT (R))c) ≤ 2 and diam((ZT (R1))c) ≤ 2. Let a ∈ Z(R)∗. Since Γ(R)
is connected, there exists x ∈ Z(R)∗\{a} with ax = 0. If a + x ∈ Z(R), then a and x are
not adjacent in (ZT (R))c and so, d(a, x) ≥ 2 in (ZT (R))c. If a + x /∈ Z(R), then a /∈ nil(R)
by [20, Lemma 2.3]. Since nil(R) /∈ A(R), there exists b ∈ nil(R) such that bx ̸= 0. It is
clear that a ̸= bx, a(bx) = 0, and a + bx ∈ Z(R) by [20, Lemma 2.3]. Hence, d(a, bx) ≥ 2
in (ZT (R))c. The above arguments show that e(a) ≥ 2 in (ZT (R))c for each a ∈ Z(R)∗.
Therefore, r((ZT (R))c) ≥ 2 and so, diam((ZT (R))c) = r((ZT (R))c) = 2.

As nil(R1) ∩ R = nil(R) and nil(R) /∈ A(R), it follows from Lemma 2.2 that nil(R1) /∈
A(R1). Hence, it follows that diam((ZT (R1))c) = r((ZT (R1))c) = 2.

The following lemma is needed in the proof of Proposition 2.10.

Lemma 2.9. If a ring R admits a nonzero element x which belongs to more than one member of
MNP (R), then there exists a ∈ Z(R)∗\{x} such that x and a are not adjacent in (ZT (R))c.

Proof. By hypothesis, we can find distinct p1, p2 ∈ MNP (R) such that x ∈ (
⋂2

i=1 pi)\{0}.
Since distinct members of MNP (R) are not comparable under inclusion, there exist a1 ∈ p1\p2
and a2 ∈ p2\p1. Thus |Z(R)∗| ≥ 2. As Γ(R) is connected by [6, Theorem 2.3], there exists
y ∈ Z(R)∗\{x} such that xy = 0. If y ∈ pi for some i ∈ {1, 2}, then x + y ∈ pi ⊂ Z(R).
Hence, x and y are not adjacent in (ZT (R))c. If y /∈

⋃2
i=1 pi, then as a1y /∈ p2 and x ∈

⋂2
i=1 pi,

it follows that x ̸= a1y. From x (a1y) = 0 and x+ a1y ∈ p1 ⊂ Z(R), we obtain that x and a1y
are not adjacent in (ZT (R))c.

Proposition 2.10. If R is a ring such that |MNP (R)| ≥ 3, then (ZT (R))c and (ZT (R1))c are
connected with diam((ZT (R))c) = diam((ZT (R1))c) = 2, r((ZT (R))c) ≤ 2, and (ZT (R1))c

has radius at most 2.

Proof. Let a, b ∈ Z(R)∗ be distinct. Observe that there exist p, p′ ∈ MNP (R) such that
((0) :R a) ⊆ p and ((0) :R b) ⊆ p′. As |MNP (R)| ≥ 3 by hypothesis, there exists p′′ ∈
MNP (R) such that p′′ ⊈ p ∪ p′. Hence, p′′ ⊈ ((0) :R a) ∪ ((0) :R b). It follows from Lemma
2.1 that there exists a path of length at most two between a and b in (ZT (R))c. This shows that
(ZT (R))c is connected and diam((ZT (R))c) ≤ 2. If p1, p2 are distinct members of MNP (R),
then it is clear that

⋂2
i=1 pi ̸= (0). Hence, we obtain from Lemma 2.9 that diam((ZT (R))c) ≥ 2

and so, diam((ZT (R))c) = 2. Hence, r((ZT (R))c) ≤ 2.
Note that Z(R1) ∩ R = Z(R). From |MNP (R)| ≥ 3, it follows that |MNP (R1)| ≥ 3.

Hence, (ZT (R1))c is connected with diam((ZT (R1))c) = 2 and r((ZT (R1))c) ≤ 2.



1200 S. Visweswaran and Hiren D. Patel

3 Some results on the connectedness of (ZT (R))c and (ZT (R1))
c in the

case |MNP (R)| = 1

Let R be a ring such that |MNP (R)| = 1. With R1 = R[X] or R[[X]], the aim of this section
is to study whether (ZT (R))c is connected implies that (ZT (R1))c is connected and vice versa
and to determine the relationship between their diameters (respectively, radii) in the case when
both the graphs are connected. We begin with the following theorem.

Theorem 3.1. For a ring R with |Z(R)∗| ≥ 2 and MNP (R) = {p}, the following statements
are equivalent:
(1) (ZT (R))c is connected;
(2) (ZT (R[X]))c is connected.

Moreover, if (1) holds, then diam((ZT (R))c) = r((ZT (R))c) = diam((ZT (R[X]))c) = 2
and r((ZT (R[X]))c) ≤ 2.

Proof. (1) ⇒ (2). Assume that (ZT (R))c is connected. Then by Proposition 2.7(2), p /∈ A(R)
and by Proposition 2.7(3), we obtain that (ZT (R[X]))c is connected with diam((ZT (R))c) =
r((ZT (R))c) = diam((ZT (R[X]))c) = 2 and r((ZT (R[X]))c) ≤ 2.
(2) ⇒ (1). Assume that (ZT (R[X]))c is connected. Observe that Z(R[X]) ⊆ Z(R)[X] by
McCoy’s Theorem [23, Theorem 2]. As Z(R) = p, it follows that Z(R[X]) ⊆ p[X]. We
consider the following cases.
Case(i). Z(R[X]) = p[X].

In this case, MNP (R[X]) = {p[X]} and hence, p[X] /∈ A(R[X]) by Proposition 2.7(2) and
so, p /∈ A(R).
Case(ii). Z(R[X]) ⊂ p[X].

In this case, there exists f(X) =
∑n

i=0 piX
i ∈ p[X]\Z(R[X]). Hence, there exists no

r ∈ R\{0} such that (
∑n

i=0 Rpi)r = (0). Therefore, p /∈ A(R).
Thus p /∈ A(R) and so, (ZT (R))c is connected by Proposition 2.7(2).
Assume that (1) holds. The assertion stated in the moreover part is already noted in the proof

of (1) ⇒ (2) of this theorem.

The following lemma and Corollary 3.3 are needed for illustrating that (2) ⇒ (1) of Theorem
3.1 can fail to hold for power series ring (see Example 3.5).

Lemma 3.2. For a ring A with nil(A) ∈ Spec(A), (ZT (A))c = (Γ(A))c and (ZT (A[X]))c =
(Γ(A[X]))c.

Proof. If x, y ∈ Z(A)∗ are such that x+ y /∈ Z(A), then x, y /∈ nil(A) by [20, Lemma 2.3]. As
nil(A) ∈ Spec(A) by hypothesis, xy /∈ nil(A) and so, xy ̸= 0. Hence, (ZT (A))c = (Γ(A))c by
Remark 2.4.

As nil(A) ∈ Spec(A), nil(A)[X] ∈ Spec(A[X]) by [7, Exercise 7(ii), page 55]. Hence,
nil(A[X]) ∈ Spec(A[X]), since nil(A[X]) = nil(A)[X] by [7, Exercise 2(ii), page 11]. It now
follows as in the previous paragraph that (ZT (A[X]))c = (Γ(A[X]))c.

Corollary 3.3. If A is a ring with nil(A) ∈ Spec(A) and is nilpotent, then (ZT (A[[X]]))c =
(Γ(A[[X]]))c.

Proof. Note that nil(A[[X]]) ⊆ nil(A)[[X]] by [7, Exercise 5(ii), page 11]. By hypothesis, there
exists n ∈ N such that (nil(A))n = (0). If f(X) ∈ nil(A)[[X]], then it is clear that f(X)n = 0
and so, f(X) ∈ nil(A[[X]]). Therefore, nil(A)[[X]] ⊆ nil(A[[X]]) and so, nil(A[[X]]) =
nil(A)[[X]]. Since nil(A) ∈ Spec(A) by hypothesis, nil(A)[[X]] ∈ Spec(A[[X]]) by [22, see
page 5]. Therefore, nil(A[[X]]) ∈ Spec(A[[X]]) and hence, (ZT (A[[X]]))c = (Γ(A[[X]]))c by
Lemma 3.2.

The following example illustrates that the converse of the assertion mentioned in Remark 2.5
can fail to hold.

Example 3.4. Consider distinct prime numbers p, q and the Z-module M = Z
pqZ . If A = Z(+)M

is the ring obtained by using Nagata’s principle of idealization, then (ZT (A))c = (Γ(A))c but
|MNP (A)| > 1.
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Proof. Note that ((0)(+)M)2 = (0)(+)(0+pqZ) and nil(A) = (0)(+)M is nilpotent. Observe
that A

nil(A)
∼= Z as rings and so, nil(A) ∈ Spec(A). Hence, (ZT (A))c = (Γ(A))c by Lemma

3.2. It is not hard to verify that (p, 0 + pqZ), (q, 0 + pqZ) ∈ Z(A) but (p+ q, 0 + pqZ) /∈ Z(A)
and so, Z(A) is not an ideal of A. Therefore, |MNP (A)| > 1.

