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Abstract This article focuses on the examination of skew cyclic codes over the ring R =
(B [v1, v2, v3])+ϑ (B [v1, v2, v3])+ϑ2 (B [v1, v2, v3])+ϑ3 (B [v1, v2, v3]) , with B = Zpm or Fpm ,
v2
i = vi, and vivj = vjvi. It explores the generator polynomials associated with these skew

cyclic codes over R and delves into their structural properties through a decomposition theorem.
Furthermore, the paper discusses the generator polynomials of the duals of these skew cyclic
codes. Additionally, the investigation covers the idempotent generators of skew cyclic codes
over the rings B [v1, v2, v3] and R.

1 Introduction

Extensive research has been conducted over the past decade on linear codes over rings, partic-
ularly following the groundbreaking findings presented in reference [8], which focused on the
examination of linear codes over Z4. This exploration has catalyzed a surge of interest in exam-
ining various types of rings within the context of coding theory, leading to diverse avenues of
study and potential applications see [1, 2, 6, 9, 12, 14]. As an extension of this development, our
research focuses on studying a particular type of such codes, namely skew cyclic codes over the
ring R.

The concept of skew cyclic codes builds upon cyclic codes but extends to finite rings rather
than finite fields. A finite ring is a generalization of a finite field and may not have multiplicative
inverses for all elements. Skew cyclic codes were first introduced by Pattanayak and Heliyani in
2016 (see [13, 15, 16, 17]).

Skew-cyclic linear codes represent a significant subclass of linear error-correcting codes in
coding theory formed through the utilization of skew polynomial rings over finite fields. In
essence, these codes extend the concept of cyclic codes by leveraging non-commutative poly-
nomial multiplication operations. Just as cyclic codes exhibit the property that cyclic shifts of
codewords remain within the code, skew cyclic codes maintain this property but with operations
defined in skew polynomial rings. This differentiation enables a wider spectrum of algebraic
structures to be used in encoding and decoding operations. Skew cyclic linear codes are defined
by their capacity to correct errors effectively while preserving the beneficial attributes of cyclic
codes, rendering them valuable in numerous communication and data storage applications.

This study mostly delves into various facets of coding theory, emphasizing codes defined
over the ring R. It delves into three main areas of study: linear codes over R, classes of skew



1214 Karima Chatouh

cyclic linear codes over R, and codes over R possessing dual-containing skew cyclic proper-
ties. By studying the properties and structures of these codes, the work aims to contribute to the
understanding and advancement of coding theory, particularly within the context of rings and
algebraic structures.

The remainder of the paper is structured as follows: Section 2 provides an in-depth explo-
ration of the foundational background and prerequisites required to understand the concepts dis-
cussed in this paper. It covers topics such as the Gray map and Gray images of linear codes over
R, which are fundamental for understanding subsequent sections. In Section 3, we introduce the
concept of linear codes over R. The main focus of this section is to analyze a particular linear
code over R. Section 4 is dedicated to the test of various categories of skew cyclic linear codes
over R. Skew cyclic codes constitute a specialized subset of linear codes with unique attributes.
This section aims at scrutinizing and comparing different classes within this category. Section 5
focuses on examining codes over the ring R possessing dual-containing skew cyclic properties.
These are a class of error-correcting codes defined over the ring R, notable for their specific
characteristics linked to their dual codes and their similarities to skew cyclic codes, including
their resistance to cyclic permutations of codewords. The concluding Section 6 offers a brief of
the essential findings and contributions made within this paper.

2 Foundational Background and Preliminaries

This section introduces the finite ring R, constructed by combining four distinct subrings: R,
ϑR, ϑ2R, and ϑ3R. Here, R is defined as B [v1, v2, v3], where v2

i = vi, and vivj = vjvi.
The construction’s citations include [3, 4, 5, 10], establishing a groundwork of background and
preliminary components. These elements form the basis for the ensuing discourse within the
framework of this finite ring.

Consider the ring

R = (B [v1, v2, v3]) + ϑ (B [v1, v2, v3]) + ϑ2 (B [v1, v2, v3]) + ϑ3 (B [v1, v2, v3]) , (2.1)

for B = Zpm or Fpm , v2
i = vi, and vivj = vjvi.

Based on [7], let R be a commutative ring, and consider the set of orthogonal non-zero

idempotents for 0 ≤ i ≤ 3. These idempotents are defined as δi =
ϑ4 − ϑ

ϑ− ϑi
, where gcd(δi, ϑ −

ϑi) = 1, and there exist polynomials ti and ri ∈ R[ϑ] satisfying tiδi + ri(ϑ − ϑi) = 1. Let
ϖi = tiδi. The following proposition naturally emerges from these conditions.

Proposition 2.1. Let ϖi, for 0 ≤ i ≤ 3, represent four elements in the commutative ring R. These
elements ϖi satisfy the conditions of being orthogonal non-zero idempotents and also fulfill the

Pierce conditions over R as follows: ϖ0 = t0
ϑ4 − ϑ

ϑ− ϑ0
, ϖ1 = t1

ϑ4 − ϑ

ϑ− ϑ1
, ϖ2 = t2

ϑ4 − ϑ

ϑ− ϑ2
, and

ϖ3 = t3
ϑ4 − ϑ

ϑ− ϑ3
, where ti ∈ R for 0 ≤ i ≤ 3. These expressions demonstrate how each ϖi can

be constructed using the given polynomial forms, fulfilling the specified conditions.

Let’s examine the subsequent idempotent elements in R, ζ0 =
2∏

i=1
(1 − vi), ζ1 = v1

3∏
i=2

(1 −

vi), ζ2 = v2

3∏
i=1,i̸=2

(1 − vi), ζ3 = v3

2∏
i=1

(1 − vi), ζ4 = (1 − v3)
2∏

i=1
vi, ζ5 = (1 − v2)

3∏
i=1,i̸=2

vi, ζ6 =

(1 − v1)
3∏

i=2
vi, ζ7 =

3∏
i=1

vi.

There exist two primary approaches to define an element c in R. According to [5], the first
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method is:

c = ϖ0

a0 +
4∑

i=1

via
i
1 +

2∑
i=1

3∑
j=i+1

vivja
ij
2 +

3∏
k=1

vka7


+ ϖ1

b0 +
3∑

i=1

vib
i
1 +

2∑
i=1

3∑
j=i+1

vivjb
ij
2 +

3∏
k=1

vkb7


+ ϖ2

c0 +
3∑

i=1

vic
i
1 +

2∑
i=1

3∑
j=i+1

vivjc
ij
2 +

3∏
k=1

vkc7


+ ϖ3

d0 +
3∑

i=1

vid
i
1 +

2∑
i=1

3∑
j=i+1

vivjd
ij
2 +

3∏
k=1

vkd7

 .

As for the second approach, we have:

c = ζ0(ϖ0a0 +ϖ1b0 +ϖ2c0 +ϖ3d0) +
3∑

i=1

ζivi(ϖ1(a0 + ai1) +ϖ2(b0 + bi1) +ϖ3(c0 + ci1))

+ ζ7

3∏
i=1

vk(ϖ0(a0 + ai1 + . . .+ a7) +ϖ1(b0 + bi1 + . . .+ b7) +ϖ2(c0 + ci1 + . . .+ c7))

+ ϖ3(d0 + di1 + . . .+ d7)).

Corollary 2.2. [10] The product ϖiζj is the idempotents of R, for 0 ≤ i ≤ 3 and 0 ≤ j ≤ 7 .

Each codeword (c0, c1, . . . , cn−1) ∈ C in the code C is represented by a polynomial c0 +
c1x+ . . .+ cn−1x

n−1 in R[x]. A code C is termed a cyclic code of length n over R if it remains
invariant under the cyclic shift operator

π : Rn → Rn

(c0, c1, . . . , cn−1) 7→ π (c0, c1, . . . , cn−1) = (cn−1, c0, c1, . . . , cn−2) .
(2.2)

In the polynomial representation, a cyclic code C of length n over R can be characterized as an
ideal of the ring R[x]⧸⟨xn − 1⟩. For further insights into skew polynomial rings, readers can
refer to the comprehensive discussions in references [7, 11].

Let λ be in Aut(R), and Θ : R → R an extension of λ given by

Θ
(
x = x0 + x1ϑ+ x2ϑ

2 + x3ϑ
3) = λ (x0) + λ (x1)ϑ+ λ (x2)ϑ

2 + λ (x3)ϑ
3. (2.3)

For ν be in Aut(B), and λ : R → R an extension of ν given by

λ (r) = ν (a0) +
4∑

i=1

viν
(
ai1
)
+

2∑
i=1

3∑
j=i+1

vivjν
(
aij2

)
+

3∏
k=1

vkν (a7) , (2.4)

where ν : B → B is an application defined by

ν (a) = ap
t

. (2.5)
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By utilizing Equations 2.3, 2.4, and 2.5, we can obtain

Θ (x) =
3∑

t=0

ϑt

(a0)
pt

+
4∑

i=1

vi
(
ai1
)pt

+
2∑

i=1

3∑
j=i+1

vivj

(
aij2

)pt

+
3∏

k=1

vk (a7)
pt


+

3∑
t=0

ϑt

(b0)
pt

+
4∑

i=1

vi
(
bi1
)pt

+
2∑

i=1

3∑
j=i+1

vivj

(
bij2

)pt

+
3∏

k=1

vk (b7)
pt


+

3∑
t=0

ϑt

(c0)
pt

+
4∑

i=1

vi
(
ci1
)pt

+
2∑

i=1

3∑
j=i+1

vivj

(
cij2

)pt

+
3∏

k=1

vk (c7)
pt


+

3∑
t=0

ϑt

(d0)
pt

+
4∑

i=1

vi
(
di1
)pt

+
2∑

i=1

3∑
j=i+1

vivj

(
dij2

)pt

+
3∏

k=1

vk (d7)
pt

 .