Example 3.5. If p denotes the height one prime ideal of a rank 2 discrete valuation domain
(V,m), then for any p ∈ p\{0}, the ring R = V

V p is such that |MNP (R)| = 1, (ZT (R[[X]]))c is
connected with diam((ZT (R[[X]]))c) = r((ZT (R[[X]]))c) = 2 but (ZT (R))c is not connected.

Proof. Since (V,m) is a rank 2 discrete valuation domain, it follows that m ̸= m2 and for any
m ∈ m\m2, m = V m. By assumption, p ∈ p\{0}, where p is the height one prime ideal of V . It
is convenient to denote V p by I . Observe that R = V

I is quasi-local with m
I as its unique maximal

ideal and m
I = R(m + I). Since the ideals of V are comparable under inclusion, the ideals of

R are comparable under inclusion and so, |MNP (R)| = 1. We prove that MNP (R) = {m
I }.

As m /∈ I = V p, there exists v ∈ m such that p = mv. Since V is an integral domain and m ∈
NU(V ), it follows that v /∈ I . Thus (m+I)(v+I) = p+I = 0+I . Therefore, m

I ⊆ Z(R) ⊆ m
I

and so, Z(R) = m
I . Hence, MNP (R) = {m

I }. Therefore, (ZT (R))c = (Γ(R))c by Proposition
2.7(1). Note that for each i ∈ N,mi + I ∈ Z(R)\{0 + I} and 1 − mi + I ∈ U(R). Hence,
mi + I ̸= mj + I for all distinct i, j ∈ N. Therefore, Z(R) is infinite. As m

I ∈ A(R), we obtain
from Proposition 2.7(2) that (ZT (R))c is not connected.

Since p is the height one prime ideal of the rank 2 discrete valuation domain V , it follows
that p ̸= p2. As

⋂∞
n=1 p

n ∈ Spec(V ) by [13, Theorem 17.1(3)], we get that
⋂∞

n=1 p
n = (0).

Hence, p /∈ pk for some k ≥ 2 and so, pk ⊂ V p = I . Therefore, (pI )
k = (0 + I). This proves

that p
I ⊆ nil(R). Observe that nil(R) ⊆ p

I , since p
I ∈ Spec(R) and so, nil(R) = p

I . Thus
nil(R) ∈ Spec(R) and is nilpotent. Hence, (ZT (R[[X]]))c = (Γ(R[[X]]))c by Corollary 3.3.
As nil(R) is a divided prime ideal of R and for any i ∈ N,mi + I ∈ Z(R)\nil(R), fi(X) =
(mi + I)+X ∈ Z(R[[X]]) by [20, Theorem 5.7]. Hence, there exists Pi ∈ MNP (R[[X]]) such
that fi(X) ∈ Pi. We claim that Pi ̸= Pj for any distinct i, j ∈ N. We can assume without loss
of generality that i < j. If Pi = Pj , then fi(X)− fj(X) = (mi + I)(1−mj−i + I) ∈ Pi. This
implies that mi+I ∈ Pi, since 1−mj−i+I ∈ U(R). Hence, X = fi(X)−(mi + I) ∈ Pi. This
is impossible, since X /∈ Z(R[[X]]) but any element of Pi belongs to Z(R[[X]]). Therefore,
Pi ̸= Pj . This shows that MNP (R[[X]]) is infinite. Hence, (ZT (R[[X]]))c is connected with
diam((ZT (R[[X]]))c) = 2 by Proposition 2.10. As ZT (R[[X]]) = Γ(R[[X]]) is connected by
[6, Theorem 2.3], Lemma 2.6 implies that r((ZT (R[[X]]))c) ≥ 2 and so, r((ZT (R[[X]]))c) =
2.

In the following proposition, we provide a sufficient condition under which (2) ⇒ (1) of
Theorem 3.1 holds for power series ring.

Proposition 3.6. Let R be a ring such that Z(R) = nil(R). If (ZT (R[[X]]))c is connected,
then (ZT (R))c is connected and diam((ZT (R))c) = r((ZT (R))c) = diam((ZT (R1))c) =
r((ZT (R1))c) = 2.

Proof. Assume that Z(R) = nil(R) and (ZT (R[[X]]))c is connected. Thus Z(R) is an ideal
of R and it is necessarily a prime ideal of R. It is convenient to denote Z(R) by p. Hence,
MNP (R) = {p}. By [12, Theorem 3], it follows that Z(R[[X]]) ⊆ Z(R)[[X]] = p[[X]]. We
consider the following cases.
Case(i). Z(R[[X]]) = p[[X]].

It follows as in Case (i) of the proof of Theorem 3.1 that p[[X]] /∈ A(R[[X]]) and so, p /∈
A(R).
Case(ii). Z(R[[X]]) ⊂ p[[X]].

Hence, there exists f(X) =
∑∞

i=0 piX
i ∈ p[[X]]\Z(R[[X]]). Therefore,

∑∞
i=0 Rpi /∈ A(R)

and so, p /∈ A(R).
Thus p /∈ A(R). Hence, by Proposition 2.7, (ZT (R))c = (Γ(R))c is connected with

diam((ZT (R))c) = r((ZT (R))c) = 2. As nil(R) /∈ A(R), it follows that diam((ZT (R1))c) =
r((ZT (R1))c) = 2 by Proposition 2.8.

The following example provides a quasi-local non-reduced ring R with Z(R) = nil(R) /∈
A(R).
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Example 3.7. If (V,m) is a rank one non-discrete valuation domain, then for any m ∈ m\{0},
R = V

Vm is a quasi-local non-reduced ring with Z(R) = nil(R) /∈ A(R).

Proof. Since V is quasi-local with m as its unique maximal ideal, it follows that R is quasi-local
with m

Vm as its unique maximal ideal. As V is a rank one non-discrete valuation domain, m is not
finitely generated and so, m = m2. From Spec(V ) = {(0),m}, it follows that Spec(R) = { m

Vm}.
Hence, nil(R) = m

Vm by [7, Proposition 1.8]. Since the ideals of R are comparable under
inclusion, Z(R) is an ideal of R and so, Z(R) ∈ Spec(R). Therefore, Z(R) = nil(R) = m

Vm .
If m

Vm ∈ A(R), then there exists x ∈ V \V m such that xm ⊆ V m. As x /∈ V m, there exists
m′ ∈ m such that m = xm′. Hence, xm ⊆ V xm′. This implies that m ⊆ V m′ ⊆ m and so,
m = V m′. This is impossible and so, nil(R) /∈ A(R).

In the following example, we provide a quasi-local reduced ring R due to Gilmer and Heinzer
(see [15, Example, page 16]) to illustrate that r((ZT (R[[X]]))c) < r((ZT (R))c) can happen.

Example 3.8. Let {Xi}∞i=1 be a set of indeterminates and let D =
⋃∞

n=1 K[[X1, . . . , Xn]], where
for each n ∈ N,K[[X1, . . . , Xn]] is the power series ring in X1, . . . , Xn over a field K. If I is
the ideal of D generated by {XiXj | i, j ∈ N, i ̸= j}, then R = D

I is a quasi-local reduced ring
with |MNP (R)| = 1 and has the following properties:
(1) (ZT (R))c = (Γ(R))c is connected with diam((ZT (R))c) = r((ZT (R))c) = 2.
(2) (ZT (R[X]))c = (Γ(R[X]))c is connected with diam((ZT (R[X]))c) = r((ZT (R[X]))c) =
2.
(3) (ZT (R[[X]]))c and (Γ(R[[X]]))c are both connected and both have diameter equal to 2,
r((Γ(R[[X]]))c) = 2 but r((ZT (R[[X]]))c) = 1.