Furthermore, the multiplication operation is defined as follows:

(axi)(bxj) = aΘ (b)xi+j , (2.6)

but this multiplication is not commutative.

Definition 2.3. [7] Let R be a ring and Θ be an automorphism of R. A linear code C of length
n over R is a skew cyclic code with

c = (c0, c1, . . . , cn−1) ∈ C ⇒ τ(c) = (Θ(cn−1),Θ(c0), . . . ,Θ(cn−2)) ∈ C, (2.7)

where τ(c) is a skew cyclic shift of c.

Proposition 2.4. [7] Let Z(R[x,Θ]) Denote the center of R[x,Θ]. Then xn − 1 ∈ Z(R[x,Θ]) if
and only if the order of the automorphism Θ divides n.

Theorem 2.5. [7] Let C be a code of length n over R such that the order of the automorphism
Θ divides n. Then C is a skew Θ-cyclic code if and only if C is a left ideal ⟨g(x)⟩ ⊆ Rn, where
g(x) is a right divisor of xn − 1 in R[x,Θ].

2.1 A Gray Map and Gray Images of Linear Code over R

This section explores the relationship between linear codes, Gray maps, and their applications
in R. We explore the construction and properties of Gray maps tailored to linear codes over this
particular algebraic structure, shedding light on their significance in practical coding theory.

Definition 2.6. The Gray map from R to B32 is defined by

Φ = Φ2 ◦ Φ1 : R
Φ1→ R4 Φ2→ B32

υ 7→ Φ1 (υ) = (υ1, υ2, υ3, υ4) 7→ Φ2 (Φ1 (υ)) ,
(2.8)

with Φ2 (Φ1 (υ)) = Φ2 (υ1, υ2, υ3, υ4) , where

Φ(υ) = Φ2 (υ1) = (a0, a0 + ai1, . . . , a0 + ai1 + · · ·+ a7),

Φ2 (υ2) = (b0, b0 + bi1, . . . , b0 + bi1 + · · ·+ b7),

Φ2 (υ3) = (c0, c0 + ci1, . . . , c0 + ci1 + · · ·+ c7)),

Φ2 (υ3) = (d0, d0 + di1, . . . , c0 + di1 + · · ·+ d7)),

the map Φ is bijective. Furthermore this map can be extended into n tuples of R naturally as
follows:

Φ = Φ2 ◦ Φ1 : Rn Φ1→ R4n Φ2→ B32n (2.9)
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3 A Linear Code over R

A code C of length n over R is considered as an R-submodule of (R)
n. To represent the dual

code of C, denoted as C⊥, we use the notation such that, C⊥ = {x ∈ Rn : ⟨x, y⟩ = 0, for all y ∈ C}.
Next, we proceed to define the codes C0, C1, C2, and C3 as follows:

C0 =

{
x0 ∈ (R)n|∃x1, x2, x3 ∈ (R)n|

3∑
i=0

ϖ0xi ∈ C

}
,

C1 =

{
x1 ∈ (R)n|∃x0, x2, x3 ∈ (R)n|

3∑
i=0

ϖ0xi ∈ C

}
,

C2 =

{
x2 ∈ (R)n|∃x0, x1, x3 ∈ (R)n|

3∑
i=0

ϖ0xi ∈ C

}
,

C3 =

{
x3 ∈ (R)n|∃x0, x1, x2 ∈ (R)n|

3∑
i=0

ϖ0xi ∈ C

}
.

Proposition 2.1 establishes that a linear code C of length n over R possesses a distinct and unique
decomposition as follows:

Theorem 3.1. Consider a linear code C of length n over R. In this case, a distinctive and
exclusive decomposition can be expressed as follows:

C =
3⊕

i=0

ϖiCi, (3.1)

and

C =
3⊕

i=0

ϖiC⊥
i . (3.2)

In addition, one can execute a similar computation to form the codes C0, C1, C2, and C3.

Theorem 3.2. Suppose C0, C1, C2, and C3 are linear codes of length n over R. In this scenario,
each of these codes can be uniquely decomposed as follows:

C0 =
7⊕

k=0

ζkC0k, C1 =
7⊕

k=1

ζkC1k, C2 =
7⊕

k=2

ζkC2k andC3 =
7⊕

k=3

ζkC3k (3.3)

where, the codes Cik, for 0 ≤ i ≤ 3 and 0 ≤ k ≤ 7 is defined in [10].

According to Theorems 3.1 and 3.2, we can deduce the construction of both a linear code and
its orthogonal over R = R+ ϑR+ ϑ2R+ ϑ3R by utilizing the following relationships.

C = ϖ0

[
7⊕

k=0

ζkC0k

]
⊕ϖ1

[
7⊕

k=0

ζkC1k

]
⊕ϖ2

[
7⊕

k=0

ζkC2k

]
⊕ϖ3

[
7⊕

k=0

ζkC3k

]
(3.4)

=
3⊕

i=0

ϖi

[
7⊕

k=0

ζkCik

]
,

and

C⊥ = ϖ0

[
7⊕

k=0

ζkC
⊥
0k

]
⊕ϖ1

[
7⊕

k=0

ζkC
⊥
1k

]
⊕ϖ2

[
7⊕

k=0

ζkC
⊥
2k

]
⊕ϖ3

[
7⊕

k=0

ζkC
⊥
3k

]
(3.5)

=
3⊕

i=0

ϖi

[
7⊕

k=0

ζkC
⊥
ik

]
.

Equation 3.4 presents a theorem that can be articulated as follows:
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Theorem 3.3. Let C be a linear code of lenght n over R. Then

Φ(C) =

(
7⊗

k=0

C0k

)
⊗

(
7⊗

k=0

C1k

)
⊗

(
7⊗

k=0

C2k

)
⊗

(
7⊗

k=0

C3k

)

and

|C| =
3∏

i=0

|Ci|, where |Ci| =
3∏

i=0

(
7∏

k=0

|Cik|

)
.

Theorem 3.4. Let us assume that the generator matrix Gi, with 0 ≤ i ≤ 3, represents linear

codes C0, C1, C2, and C3 as follows, Gi =


ζ0Gi0

ζ1Gi1
...

ζ7Gi7

. Now, we need to determine the generator

matrix of C.

G =


ϖ0G0

ϖ1G1

ϖ2G2

ϖ3G3

 . (3.6)

Proposition 3.5. Suppose C is a linear code of length n over R with a generator matrix G. Then
the generator matrix of Φ(C) can be expressed as follows:

Φ(G) =


Φ(G0) 0 0 0

0 Φ(G1) 0 0
0 0 Φ(G2) 0
0 0 0 Φ(G3)

 , (3.7)

with

Φ(Gi) =


Gi0 0 0

0
. . . 0

0 0 Gi7

 , for 0 ≤ i ≤ 3. (3.8)

4 A Classes of Skew Cyclic Linear Codes over R

This section focuses on constructing skew cyclic codes over finite rings using the skew polyno-
mial ring with an automorphism Θ. This concept serves as a generalization of cyclic codes over
non-commutative polynomial rings. Our main objective is to identify and analyze skew cyclic
codes of length n over the finite ring R.

Theorem 4.1. Let C =
3⊕

i=0
ϖi

[
7⊕

k=0
ζkCik

]
be a linear code over R of length n where Cik, for

0 ≤ i ≤ 3 and 0 ≤ k ≤ 7 are linear codes of length n over B. Then C is a Θ-skew cyclic code
over R if and only if Cik, for 0 ≤ i ≤ 3 and 0 ≤ k ≤ 7 are ν-skew cyclic codes over B.

Proof. Let ε = (ε0, ε1, . . . , εn−1) in C, where

εq = ϖ0

(
7∑

k=0
ζkε

q
0k

)
+ϖ1

(
7∑

k=0
ζkε

q
1k

)
+ϖ2

(
7∑

k=0
ζkε

q
2k

)
+ϖ3

(
7∑

k=0
ζkε

q
3k

)
and εqik ∈ B,
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for 0 ≤ i ≤ 3, 0 ≤ k ≤ 7 and 0 ≤ q ≤ n− 1. Then

ε00 =
(
ε0

00, ε
1
00, . . . , ε

n−1
00

)
∈ C00,

...

ε07 =
(
ε0

07, ε
1
07, . . . , ε

n−1
07

)
∈ C07,

...

ε30 =
(
ε0

30, ε
1
30, . . . , ε

n−1
30

)
∈ C30,

...

ε37 =
(
ε0

37, ε
1
37, . . . , ε

n−1
37

)
∈ C37.

Following Equations 2.3, 2.4 and 2.5, we have

τ (ε) =

(
Θ

(
3∑

i=0

ϖix
n−1
i

)
,Θ

(
3∑

i=0

ϖix
0
i

)
, . . . ,Θ

(
3∑

i=0

ϖix
n−2
i

))

=

(
3∑

i=0

ϖiλ
(
xn−1
i

)
,

3∑
i=0

ϖiλ
(
x0
i

)
, . . . ,

3∑
i=0

ϖiλ
(
xn−2
i

))

= ϖ0

(
λ
(
xn−1

0

)
, λ
(
x0

0
)
, . . . , λ

(
xn−2

0

))
+ϖ1

(
λ
(
xn−1

1

)
, λ
(
x0

1
)
, . . . , λ

(
xn−2

1

))
+ ϖ2

(
λ
(
xn−1

2

)
, λ
(
x0

2
)
, . . . , λ

(
xn−2

2

))
+ϖ3

(
λ
(
xn−1

3

)
, λ
(
x0

3
)
, . . . , λ

(
xn−2

3

))
= ϖ0

(
7∑

k=0

ζkν(ε
n−1
0k ), . . . ,

7∑
k=0

ζkν(ε
n−2
0k )