Proof. For each i ∈ N, it is convenient to denote Xi + I by xi. It was already noted in [15,
Example, page 16] that R is a quasi-local reduced ring with m =

∑∞
n=1 Rxn as its unique

maximal ideal and Min(R) = {pi}∞i=1, where for each i ∈ N, pi is the ideal of R generated by
{xj | j ∈ N\{i}}. Since R is reduced, it follows from [7, Proposition 1.8] and [19, Theorem
10] that

⋂∞
i=1 pi = (0 + I). It is clear that xi ̸= 0 + I for each i ∈ N but for all distinct

i, j ∈ N, xixj = 0 + I . If m ∈ m, then m ∈
∑n

i=1 Rxi for some n ∈ N. Hence, mxn+1 = 0 + I .
This shows that m ⊆ Z(R) ⊆ m and so, Z(R) = m. Therefore, |MNP (R)| = 1. Since R is
reduced, it follows that m /∈ A(R).
(1) As MNP (R) = {m} and m /∈ A(R), it follows from Proposition 2.7 that (ZT (R))c =
(Γ(R))c is connected with diam((ZT (R))c) = r((ZT (R))c) = 2.
(2) We claim that Z(R[X]) = m[X]. If f(X) ∈ Z(R[X]), then f(X) ∈ Z(R)[X] by [23,
Theorem 2]. Hence, Z(R[X]) ⊆ Z(R)[X] = m[X]. If f(X) ∈ m[X], then Af is a finitely
generated ideal of R with Af ⊂ m. Hence, there exists n ∈ N such that Af ⊆

∑n
j=1 Rxj . Hence,

Afxn+1 ⊆ (
∑n

j=1 Rxj)xn+1 = (0 + I) and so, Afxn+1 = (0 + I). As xn+1 ̸= 0 + I , it follows
that f(X) ∈ Z(R[X]). This shows that m[X] ⊆ Z(R[X]) and therefore, Z(R[X]) = m[X].
Thus MNP (R[X]) = {m[X]} and as R[X] is reduced, m[X] /∈ A(R[X]). It now follows as
in the proof of (1) that (ZT (R[X]))c = (Γ(R[X]))c is connected with diam((ZT (R[X]))c) =
r((ZT (R[X]))c) = 2.
(3) As m /∈ A(R), the proof of Proposition 2.3 shows that both (Γ(R[[X]]))c and (ZT (R[[X]]))c

are connected with diam((Γ(R[[X]]))c) ≤ 2. By Proposition 2.7(3), diam((ZT (R[[X]]))c) = 2
and so, diam((Γ(R[[X]]))c) = 2. Since Γ(R[[X]]) is connected by [6, Theorem 2.3], we obtain
from Lemma 2.6 that r((Γ(R[[X]]))c) ≥ 2 and so, r((Γ(R[[X]]))c) = 2.

We next verify that r((ZT (R[[X]]))c) = 1. We claim that e(f(X)) = 1 in (ZT (R[[X]]))c,
where f(X) =

∑∞
j=1 xj+1X

j . Consider any g(X) =
∑∞

k=0 rkX
k ∈ Z(R[[X]])∗\{f(X)}. If

f(X) and g(X) are not adjacent in (ZT (R[[X]]))c, then f(X)g(X) = 0+I and f(X)+g(X) ∈
Z(R[[X]]). For any j ∈ N, xj+1 /∈ pj+1 and so, f(X) /∈ pj+1[[X]]. Since pj+1 ∈ Spec(R),
pj+1[[X]] ∈ Spec(R[[X]]) by [22, see page 5]. Hence, f(X)g(X) = 0 + I ∈ pj+1[[X]] implies
that g(X) ∈ pj+1[[X]]. Therefore, g(X) ∈

⋂∞
j=1 pj+1[[X]] = (

⋂∞
j=1 pj+1)[[X]]. Hence, rk ∈⋂∞

j=1 pj+1 for each k ∈ N ∪ {0}. As f(X) + g(X) ∈ Z(R[[X]]) by assumption, there exists r ∈
R\{0+I} such that (f(X)+g(X))r = 0+I by [14, Proposition 3.5]. Hence, r0r = 0+I and for
each j ≥ 1, (xj+1 + rj)r = 0 + I . This implies that xj+1r = −rjr ∈ pj+1. From xj+1 /∈ pj+1,
we obtain that r ∈ pj+1. Thus r ∈

⋂∞
j=1 pj+1. Since

⋂∞
j=1 pj = (0 + I) and r ̸= 0 + I , it

follows that r /∈ p1. From r0r = 0 + I and r /∈ p1, it follows that r0 ∈ p1 and so, r0 = 0 + I .
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Since g(X) ̸= 0 + I , it is possible to find k ∈ N least with the property that rk ̸= 0 + I .
Thus rk /∈ p1. As (f(X) + g(X))r = 0 + I , we obtain that (xk+1 + rk) r = 0 + I . Hence,
rkr = −xk+1r ∈ p1. This is impossible, since r, rk /∈ p1. Therefore, either f(X)g(X) ̸= 0 + I
or f(X) + g(X) /∈ Z(R[[X]]). Hence, f(X) and g(X) are adjacent in (ZT (R[[X]]))c. This
proves that e(f(X)) = 1 in (ZT (R[[X]]))c and so, r ((ZT (R[[X]]))c) = 1.

4 Some results on the connectedness of (ZT (R))c and (ZT (R1))
c in the

case |MNP (R)| ≥ 2

Throughout this section, unless otherwise specified, we consider rings R with |MNP (R)| ≥ 2.
Let R1 = R[X] or R[[X]]. The aim of this section is to study whether (ZT (R))c is connected
implies that (ZT (R1))c is connected and vice versa and to determine the relationship between
their diameters (respectively, radii) in the case when both the graphs are connected. In view
of Proposition 2.10 (where such a study is done in the case |MNP (R)| ≥ 3), we assume that
MNP (R) = {pi | i ∈ {1, 2}}. If pi /∈ A(R) for some i ∈ {1, 2}, then for such a study, one
can refer Proposition 2.3 and Lemma 2.9. Hence, in the discussion to follow, we assume that
pi ∈ A(R) for each i ∈ {1, 2}. We begin with the following lemma.

Lemma 4.1. For a ring R with MNP (R) = {pi | i ∈ {1, 2}}, if
⋂2

i=1 pi = (0), then (ZT (R))c

is complete.

Proof. Note that Z(R) =
⋃2

i=1 pi and Z(R)∗ =
⋃2

i=1 Vi, where V1 = p1\p2 and V2 = p2\p1.
Observe that Vi ̸= ∅ for each i ∈ {1, 2} and

⋂2
i=1 Vi = ∅. Let a, b ∈ Z(R)∗ be distinct. If

a, b ∈ V1, then ab /∈ p2 and so, ab ̸= 0. Similarly, if a, b ∈ V2, then ab /∈ p1 and so, ab ̸= 0. If a
and b do not belong to the same Vi, then without loss of generality, we can assume that a ∈ V1

and b ∈ V2. Then a + b /∈
⋃2

i=1 pi = Z(R). This shows that a and b are adjacent in (ZT (R))c

for all distinct a, b ∈ Z(R)∗ and hence, (ZT (R))c is complete.

We use the following lemma in the proof of Theorem 4.3.

Lemma 4.2. If a graph G = (V,E) is complete, then for any non-empty subset W of V , the
subgraph H of G induced by W is also complete.

Proof. Let a, b ∈ W be distinct. As G is complete, a and b are adjacent in G and so, a and b are
adjacent in H . Therefore, H is complete.

Theorem 4.3. For a ring R, the following statements are equivalent:
(1) (ZT (R))c is complete;
(2) |MNP (R)| = 2 and

⋂2
i=1 pi = (0), where MNP (R) = {pi | i ∈ {1, 2}};

(3) (ZT (R1))c is complete.

Proof. (1) ⇒ (2). Assume that (ZT (R))c is complete. It follows from Propositions 2.7 and
2.10 that |MNP (R)| = 2. If MNP (R) = {pi | i ∈ {1, 2}}, then

⋂2
i=1 pi = (0) by Lemma 2.9.

(2) ⇒ (3). Assume that
⋂2

i=1 pi = (0), where MNP (R) = {pi | i ∈ {1, 2}}. For i ∈
{1, 2}, it follows from [7, Exercise 7(ii), page 55] (respectively, [22, see page 5]) that pi[X] ∈
Spec(R[X]) (respectively, pi[[X]] ∈ Spec(R[[X]])). Note that

⋂2
i=1 pi[X] = (0) (respectively,⋂2

i=1 pi[[X]] = (0)). Hence, it follows that Z(R[X]) =
⋃2

i=1 pi[X] (respectively, Z(R[[X]]) =⋃2
i=1 pi[[X]]). As Z(R1) ∩ R = Z(R) and Z(R) is not an ideal of R, we get that Z(R1) is

not an ideal of R1 and so, |MNP (R1)| ≥ 2. It follows from the above given arguments that
MNP (R[X]) = {pi[X] | i ∈ {1, 2}} and MNP (R[[X]]) = {pi[[X]] | i ∈ {1, 2}}. Hence,
(ZT (R1))c is complete by Lemma 4.1.
(3) ⇒ (1). Assume that (ZT (R1))c is complete. As (ZT (R))c is the subgraph of (ZT (R1))c

induced by Z(R)∗, (ZT (R))c is complete by Lemma 4.2.

The following remark and Lemma 4.5 are needed in the proof of Proposition 4.6.

Remark 4.4. For a ring A, if p ∈ MNP (A) satisfies p ⊆ ((0) :A a) for some a ∈ A\{0}, then
p = ((0) :A a).
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Lemma 4.5. If R is a ring with MNP (R) = {pi | i ∈ {1, 2}},
⋂2

i=1 pi ̸= (0), p1 = ((0) :R a),
and p2 = ((0) :R b) for some a, b ∈ R\{0}, then a ̸= b, ab = 0, a+ b ∈ Z(R), and either a2 = 0
or b2 = 0.

Proof. As p1 ̸= p2, it follows that a ̸= b and ab = 0 by [10, Lemma 3.6]. This implies that
a ∈ p2 and b ∈ p1. If x ∈ (

⋂2
i=1 pi)\{0}, then (a + b)x = 0 and so, a + b ∈ Z(R). From

Z(R) =
⋃2

i=1 pi, we get that a+ b ∈ pi for some i ∈ {1, 2}. If a+ b ∈ p1, then a ∈ p1 and so,
a2 = 0. If a+ b ∈ p2, then b ∈ p2 and hence, b2 = 0.

Proposition 4.6. If R is a ring with MNP (R) = {pi | i ∈ {1, 2}},
⋂2

i=1 pi ̸= (0), and pi ∈ A(R)
for each i ∈ {1, 2}, then (ZT (R))c is connected and diam((ZT (R))c) ∈ {2, 3}.

Proof. Let a, b ∈ Z(R)∗ be distinct. If pi ̸⊆ ((0) :R a) ∪ ((0) :R b) for some i ∈ {1, 2}, then it
follows from the proof of Lemma 2.1 that there exists a path of length at most two between a and
b in (Γ(R))c and hence, in (ZT (R))c. If pi ⊆ ((0) :R a)∪ ((0) :R b) for each i ∈ {1, 2}, then by
Remark 4.4, one between p1 and p2 equals ((0) :R a) and the other equals ((0) :R b). Without
loss of generality, we can assume that p1 = ((0) :R a) and p2 = ((0) :R b). Then a ̸= b, ab = 0,
a + b ∈ Z(R), and either a2 = 0 or b2 = 0 by Lemma 4.5. Hence, a and b are not adjacent in
(ZT (R))c. It is convenient to proceed the proof with the following cases.
Case (1). Either a2 = 0 or b2 = 0 but not both.

If a2 = 0 but b2 ̸= 0, then a ∈
⋂2

i=1 pi and b ∈ p1\p2. If d ∈ p2\p1, then ad ̸= 0 and
d+ b /∈ Z(R). Hence, a− d− b is a path of length two between a and b in (ZT (R))c. If a2 ̸= 0
but b2 = 0, then for any c ∈ p1\p2, a−c−b is a path of length two between a and b in (ZT (R))c.
Case (2). a2 = b2 = 0.

Note that a, b ∈
⋂2

i=1 pi. If c ∈ p1\p2 and d ∈ p2\p1, then c + d /∈ Z(R). As ad ̸= 0 and
cb ̸= 0, a−d−c−b is a path of length three between a and b in (ZT (R))c. In this case, we verify
that there exists no path of length two between a and b in (ZT (R))c. Let y ∈ Z(R)∗ be such that
a and y are adjacent in (ZT (R))c. Note that ay ̸= 0, since a + y ∈ Z(R). Hence, y ∈ p2\p1.
Therefore, yb = 0 and as y + b ∈ Z(R), we get that y and b are not adjacent in (ZT (R))c. This
shows that there exists no path of length two between a and b in (ZT (R))c.

This proves that (ZT (R))c is connected and diam((ZT (R))c) ≤ 3. As diam((ZT (R))c) ≥
2 by Lemma 2.9, diam((ZT (R))c) ∈ {2, 3}.

We deduce Corollaries 4.7 and 4.8 from the proof of the previous proposition.

Corollary 4.7. If R is a ring with MNP (R) = {p1, p2},
⋂2

i=1 pi ̸= (0), p1 = ((0) :R a) and
p2 = ((0) :R b) for some a, b ∈ R\{0}, then the following statements are equivalent:
(1) diam((ZT (R))c) = 2;
(2) Either a2 = 0 or b2 = 0 but not both;
(3) r((ZT (R))c) = 1.

Proof. By Lemma 4.5, ab = 0, a+ b ∈ Z(R), and either a2 = 0 or b2 = 0. Observe that a and b
are not adjacent in (ZT (R))c.
(1) ⇒ (2). Assume that diam((ZT (R))c) = 2. If a2 = 0 = b2, then by the proof of case (2)
of Proposition 4.6, there exists no path of length two between a and b in (ZT (R))c. Therefore,
either a2 = 0 or b2 = 0 but not both.
(2) ⇒ (3). Assume that either a2 = 0 or b2 = 0 but not both. Without loss of generality, we
can assume that a2 = 0 but b2 ̸= 0. Then by the proof of case (1) of Proposition 4.6, for any
d ∈ p2\p1, ad ̸= 0 and d+ b /∈ Z(R). Let y ∈ Z(R)∗\{d}. If dy ̸= 0, then d and y are adjacent
in (ZT (R))c. If dy = 0, then by ̸= 0 and so, y ∈ p1\p2 and so, d+ y /∈ Z(R). Hence, d and y
are adjacent in (ZT (R))c. This shows that e(d) = 1 in (ZT (R))c and so, r((ZT (R))c) = 1.
(3) ⇒ (1). Assume that r((ZT (R))c) = 1. Then diam((ZT (R))c) ≤ 2. By Proposition 4.6,
diam((ZT (R))c) ≥ 2 and so, diam((ZT (R))c) = 2.

Corollary 4.8. If R, p1, p2 and a, b are as in the statement of Corollary 4.7, then the following
statements are equivalent:
(1) diam((ZT (R))c) = 3;
(2) a2 = b2 = 0;
(3) r((ZT (R))c) = 2.



ON (ZT (R[X]))c AND (ZT (R[[X]]))c 1205

Proof. By Lemma 4.5, ab = 0, a+ b ∈ Z(R), and either a2 = 0 or b2 = 0. Observe that a and b
are not adjacent in (ZT (R))c. By Proposition 4.6, diam((ZT (R))c) ∈ {2, 3}.
(1) ⇒ (2). Assume that diam((ZT (R))c) = 3. Then a2 = b2 = 0 by (2) ⇒ (1) of Corollary
4.7.
(2) ⇒ (3). Assume that a2 = b2 = 0. Then r((ZT (R))c) ≥ 2 by (3) ⇒ (2) of Corollary 4.7. If
c ∈ p1\p2 and d ∈ p2\p1, then c + d /∈ Z(R). Let y ∈ Z(R)∗\{c}. If c and y are not adjacent
in (ZT (R))c, then cy = 0 and c + y ∈ Z(R). Note that dy ̸= 0. Observe that c − d − y is a
path of length two between c and y in (ZT (R))c. This shows that e(c) = 2 in (ZT (R))c and so,
r((ZT (R))c) ≤ 2. Hence, r((ZT (R))c) = 2.
(3) ⇒ (1). Assume that r((ZT (R))c) = 2. Then diam((ZT (R))c) ≥ 3 by (1) ⇒ (3) of
Corollary 4.7 and so, diam((ZT (R))c) = 3.

An element e of a ring R is said to be idempotent if e = e2. An idempotent element e of R
is said to be non-trivial if e /∈ {0, 1}.

Remark 4.9. If R is a ring which admits a non-trivial idempotent element e, then e(1 − e) = 0
and e + 1 − e = 1 /∈ Z(R). Therefore, e and 1 − e are adjacent in (ZT (R))c but they are not
adjacent in (Γ(R))c. Hence, (ZT (R))c ̸= (Γ(R))c.

We provide the following example to illustrate Corollaries 4.7 and 4.8. For any n ∈ N\{1},
we denote the ring of integers modulo n by Zn.

Example 4.10. (1) If R = Z4×Z2, then R satisfies the hypotheses of Corollary 4.7, the statement
(2) of Corollary 4.7, and (ZT (R))c ̸= (Γ(R))c.
(2) If R = Z4 × Z4, then R satisfies the hypotheses of Corollary 4.8, the statement (2) of
Corollary 4.8, and (ZT (R))c ̸= (Γ(R))c.

Proof. (1) As R = Z4 × Z2, it follows that Z(R) = (Z(Z4) × Z2) ∪ (Z4 × Z(Z2)) = (2Z4 ×
Z2) ∪ (Z4 × (0)). If p1 = 2Z4 × Z2 and p2 = Z4 × (0), then Z(R) =

⋃2
i=1 pi. Hence,

MNP (R) = {pi | i ∈ {1, 2}}. Note that
⋂2

i=1 pi = 2Z4 × (0) ̸= (0) × (0). With a = (2, 0)
and b = (0, 1), it is clear that p1 = ((0) × (0) :R a) and p2 = ((0) × (0) :R b), a2 = (0, 0) but
b2 = b ̸= (0, 0). As (1, 0) is a non-trivial idempotent element of R, (ZT (R))c ̸= (Γ(R))c by
Remark 4.9.
(2) It follows as in the proof of (1) that Z(R) =

⋃2
i=1 pi, where p1 = 2Z4×Z4 and p2 = Z4×2Z4.