)
+ϖ1

(
7∑

k=0

ζkν(ε
n−1
1k ), . . . ,

7∑
k=0

ζkν(ε
n−2
1k )

)

+ ϖ2

(
7∑

k=0

ζkν(ε
n−1
2k ), . . . ,

7∑
k=0

ζkν(ε
n−2
2k )

)
+ϖ3

(
7∑

k=0

ζkν(ε
n−1
3k ), . . . ,

7∑
k=0

ζkν(ε
n−2
3k )

)

= ϖ0

[
ζ0

(
ν(εn−1

00 ), ν(ε0
00), . . . , ν(ε

n−2
00 )

)
+ . . .+ ζ7

(
ν(εn−1

07 ), ν(ε0
07), . . . , ν(ε

n−2
07 )

)]
+ ϖ1

[
ζ0

(
ν(εn−1

10 ), ν(ε0
10), . . . , ν(ε

n−2
10 )

)
+ . . .+ ζ7

(
ν(εn−1

17 ), ν(ε0
17), . . . , ν(ε

n−2
17 )

)]
+ ϖ2

[
ζ0

(
ν(εn−1

20 ), ν(ε0
20), . . . , ν(ε

n−2
20 )

)
+ . . .+ ζ7

(
ν(εn−1

27 ), ν(ε0
27), . . . , ν(ε

n−2
27 )

)]
+ ϖ3

[
ζ0

(
ν(εn−1

30 ), ν(ε0
30), . . . , ν(ε

n−2
30 )

)
+ . . .+ ζ7

(
ν(εn−1

37 ), ν(ε0
37), . . . , ν(ε

n−2
37 )

)]
= ϖ0ζ0ν (ε00) + . . .+ϖ0ζ0ν (ε07) + . . .+ϖ3ζ0ν (ε30) + . . .+ϖ3ζ7ν (ε37) ∈ C.

So that, ν (εik) ∈ Cik, for 0 ≤ i ≤ 3 and 0 ≤ k ≤ 7 implying Cik are ν-skew cyclic codes of
length n over B. Similarly for the second inclusion.

The statement suggests that when the length of the code, denoted by n, satisfies the condition
of being a multiple of the order of Θ, i.e., n = ς ·ord(Θ), then it becomes possible to construct the
dual code for any skew cyclic code over the field C. This condition likely has some mathematical
significance or simplifies the construction of the dual codes in the context of skew cyclic codes.

Proposition 4.2. If C is a skew cyclic code over R and ord(Θ) divides n, then its dual code C⊥

is also a skew cyclic code over R.

Proof. Let C be a skew Θ-cyclic code of length n over R. We are given two vectors in this
code: ε = (ε0, ε1, . . . , εn−1) and η = ((η0, η1, . . . , ηn−2), where η ∈ C⊥. To prove that C⊥

is a skew Θ-cyclic code of length n over R, it suffices to demonstrate that the vector τ(η) =



1220 Karima Chatouh

(Θ(ηn−1),Θ(η0), . . . ,Θ(ηn−1)) is also a valid element of C⊥. In other words, if we apply the
skew cyclic shift Θ to each component of vector η and arrange them accordingly, this resulting
vector τ(η) also satisfies the property of being orthogonal to all elements of C, we can conclude
that C⊥ is indeed a skew Θ-cyclic code of length n over R. Consider

ε · τ(η) =
n−1∑
i=0

εiΘ(ηi). (4.1)

When C is a skew Θ-cyclic code, we have τn−1(ε) ∈ C, where

τn−1(ε) = (Θn−1(ε0),Θn−1(ε1), . . . ,Θn−1(εn−1)) ∈ C.

Then τn−1(ε) · η = 0, where

τn−1(ε) · η =
n−1∑
i=0

Θ
n−1(εi)ηi = 0. (4.2)

Since ord(Θ)|n, Θn = Id, so that

Θ

(
n−1∑
i=0

Θ
n−1(εi)ηi

)
= Θ (0) = 0. (4.3)

Which involves,

ε · τ(η) =
n−1∑
i=0

εiΘ(ηi) = 0. (4.4)

We result, τ(η) ∈ C⊥, implies C⊥ is a skew Θ-cyclic code of length n over R.

Hence, the subsequent outcome is as follows.

Corollary 4.3. Let C =
3⊕

i=0
ϖi

[
7⊕

k=0
ζkCik

]
be a linear code over R of length n such that n is a

multiple of ord(Θ). Then the dual code C =
3⊕

i=0
ϖi

[
7⊕

k=0
ζkC

⊥
ik

]
is a skew Θ-cyclic code of length

n over R, and C0k, C1k, C2k, C3k, for 0 ≤ k ≤ 7 are ν-skew cyclic codes over A.