Thus MNP (R) = {pi | i ∈ {1, 2}}. Note that
⋂2

i=1 pi = 2Z4×2Z4 ̸= (0)×(0). With a = (2, 0)
and b = (0, 2), it is clear that p1 = ((0)× (0) :R a) and p2 = ((0)× (0) :R b), a2 = b2 = (0, 0).
As (1, 0) is a non-trivial idempotent element of R, (ZT (R))c ̸= (Γ(R))c by Remark 4.9.

If |MNP (R)| = 2, then it is clear from the above discussion that both (ZT (R))c and
(ZT (R1))c are connected and in Theorem 4.12, we determine the relationship between their
diameters. We use the following lemma in its proof.

Lemma 4.11. For a ring R with |MNP (R)| ≥ 2, if a ∈ Z(R)∗ satisfies e(a) = 1 in (ZT (R))c,
then e(a) = 1 in (ZT (R1))c.

Proof. Assume that e(a) = 1 in (ZT (R))c. Hence, a cannot belong to two distinct members
from MNP (R) by Lemma 2.9. Thus a ∈ p for a unique member p ∈ MNP (R). Note that
a ∈ Z(R1)∗, since Z(R)∗ ⊂ Z(R1)∗. Let f(X) ∈ Z(R1)∗\{a}. If af(X) ̸= 0, then a and
f(X) are adjacent in (ZT (R1))c. Suppose that af(X) = 0. If j ≥ 0 is least with the property
that the coefficient bj of Xj in f(X) is nonzero, then abj = 0. Let p′ ∈ MNP (R)\{p}. (Such
a p′ exists, since |MNP (R)| ≥ 2 by hypothesis.) From abj = 0 and a /∈ p′, it follows that
bj ∈ p′. It is clear that bj ∈ Z(R)∗ and a ̸= bj . As e(a) = 1 in (ZT (R))c, a and bj are adjacent
in (ZT (R))c and so, a + bj /∈ Z(R). From p ⊂ Z(R) and a ∈ p, we obtain that bj /∈ p. We
claim that a + f(X) /∈ Z(R1). If a + f(X) ∈ Z(R1), then there exists g(X) ∈ R1\{0} such
that (a+ f(X))g(X) = 0. For any non-negative integer m, let us denote the coefficient of Xm

in g(X) by cm. Let k ≥ 0 be least with the property that the coefficient ck of Xk in g(X) is
nonzero. If j = 0, then from (a+ bj)ck = 0, we get that a+ bj ∈ Z(R). This is a contradiction.
Therefore, j ≥ 1. Note that the coefficient of Xm in (a + f(X))g(X) equals 0 for all non-
negative integers m. The coefficient of Xk in (a+ f(X))g(X) equals ack and so, ack = 0. As a
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is not nilpotent, it follows that a ̸= ck. As ck ∈ Z(R)∗ and e(a) = 1 in (ZT (R))c, we get that a
and ck are adjacent in (ZT (R))c and so, a+ ck /∈ Z(R). From p ⊂ Z(R) and a ∈ p, we obtain
that ck /∈ p. Observe that the coefficient of Xk+j in (a+f(X))g(X) equals ack+j+bjck. Hence,
ack+j + bjck = 0. This implies that bjck = −ack+j ∈ p. This is impossible, since bj , ck /∈ p.
Therefore, a+ f(X) /∈ Z(R1). Hence, a and f(X) are adjacent in (ZT (R1))c. This shows that
e(a) = 1 in (ZT (R1))c.

Theorem 4.12. For a ring R with MNP (R) = {pi | i ∈ {1, 2}}, the following statements hold:
(1) diam((ZT (R))c) = 1 if and only if diam((ZT (R1))c) = 1.
(2) If diam((ZT (R))c) = 2, then diam((ZT (R1))c) = 2.
(3) If diam((ZT (R))c) = 3, then diam((ZT (R[X]))c) = 3.
(4) If diam((ZT (R))c) = 3 and if MNP (R[[X]]) = {pi[[X]] | i ∈ {1, 2}}, then (ZT (R[[X]]))c

also has diameter 3.
(5) If diam((ZT (R[X]))c) = 2, then diam((ZT (R))c) = 2.
(6) If diam((ZT (R1))c) = 3, then diam((ZT (R))c) = 3.

Proof. (1) This is clear, since (ZT (R))c is complete if and only if (ZT (R1))c is complete by
(1) ⇔ (3) of Theorem 4.3.
(2) Assume that diam((ZT (R))c) = 2.

If pi /∈ A(R) for some i ∈ {1, 2}, then diam((ZT (R1))c) ≤ 2 by Proposition 2.3 and
diam((ZT (R1))c) ≥ 2 by Lemma 2.9, since

⋂2
i=1 pi ̸= (0). Therefore, diam((ZT (R1))c) = 2.

Suppose that pi ∈ A(R) for each i ∈ {1, 2}. Then there exist a, b ∈ R\{0} such that
p1 = ((0) :R a) and p2 = ((0) :R b). As diam((ZT (R))c) = 2, we obtain that

⋂2
i=1 pi ̸= (0) by

(2) ⇒ (1) of Theorem 4.3. Note that r((ZT (R))c) = 1 by (1) ⇒ (3) of Corollary 4.7. Hence,
r((ZT (R1))c) = 1 by Lemma 4.11 and so, diam((ZT (R1))c) ≤ 2. Since diam((ZT (R1))c) ≥
2 by (3) ⇒ (1) of Theorem 4.3, it follows that diam((ZT (R1))c) = 2.
(3) and (4) Assume that diam((ZT (R))c) = 3. Then

⋂2
i=1 pi ̸= (0) by (2) ⇒ (1) of Theorem

4.3. Also, pi ∈ A(R) for each i ∈ {1, 2} by Proposition 2.3. Hence, there exist a, b ∈ R\{0} such
that p1 = ((0) :R a) and p2 = ((0) :R b). Note that a2 = b2 = 0 by (1) ⇒ (2) of Corollary 4.8.
It is clear that p1[X] = ((0) :R[X] a) and p2[X] = ((0) :R[X] b). Hence,

⋃2
i=1 pi[X] ⊆ Z(R[X]).

If f(X) ∈ Z(R[X]), then Af ⊆ Z(R) by [23, Theorem 2]. As Z(R) =
⋃2

i=1 pi, it follows that
Af ⊆ pi for some i ∈ {1, 2} and so, f(X) ∈ pi[X]. This shows that Z(R[X]) ⊆

⋃2
i=1 pi[X].

Hence, MNP (R[X]) = {pi[X] | i ∈ {1, 2}}. Observe that
⋂2

i=1 pi[X] = (
⋂2

i=1 pi)[X] ̸= (0),
since

⋂2
i=1 pi ̸= (0). Thus R[X] satisfies the hypotheses and the statement (2) of Corollary 4.8.

Hence, diam((ZT (R[X]))c) = 3 by (2) ⇒ (1) of Corollary 4.8.
Note that pi[[X]] ∈ Spec(R[[X]]) for each i ∈ {1, 2}, p1[[X]] = ((0) :R[[X]] a), and p2[[X]] =

((0) :R[[X]] b). From
⋂2

i=1 pi ̸= (0), it follows that
⋂2

i=1 pi[[X]] = (
⋂2

i=1 pi)[[X]] ̸= (0).
Assume that MNP (R[[X]]) = {pi[[X]] | i ∈ {1, 2}}. Thus R[[X]] satisfies the hypotheses and
the statement (2) of Corollary 4.8. Hence, diam((ZT (R[[X]]))c) = 3 by (2) ⇒ (1) of Corollary
4.8. This proves (3) and (4).
(5) If diam((ZT (R[X]))c) = 2, then diam((ZT (R))c) ≥ 2 by (1) and diam((ZT (R))c) ≤ 2
by (3). Therefore, diam((ZT (R))c) = 2. This proves (5).
(6) If diam((ZT (R1))c) = 3, then diam((ZT (R))c) ≥ 2 by (1) and diam((ZT (R))c) ≥ 3 by
(2). As diam((ZT (R))c) ≤ 3, it follows that diam((ZT (R))c) = 3. This proves (6).

The following example illustrates that the statement (4) of Theorem 4.12 can fail to hold if
the assumption MNP (R[[X]]) = {pi[[X]] | i ∈ {1, 2}} is omitted.

Example 4.13. If R is as in Example 3.5 and if A = R × R, then diam((ZT (A))c) = 3 but
diam((ZT (A[[X]]))c) = 2.