At this phase, we have obtained the generator polynomials for a skew Θ-cyclic code over the
ring R, utilizing the direct sum decomposition technique. In this process, the code decomposes
into smaller modules, and each of these modules contributes to the generation of the skew Θ-
cyclic code. Consequently, with the help of the direct sum decomposition, we are now equipped
with the essential generator polynomials that enable us to represent and analyze the skew Θ-
cyclic code effectively.

Theorem 4.4. Let C =
3⊕

i=0
ϖi

[
7⊕

k=0
ζkCik

]
be a skew Θ-cyclic code of length n over R and tik(x)

be a monic generator polynomial of the skew ν-cyclic code Cik, for 0 ≤ i ≤ 3 and 0 ≤ k ≤ 7.
Then

1. C = ⟨ϖ0ζ0t00(x), ϖ0ζ1t01(x), . . . , ϖ3ζ7t37(x)⟩ .

2. A polynomial t(x) ∈ R[x,Θ] can be found such that C = ⟨t(x)⟩, where

t(x) =
3∑

i=0

7∑
k=0

ϖiζktik(x),

and t(x) is a divisor of xn − 1 on the right.
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Proof. 1. Based on Theorem 4.1, it is established that the sets Cik represent skew ν-cyclic
codes of length n over B for 0 ≤ i ≤ 3 and 0 ≤ k ≤ 7. Hence, each Cik can be ex-
pressed as ⟨tik(x)⟩. On the other hand, the code C can be written as ϖ0

(⊕7
k=0 ζkC0k

)
⊕

ϖ1

(⊕7
k=0 ζkC1k

)
⊕ϖ2

(⊕7
k=0 ζkC2k

)
⊕ϖ3

(⊕7
k=0 ζkC3k

)
, so that

C ⊆ ⟨ϖ0ζ0t00(x), ϖ0ζ1t01(x), . . . , ϖ3ζ7t37(x)⟩ . (4.5)

Regarding the second inclusion, we possess the following details and information:

3∑
i=0

7∑
k=0

ϖiζktij(x)sik(x) ∈ ⟨ϖ0ζ0t00(x), ϖ0ζ1t01(x), . . . , ϖ3ζ7t37(x)⟩ ,

where sik(x) ∈ R[x,Θ]⧸⟨xn−1⟩. Then there exists, rik(x) ∈ R[x,Θ]⧸⟨xn−1⟩ such that
ϖiζksik(x) = ϖiζkrik(x), for 0 ≤ i ≤ 3 and 0 ≤ k ≤ 7. Hence,

C ⊇ ⟨ϖ0ζ0t00(x), ϖ0ζ1t01(x), . . . , ϖ3ζ7t37(x)⟩ . (4.6)

Subsequent to considering Equations 4.5 and 4.6, the resulting outcome is as follows:

C = ⟨ϖ0ζ0t00(x), ϖ0ζ1t01(x), . . . , ϖ3ζ7t37(x)⟩ .

2. If tik(x) be a generator polynomial of Cik, for 0 ≤ i ≤ 3 and 0 ≤ k ≤ 7. Then using Part
(1), we have the result.

For the second half, assume that tik(x), for 0 ≤ i ≤ 3 and 0 ≤ k ≤ 7 be a monic generator
polynomial of Cik, then tik(x) divides xn − 1 on the right such that

xn − 1 = sik(x)tik(x), sik(x) ∈ Cik, for 0 ≤ i ≤ 3 and 0 ≤ k ≤ 7

=
3∑

i=0

7∑
k=0

ϖiζk (x
n − 1)

= ϖ0ζ0 (x
n − 1) +ϖ0ζ1 (x

n − 1) + . . .+ϖ3ζ7 (x
n − 1)

= ϖ0ζ0s00(x)t00(x) +ϖ0ζ1s01(x)t01(x) + . . .+ϖ3ζ7s37(x)t37(x)

=
3∑

i=0

7∑
k=0

ϖiζksik(x)tik(x)

= s(x)t(x).

Hence, t(x) divides xn − 1 on the right.

Example 4.5. Consider A = Z16, according to the definition of the automorphism Θ, we have

Θ (r) = ϖ0

(
7∑

k=0

ζkr
2
0k

)
+ϖ1

(
7∑

k=0

ζkr
2
1k

)
+ϖ2

(
7∑

k=0

ζkr
2
2k

)
+ϖ3

(
7∑

k=0

ζkr
2
3k

)
. (4.7)

Let n = 12 then ord(Θ) = 2 divides n.

x12 − 1 =
(
x2 + 1

)
(x+ 1) (x+ 15)

(
x2 + x+ 1

) (
x2 + 15x+ 1

) (
x4 + 15x+ 1

)
∈ Z16[x, ν].