Proof. We use the same notations as in the proof of Example 3.5. It is already noted in the proof
of Example 3.5 that Z(R) = m

I is the unique maximal ideal of R. As Z(A) = (Z(R) × R) ∪
(R× Z(R)), it follows that MNP (A) = {p1 =

m
I ×R, p2 = R× m

I }. It is clear that
⋂2

i=1 pi ̸=
(0+ I)× (0+ I). It is already verified in the proof of Example 3.5 that m

I = ((0+ I) :R v+ I),
where v ∈ m is such that p = mv. Hence, p1 = ((0 + I) × (0 + I) :A (v + I, 0 + I)), p2 =
((0+I)×(0+I) :A (0+I, v+I)). It is convenient to denote (v+I, 0+I) by a and (0+I, v+I)
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by b. Note that a2 = b2 = (0 + I, 0 + I). Thus the ring A satisfies the hypotheses and the
statement (2) of Corollary 4.8. Hence, diam((ZT (A))c) = 3 by (2) ⇒ (1) of Corollary 4.8. It
is verified in the proof of Example 3.5 that MNP (R[[X]]) is infinite. Therefore, MNP (A[[X]])
is infinite, since A[[X]] ∼= R[[X]]×R[[X]] as rings. Hence, diam((ZT (A[[X]]))c) = 2 follows
by Proposition 2.10. This example also illustrates that the statement (5) of Theorem 4.12 can
fail to hold for power series ring.

In Example 4.15, we provide a ring R to illustrate the statement (4) of Theorem 4.12. We
use the following lemma in its verification.

Lemma 4.14. If (R,m) is a quasi-local ring with mn = (0) for some n ≥ 2, then Z(R[[X]]) =
m[[X]].

Proof. By hypothesis, R is quasi-local with m as its unique maximal ideal and mn = (0) for
some n ≥ 2. Hence, nil(R) = m = Z(R). As (m[[X]])n = (0), it follows that m[[X]] ⊆
Z(R[[X]]). Let f(X) =

∑∞
i=0 riX

i ∈ Z(R[[X]]). Then it is clear that r0 ∈ Z(R) = m. Let i ≥ 1
and assume it is shown that r0, . . . , ri−1 ∈ m. As

∑i−1
j=0 rjX

j is a nilpotent element of R[[X]],∑∞
k=i rkX

k = f(X) −
∑i−1

j=0 rjX
j ∈ Z(R[[X]]) by [20, Lemma 2.3]. Hence, ri ∈ Z(R) =

m. This shows that f(X) ∈ m[[X]]. Therefore, Z(R[[X]]) ⊆ m[[X]] and so, Z(R[[X]]) =
m[[X]].

Example 4.15. The ring R = Z4 × Z4 has the following properties: MNP (R) = {p1 =
2Z4 × Z4, p2 = Z4 × 2Z4}, MNP (R[[X]]) = {pi[[X]] | i ∈ {1, 2}}, diam((ZT (R))c) =
diam((ZT (R1))c) = 3 and r((ZT (R))c) = r((ZT (R1))c) = 2.

Proof. It is already noted in the proof of Example 4.10(2) that MNP (R) = {p1 = 2Z4 ×
Z4, p2 = Z4 × 2Z4},

⋂2
i=1 pi ̸= (0) × (0). p1 = (((0, 0)) :R a), p2 = (((0, 0)) :R b) with

a = (2, 0) and b = (0, 2), and a2 = b2 = (0, 0). Hence, R satisfies the hypotheses and the
statement (2) of Corollary 4.8 and hence, diam((ZT (R))c) = 3 by (2) ⇒ (1) of Corollary
4.8 and r((ZT (R))c) = 2 by (2) ⇒ (3) of Corollary 4.8. It is noted in the proof of Theorem
4.12(3) that MNP (R[X]) = {pi[X] | i ∈ {1, 2}} and R[X] satisfies the hypotheses and the
statement (2) of Corollary 4.8. Hence, diam((ZT (R[X]))c) = 3 and r((ZT (R[X]))c) = 2.
Observe that p1[[X]] = (((0, 0)) :R[[X]] a) and p2[[X]] = (((0, 0)) :R[[X]] b). It is clear that the

mapping ϕ : R[[X]] → Z4[[X]] × Z4[[X]] defined by ϕ(
∞∑
i=0

(ai, bi)Xi) = (
∞∑
i=0

aiX
i,

∞∑
i=0

biX
i)

is an isomorphism of rings. Note that Z4 is local with m = 2Z4 as its unique maximal ideal
and m2 = (0). Hence, Z(Z4[[X]]) = m[[X]] by Lemma 4.14. Observe that Z(Z4[[X]] ×
Z4[[X]]) = (Z(Z4[[X]])×Z4[[X]])∪(Z4[[X]]×Z(Z4[[X]])). Therefore, Z(Z4[[X]]×Z4[[X]]) =
(m[[X]] × Z4[[X]]) ∪ (Z4[[X]] × m[[X]]). Under the isomorphism ϕ, p1[[X]] is mapped onto
m[[X]] × Z4[[X]] and p2[[X]] is mapped onto Z4[[X]] × m[[X]]. As Z(Z4[[X]] × Z4[[X]]) =

(m[[X]] × Z4[[X]]) ∪ (Z4[[X]] × m[[X]]), it follows that Z(R[[X]]) =
⋃2

i=1 pi[[X]]. Hence,
MNP (R[[X]]) = {pi[[X]] | i ∈ {1, 2}}. Thus R[[X]] satisfies the hypotheses and the statement
(2) of Corollary 4.8. Hence, diam((ZT (R[[X]]))c) = 3 and r((ZT (R[[X]]))c) = 2.

For a ring R with |MNP (R)| ≥ 2, if r((ZT (R))c) = 1, then r((ZT (R1))c) = 1 by Lemma
4.11. The following example illustrates that the converse of the above implication can fail to
hold.

Example 4.16. With the ring R as in Example 3.8, the ring A = R × R has the following
properties: |MNP (A)| = 2, diam((ZT (A))c) = 2 = r((ZT (A))c), diam((ZT (A[X]))c) =
r((ZT (A[X]))c) = 2 = diam((ZT (A[[X]]))c) but r((ZT (A[[X]]))c) = 1.

Proof. We use the same notations as in the proof of Example 3.8. It is already noted there that R
is a quasi-local reduced ring with m as its unique maximal ideal, Z(R) = m, and m /∈ A(R). As
A = R×R, it follows that Z(A) = (Z(R)×R)∪(R×Z(R)), and so, Z(A) = (m×R)∪(R×m).
It is convenient to denote m × R by P1 and R × m by P2. It is clear that MNP (A) = {Pi |
i ∈ {1, 2}}. Note that

⋂2
i=1 Pi = m × m ̸= (0 + I) × (0 + I). As m /∈ A(R), it follows

that Pi /∈ A(R) for each i ∈ {1, 2}. It follows from Proposition 2.3 and Lemma 2.9 that
diam((ZT (A))c) = diam((ZT (A[X]))c) = diam((ZT (A[[X]]))c) = 2.
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We next verify that r((ZT (A))c) = 2. It is clear that r((ZT (A))c) ≤ 2. Let a ∈ Z(A)∗.
Either a = (m, r) or a = (r′,m′) for some m,m′ ∈ m and r, r′ ∈ R. Assume that a = (m, r). As
Z(R) = m, there exists m1 ∈ m\{0 + I} such that mm1 = 0 + I . Since R is reduced, m ̸= m1.
The element b = (m1, 0+ I) ∈ Z(A)∗ is such that b ̸= (0+ I, 0+ I), a ̸= b, ab = (0+ I, 0+ I),
and a+ b = (m+m1, r) ∈ Z(A). Hence, d(a, b) ≥ 2 in (ZT (A))c. If a = (r′,m′), then it can
be shown that there exists b′ ∈ Z(A)∗ with d(a, b′) ≥ 2 in (ZT (A))c. Thus for any a ∈ Z(A)∗,
e(a) ≥ 2 in (ZT (A))c and so, r((ZT (A))c) ≥ 2. Hence, diam((ZT (A))c) = r((ZT (A))c) =
2.

It is shown in the proof of Example 3.8(2) that Z(R[X]) = m[X]. Hence, Z(R[X]×R[X]) =
(m[X] × R[X]) ∪ (R[X] × m[X]). It is clear that A[X] ∼= R[X] × R[X] as rings. Therefore,
diam((ZT (R[X]×R[X]))c) = 2. Proceeding as in the previous paragraph, it can be shown that
r((ZT (R[X]×R[X]))c) = 2. Hence, diam((ZT (A[X]))c) = r((ZT (A[X]))c) = 2.