Take, for 1 ≤ k ≤ 7

t0k(x) =
(
x2 + x+ 1

)
,

t1k(x) = (x+ 1) ,

t2k(x) = (x+ 15) ,

t3k(x) =
(
x4 + 15x+ 1

)
.
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Then, for 1 ≤ k ≤ 7

C0k =
〈
x2 + x+ 1

〉
,

C1k = ⟨x+ 1⟩ ,
C2k = ⟨x+ 15⟩ ,
C3k =

〈
x4 + 15x+ 1

〉
are skew cyclic codes over Z16. Thus

C = ⟨h1(x), h2(x), h3(x), h4(x)⟩ ,

with

h0(x) = ⟨ϖ0ζ0
(
x2 + x+ 1

)
, ϖ0ζ1

(
x2 + x+ 1

)
, . . . , ϖ0ζ7

(
x2 + x+ 1

)
⟩,

h1(x) = ⟨ϖ1ζ0 (x+ 1) , ϖ1ζ1 (x+ 1) , . . . , ϖ1ζ7 (x+ 1)⟩,
h2(x) = ⟨ϖ2ζ0 (x+ 15) , ϖ2ζ1 (x+ 15) , . . . , ϖ2ζ7 (x+ 15)⟩,
h3(x) = ⟨ϖ3ζ0

(
x4 + 15x+ 1

)
, ϖ3ζ1

(
x4 + 15x+ 1

)
, . . . , ϖ3ζ7

(
x4 + 15x+ 1

)
⟩.

Example 4.6. Given the set A = F64, in accordance with the definition of the automorphism Θ,
we find that

x12 − 1 = (x+ 1)2(x+ α+ 1)2(x+ α2 + 1)2(x+ α3 + α2 + α)2(x+ α3 + α2 + α+ 1)2

(x+ α4 + 1)2(x+ α4 + α)2(x+ α5 + α4 + α+ 1)2(x+ α5 + α4 + α2 + α)2.

The codes denoted as Ci = ⟨Ji (x)⟩, for 0 ≤ i ≤ 3 are generated through the following process

J0 = ⟨ζ0 (x+ 1) , ζ1 (x+ α+ 1) , ζ2
(
x+ α2 + 1

)
, ζ3
(
x+ α3 + α2 + α

)
,

ζ4
(
x+ α3 + α2 + α+ 1

)
, ζ5
(
x+ α4 + 1

)
, ζ6
(
x+ α4 + α

)
,

ζ7
(
x+ α5 + α4 + α+ 1

)
⟩,

J1 = ⟨ζ0 (x+ α+ 1) , ζ1
(
x+ α2 + 1

)
, ζ2
(
x+ α3 + α2 + α

)
, ζ3
(
x+ α3 + α2 + α+ 1

)
,

ζ4
(
x+ α4 + 1

)
, ζ5
(
x+ α4 + α

)
, ζ6
(
x+ α5 + α4 + α+ 1

)
,

ζ7
(
x+ α5 + α4 + α2 + α

)
⟩,

J2 = ⟨ζ0
(
x+ α2 + 1

)
, ζ1
(
x+ α3 + α2 + α

)
, ζ2
(
x+ α3 + α2 + α+ 1

)
, ζ3
(
x+ α4 + 1

)
,

ζ4
(
x+ α4 + α

)
, ζ5
(
x+ α5 + α4 + α+ 1

)
, ζ6
(
x+ α5 + α4 + α2 + α

)
, ζ7 (x+ 1)⟩,

J3 = ⟨ζ0
(
x+ α3 + α2 + α

)
, ζ1
(
x+ α3 + α2 + α+ 1

)
, ζ2
(
x+ α4 + 1

)
, ζ3
(
x+ α4 + α

)
,

ζ4
(
x+ α5 + α4 + α+ 1

)
, ζ5
(
x+ α5 + α4 + α2 + α

)
, ζ6 (x+ 1) , ζ7 (x+ α+ 1)⟩

are skew cyclic codes over F64 [v1, v2, v3]. Thus, the code C = ⟨ϖ0J0, ϖ1J1, ϖ2J2, ϖ3J3⟩ .

Example 4.7. When considering the set A = F256 and referring to the definition of the automor-
phism Θ, we observe that

Θ (r) = ϖ0

(
7∑

k=0

ζkr
8
0k

)
+ϖ1

(
7∑

k=0

ζkr
8
1k

)
+ϖ2

(
7∑

k=0

ζkr
8
2k

)
+ϖ3

(
7∑

k=0

ζkr
8
3k

)
. (4.8)

Let n = 200 then ord(Θ) = 8 divides n.

x200 − 1 = (x+ 1)8(x+ α3 + α)8(x+ α6 + α2)8(x+ α7 + α4 + α)8

(x+ α7 + α6 + α4 + α3 + α2 + 1)8(x5 + α3 + α)8(x5 + α6 + α2)8

(x5 + α7 + α4 + α)8(x5 + α7 + α6 + α4 + α3 + α2 + 1)8.
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The codes represented as Ci = ⟨Ji(x)⟩, where 0 ≤ i ≤ 3, are created using the following
procedure