Since A[[X]] ∼= R[[X]] × R[[X]] as rings and diam((ZT (A[[X]]))c) = 2, it follows that
diam((ZT (R[[X]] × R[[X]]))c) = 2. We next verify that r((ZT (R[[X]] × R[[X]]))c) =
1. It is shown in the proof of Example 3.8(3) that e(f(X)) = 1 in (ZT (R[[X]]))c, where
f(X) =

∑∞
j=1 xj+1X

j . We claim that e((f(X), 1 + I)) = 1 in (ZT (R[[X]] × R[[X]]))c.
Let (g(X), h(X)) ∈ Z(R[[X]] × R[[X]])∗\{(f(X), 1 + I)}. If (f(X), 1 + I)(g(X), h(X)) =
(0 + I, 0 + I), then f(X)g(X) = 0 + I and h(X) = 0 + I . As f(X) ̸= 0 + I and R[[X]] is
reduced, it follows that g(X) ̸= f(X). From e(f(X)) = 1 in (ZT (R[[X]]))c, we obtain that
f(X) + g(X) /∈ Z(R[[X]]) and so, (f(X), 1 + I) + (g(X), 0 + I) = (f(X) + g(X), 1 + I) /∈
Z(R[[X]]×R[[X]]). This shows that e((f(X), 1 + I)) = 1 in (ZT (R[[X]]×R[[X]]))c. Hence,
r((ZT (R[[X]]×R[[X]]))c) = 1. Therefore, r((ZT (A[[X]]))c) = 1.

5 Some results on (ZT (R))c and (ZT (R1))
c, where R is von Neumann

regular

Throughout this section, unless otherwise specified, the rings R considered are von Neumann
regular which are not fields. We use R1 to denote either R[X] or R[[X]]. The aim of this section is
to discuss some results about the relationship between diam((ZT (R))c) and diam((ZT (R1))c)
(respectively, r((ZT (R))c) and r((ZT (R1))c)).

Recall that a ring R is said to be von Neumann regular if given a ∈ R, there exists b in R such
that a = a2b [13, Exercise 16, page 111]. If R is not a field, then for given a ∈ NU(R)\{0}, there
exists b ∈ R with a = a2b. Hence, ab = a2b2. Note that e = ab satisfies e = e2 and e /∈ {0, 1}.
Thus R admits a non-trivial idempotent and so, does R1. Hence, (ZT (R))c ̸= (Γ(R))c and
(ZT (R1))c ̸= (Γ(R1))c by Remark 4.9. A ring R is von Neumann regular if and only if R
is reduced and dimR = 0 by (a) ⇔ (d) of [13, Exercise 16, page 111]. Thus Spec(R) =
Max(R) = Min(R). If a ∈ NU(R), then a ∈ Z(R). Therefore, Spec(R) = MNP (R). As R
is reduced, it follows that

⋂
m∈Max(R)m = (0).

Proposition 5.1. For a von Neumann regular ring R, diam((ZT (R))c) = diam((ZT (R1))c) ∈
{1, 2}.

Proof. Assume that R is von Neumann regular. As R is not a field, it follows that |Max(R)| ≥ 2.
If Max(R) = {mi | i ∈ {1, 2}}, then

⋂2
i=1 mi = (0). Hence, diam((ZT (R))c) = 1 by Lemma

4.1 and hence, diam((ZT (R1))c) = 1 by (1) ⇒ (3) of Theorem 4.3. If |Max(R)| ≥ 3, then
diam((ZT (R))c) = diam((ZT (R1))c) = 2 by Proposition 2.10.

If R is von Neumann regular with r((ZT (R))c) = 1, then r((ZT (R1))c) = 1 by Lemma
4.11. In the following proposition, we characterize R such that r((ZT (R))c) = 2.

Proposition 5.2. For a von Neumann regular ring R, the following statements are equivalent:
(1) r((ZT (R))c) = 2;
(2) e(a) = 2 for each a ∈ Z(R)∗;
(3) If a is any nonzero non-unit of R, then a belongs to at least two maximal ideals of R.

Proof. (1) ⇒ (2). Let a ∈ Z(R)∗. Observe that e(a) ≥ 2 in (ZT (R))c, since r((ZT (R))c) = 2
by assumption. Note that e(a) ≤ 2 in (ZT (R))c by Proposition 5.1. Therefore, e(a) = 2 in
(ZT (R))c.
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(2) ⇒ (3). Let a ∈ NU(R)\{0}. As a ∈ Z(R)∗, e(a) = 2 in (ZT (R))c by assumption. Hence,
there exists b ∈ Z(R)∗\{a} such that ab = 0 and a+ b ∈ Z(R). Since

⋂
m∈Max(R)m = (0), it

follows that a /∈ m1 and b /∈ m2 for some m1,m2 ∈ Max(R). As ab = 0, it follows that a ∈ m2

and b ∈ m1. Thus a ∈ m2\m1 and b ∈ m1\m2. Hence, a+ b /∈
⋃2

i=1 mi. As a+ b ∈ Z(R), there
exists m3 ∈ Max(R) such that a+ b ∈ m3. It is clear that m3 /∈ {mi | i ∈ {1, 2}}. From ab = 0,
a+ b ∈ m3, we get that a2 ∈ m3, and so, a ∈ m3. Thus a belongs to at least two maximal ideals
of R.
(3) ⇒ (1). Assume that any nonzero non-unit of R belongs to at least two maximal ideals of R.
Let a ∈ Z(R)∗. Since Max(R) = MNP (R), e(a) ≥ 2 in (ZT (R))c by Lemma 2.9. Therefore,
r((ZT (R))c) ≥ 2. As r((ZT (R))c) ≤ 2 by Proposition 5.1, we obtain that r((ZT (R))c) =
2.

The following example illustrates Propositions 5.1 and 5.2.

Example 5.3. (1) Let n ≥ 3. If Fi is a field for each i ∈ {1, 2, 3, . . . , n}, then the ring R = F1 ×
F2 ×F3 ×· · ·×Fn is such that diam((ZT (R))c) = diam((ZT (R1))c) = 2 and r((ZT (R))c) =
r((ZT (R1))c) = 1.
(2) If Fi is a field for each i ∈ N, then the ring R =

∏∞
i=1 Fi is such that diam((ZT (R))c) =

diam((ZT (R1))c) = 2 and r((ZT (R))c) = r((ZT (R1))c) = 1.
(3) Let L be the field of algebraic numbers (that is, L is the algebraic closure of Q). If A
is the ring of all algebraic integers, then the ring R = A√

2A
is such that diam((ZT (R))c) =

diam((ZT (R1))c) = 2 and r((ZT (R))c) = 2.

Proof. If F is a field, then for any α ∈ F\{0}, α = α2β with β = α−1. Using this fact, it follows
that the ring R mentioned in (1) (respectively, in (2)) is von Neumann regular.
(1) By assumption, n ≥ 3. Note that |Max(R)| = n ≥ 3 and so, |MNP (R)| ≥ 3, since
Max(R) = MNP (R). Hence, diam((ZT (R))c) = diam((ZT (R1))c) = 2 by Proposition
2.10. Observe that m1 = (0)×F2 ×F3 × · · · ×Fn ∈ Max(R) and m1 = R(0, 1, 1, . . . , 1). Note
that a = (0, 1, 1, . . . , 1) ∈ Z(R)∗ and it belongs to a unique maximal ideal of R. Therefore,
r((ZT (R))c) = 1 by (1) ⇒ (3) of Proposition 5.2 and so, r((ZT (R1))c) = 1 by Lemma 4.11.
(2) Let i ∈ N. If fi is the element of R whose i-th coordinate is 0 and j-th coordinate is 1 for all
j ∈ N\{i}, then Rfi ∈ Max(R) and Rfi ̸= Rfj for all distinct i, j ∈ N. Hence, Max(R)
is infinite. As Max(R) = MNP (R), MNP (R) is infinite, and so, diam((ZT (R))c) =
diam((ZT (R1))c) = 2 by Proposition 2.10. Note that f1 ∈ Z(R)∗ and it belongs to only
one maximal ideal Rf1 of R. It now follows as in (1) that r((ZT (R))c) = r((ZT (R1))c) = 1.
(3) It is known that dimA = 1 and each nonzero non-unit of A belongs to uncountably many
maximal ideals of A [13, Proposition 42.8]. As

√
2A is a radical ideal of A, it follows that

R = A√
2A

is reduced. It is clear that dimR = 0. Therefore, R is von Neumann regular. Observe
that Max(R) is uncountable, since 2 belongs to uncountably many maximal ideals of A. Thus
MNP (R) = Max(R) is uncountable and so, diam((ZT (R))c) = diam((ZT (R1))c) = 2 by
Proposition 2.10. Let a ∈ A\

√
2A be such that a+

√
2A ∈ NU(R). Then Aa+ A2 ̸= A. Note

that Aa + A2 = Ac for some c ∈ NU(A), since A is a Bézout domain by [21, see page 86].
Since c belongs to uncountably many maximal ideals of A, a +

√
2A belongs to uncountably

many maximal ideals of R. Hence, r((ZT (R))c) = 2 by (3) ⇒ (1) of Proposition 5.2.

The proof of Proposition 5.7 needs the following lemmas.

Lemma 5.4. For a ring R, if m ∈ Max(R) is such that m[X] ⊆ Z(R[X]), then m[X] ∈
MNP (R[X]).

Proof. Note that S = R[X]\(Z(R[X])) is a m.c. subset of R[X] and by hypothesis, m[X]∩S =
∅. Hence, it follows from Zorn’s lemma and [19, Theorem 1] that there exists P ∈ MNP (R[X])
with m[X] ⊆ P. We claim that P = m[X]. If P ̸= m[X], then there exists f(X) ∈ P\m[X].
Let f(X) =

∑n
i=0 riX

i. Note that rj /∈ m for some j ∈ {0, . . . , n}, since f(X) /∈ m[X] by
assumption. As m ∈ Max(R) and rj /∈ m, there exist m ∈ m and r ∈ R such that m+ rrj = 1.
Observe that g(X) = mXj + rf(X) ∈ P ⊆ Z(R[X]). Hence, there exists s ∈ R\{0} such that
sg(X) = 0 by [23, Theorem 2]. Therefore, s(coefficient of Xj in g(X)) = 0. As the coefficient
of Xj in g(X) equals m+ rrj , it follows that s = s1 = s(m+ rrj) = 0. This is a contradiction.
Therefore, P = m[X] and so, m[X] ∈ MNP (R[X]).
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Lemma 5.5. If R is a von Neumann regular ring, then each finitely generated ideal of R is
principal and is generated by an idempotent element of R.

Proof. This is well known. We provide a proof for the sake of completeness. If r is a nonzero
non-unit of R, then there exist u ∈ U(R) and an idempotent element e of R with e /∈ {0, 1} such
that r = ue by (1) ⇒ (3) of [13, Exercise 29, page 113]. Hence, Rr = Re. For any idempotent
elements e, f of R, it is not hard to show that Re + Rf = R(e + f − ef) and e + f − ef is
an idempotent element of R. It is now clear that if I is any finitely generated ideal of R, then
I = Re for some idempotent element e ∈ I .

Lemma 5.6. If R is a von Neumann regular ring, then MNP (R[X]) = {m[X] | m ∈ Max(R)}.

Proof. By hypothesis, R is von Neumann regular. Note that Max(R) = MNP (R). Let m ∈
Max(R). If g(X) ∈ m[X]\{0}, then g(X) =

∑n
j=0 rjX

j with rj ∈ m for each j ∈ {0, . . . , n}.
Now,

∑n
j=0 Rrj = Re for some idempotent element e ∈ m\{0} by Lemma 5.5. Thus g(X) =

eg1(X) for some g1(X) ∈ R[X]. Note that 1 − e ̸= 0 and g(X)(1 − e) = 0. Hence, g(X) ∈
Z(R[X]). This shows that m[X] ⊆ Z(R[X]). Hence, m[X] ∈ MNP (R[X]) by Lemma 5.4.
Therefore, {m[X] | m ∈ Max(R)} ⊆ MNP (R[X]). If P ∈ MNP (R[X]), then P ∩ R = m
for some m ∈ Max(R), since dimR = 0. This implies that m[X] ⊆ P and so, P = m[X], since
m[X] ∈ MNP (R[X]). This proves that MNP (R[X]) ⊆ {m[X] | m ∈ Max(R)} and hence,
MNP (R[X]) = {m[X] | m ∈ Max(R)}.

Proposition 5.7. Let R be a von Neumann regular ring such that r((ZT (R))c) = 2. Then
r((ZT (R[X]))c) = 2.

Proof. Assume that r((ZT (R))c) = 2. Note that r((ZT (R[X]))c) ≤ 2 by Proposition 5.1. If
r((ZT (R[X]))c) = 1, then e(f(X)) = 1 in (ZT (R[X]))c for some f(X) ∈ Z(R[X])∗. Hence,
f(X) belongs to a unique member of MNP (R[X]) by Lemma 2.9. Therefore, f(X) ∈ m[X]
for some m ∈ Max(R) by Lemma 5.6. For any m′ ∈ Max(R)\{m}, f(X) /∈ m′[X]. Since Af

is a finitely generated ideal of the ring R with Af ⊆ m, there exists an idempotent element e ∈
m\{0, 1} such that Af = Re by Lemma 5.5. As f(X) /∈

⋃
m′∈Max(R)\{m}m

′[X], it follows that
e /∈

⋃
m′∈Max(R)\{m}m

′. Thus e belongs to a unique member of Max(R) and this is impossible
by (1) ⇒ (3) of Proposition 5.2. Therefore, r((ZT (R[X]))c) = 2.

For the von Neumann regular ring R considered in Example 5.3(3), r((ZT (R))c) = 2 and
so, r((ZT (R[X]))c) = 2 by Proposition 5.7. We do not know whether r((ZT (R[[X]]))c) = 2
or not.

For a von Neumann regular ring R, it is already noted in the beginning of this section that
(ZT (R))c ̸= (Γ(R))c. If R is a ring with dimR = 0, then in Proposition 5.11, we characterize
R such that (ZT (R))c = (Γ(R))c.

For a ring R, recall that the total quotient ring of R denoted by Tot(R) is defined as Tot(R) =
S−1R, where S = R\Z(R). We first state and prove some results that are needed in the proof of
Proposition 5.11.

Lemma 5.8. For a ring R, if x, y ∈ R\{0} are such that xy = 0 and x+ y = 1, then x and y are
non-trivial idempotent elements of R.

Proof. Assume that x, y ∈ R\{0} are such that xy = 0 and x + y = 1. It is clear that x, y ∈
NU(R) and x ̸= y. Note that x = x(x+ y) = x2 and y = y(x+ y) = y2. Therefore, x and y are
non-trivial idempotent elements of R.

Proposition 5.9. For a ring R, (ZT (R))c = (Γ(R))c if and only if Tot(R) has no non-trivial
idempotent.

Proof. Assume that (ZT (R))c = (Γ(R))c. Let x
s ∈ Tot(R) be such that x

s = x2

s2 . As s /∈ Z(R),
it follows that x(s−x) = 0. If x /∈ Z(R), then x = s and so, x

s = 1
1 . If x ∈ Z(R), then s−x ̸= 0

and x ̸= s − x. We claim that x = 0. If x ̸= 0, then x, s − x ∈ Z(R)∗ are such that they are
adjacent in Γ(R). Hence, they are adjacent in ZT (R). Therefore, x + s − x ∈ Z(R). This is
impossible, since s /∈ Z(R). Therefore, x = 0 and so, x

s = 0
1 . This proves that Tot(R) has no

non-trivial idempotent.
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Conversely, assume that Tot(R) has no non-trivial idempotent. If x, y ∈ Z(R)∗ are such that
x + y /∈ Z(R), then x+y

1 ∈ U(Tot(R)) and so, there exist t, s /∈ Z(R) such that (x+y
1 ) ts = 1

1 .
Thus xt

s ,
yt
s ∈ Tot(R)\{ 0

1} are such that xt
s + yt

s = 1
1 . As Tot(R) has no non-trivial idempotent,

xyt2

s2 ̸= 0
1 by Lemma 5.8 and so, xy ̸= 0. Hence, (ZT (R))c = (Γ(R))c by Remark 2.4.

Lemma 5.10. If R is a zero-dimensional ring, then Z(R) = NU(R).

Proof. By hypothesis, dimR = 0. It is clear that Z(R) ⊆ NU(R) (this is true for any ring).
If x ∈ NU(R), then x ∈ m for some m ∈ Max(R). Hence, x + nil(R) ∈ m

nil(R) . Therefore,
x+ nil(R) ∈ NU( R

nil(R)). Observe that R
nil(R) is reduced and dim( R

nil(R)) = 0. Hence, R
nil(R) is

von Neumann regular. Therefore, x+ nil(R) ∈ Z( R
nil(R)). So, there exists y ∈ R\nil(R) such

that xy ∈ nil(R). Let n ∈ N be such that xnyn = 0. As yn ̸= 0, it follows that xn ∈ Z(R) and
so, x ∈ Z(R). This shows that NU(R) ⊆ Z(R) and hence, Z(R) = NU(R).

Proposition 5.11. For a ring R with dimR = 0, (ZT (R))c = (Γ(R))c if and only if MNP (R)
has only one element.

Proof. For any ring R with |MNP (R)| = 1, (ZT (R))c = (Γ(R))c by Remark 2.5.
Assume that dimR = 0 and (ZT (R))c = (Γ(R))c. Observe that Spec(R) = Max(R). Note

that Max(R) = MNP (R) and R = Tot(R) by Lemma 5.10. By Proposition 5.9, R has no
non-trivial idempotent. If |Max(R)| ≥ 2, then the von Neumann regular ring R

nil(R) is such that
|Max( R

nil(R))| ≥ 2. Hence, R
nil(R) admits a non-trivial idempotent element, say r+nil(R). Since

nil(R) is a nil ideal of R, there exists an idempotent e of R such that r + nil(R) = e+ nil(R)
by [18, Proposition 7.14]. As r + nil(R) is non-trivial, it follows that e /∈ {0, 1}. This is
impossible, since R has no non-trivial idempotent element. Therefore, |Max(R)| = 1 and so,
|MNP (R)| = 1.
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