J0 = ⟨ζ0(x
5 + α7 + α6 + α4 + α3 + α2 + 1), ζ1(x

5 + α7 + α6 + α4 + α3 + α2 + 1), . . . ,

ζ7(x
5 + α7 + α6 + α4 + α3 + α2 + 1),

J1 = ⟨ζ0(x
5 + α7 + α4 + α), ζ1(x

5 + α7 + α4 + α), . . . , ζ7(x
5 + α7 + α4 + α)⟩,

J2 = ⟨ζ0(x+ α7 + α6 + α4 + α3 + α2 + 1)8, ζ1(x+ α7 + α6 + α4 + α3 + α2 + 1)8, . . . ,

ζ7(x+ α7 + α6 + α4 + α3 + α2 + 1)8⟩,
J3 = ⟨ζ0(x+ α7 + α4 + α)8, ζ1(x+ α7 + α4 + α)8, . . . , ζ7(x+ α7 + α4 + α)8⟩

are skew cyclic codes over F256 [v1, v2, v3]. Therefore, the code C = ⟨ϖ0J0, ϖ1J1, ϖ2J2, ϖ3J3⟩ .

Example 4.8. When examining the set A = F1024 and taking into account the definition of the
automorphism Θ, we can note that

Θ (r) = ϖ0

(
7∑

k=0

ζkr
10
0k

)
+ϖ1

(
7∑

k=0

ζkr
10
1k

)
+ϖ2

(
7∑

k=0

ζkr
10
2k

)
+ϖ3

(
7∑

k=0

ζkr
10
3k

)
. (4.9)

Let n = 1000 then ord(Θ) = 10 divides n.

x1000 − 1 = (x+ 1)8(x2 + αx+ 1)8(x2 + α2x+ 1)8(x2 + (α3 + α)x+ 1)8(x2 + α4x+ 1)8

(x2 + (α5 + α3 + α)x+ 1)8(x2 + (α5 + α3 + α+ 1)x+ 1)8(x2 + α8x+ 1)8

(x2 + (α7 + α5 + α)x+ 1)8(x2 + (α8 + α7 + α5 + α3 + α2)x+ 1)8

(x2 + (α9 + α7 + α5 + α)x+ 1)8(x2 + (α9 + α7 + α6 + α5 + α4 + α2)x+ 1)8

(x10 + αx5 + 1)8(x10 + α2x5 + 1)8(x10 + (α3 + α)x5 + 1)8(x10 + α4x5 + 1)8

(x10 + (α6 + α2) ∗ x5 + 1)8(x10 + (α7 + α5 + α)x5 + 1)8(x10 + α8x5 + 1)8

(x10 + (α8 + α7 + α5 + α3 + α2)x5 + 1)8(x10 + (α9 + α7 + α5 + α)x5 + 1)8

(x10 + (α9 + α7 + α6 + α5 + α4 + α2)x5 + 1)8(x2 + (α6 + α2)x+ 1)8.

The codes, denoted as Ci = ⟨Ji(x)⟩ with 0 ≤ i ≤ 3, are generated through the subsequent
process

J0 = ⟨ζ0 (x+ 1) , ζ1(x
2 + αx+ 1), ζ2(x

2 + α2x+ 1), ζ3(x
2 + (α3 + α)x+ 1),

ζ4(x
2 + α4x+ 1), ζ5(x

2 + (α5 + α3 + α)x+ 1), ζ6(x
2 + (α5 + α3 + α+ 1)x+ 1),

ζ7(x
2 + (α6 + α2)x+ 1)⟩,

J1 = ⟨ζ0(x
2 + (α7 + α5 + α)x+ 1), ζ1(x

2 + α8x+ 1), ζ2(x
10 + (α6 + α2) ∗ x5 + 1),

ζ3(x
2 + (α9 + α7 + α5 + α)x+ 1), ζ4(x

2 + (α9 + α7 + α6 + α5 + α4 + α2)x+ 1),

ζ5(x
10 + αx5 + 1), ζ6(x

10 + α2x5 + 1), ζ7(x
2 + (α8 + α7 + α5 + α3 + α2)x+ 1)⟩,

J2 = ⟨ζ0(x
10 + (α7 + α5 + α)x5 + 1), ζ1(x

10 + (α7 + α5 + α)x5 + 1), ζ2(x
10 + α8x5 + 1),

ζ3(x
10 + (α6 + α2) ∗ x5 + 1), ζ4(x

10 + (α8 + α7 + α5 + α3 + α2)x5 + 1),

ζ5(x
10 + (α7 + α5 + α)x5 + 1), ζ6(x

10 + (α7 + α5 + α)x5 + 1),

ζ7(x
10 + (α9 + α7 + α5 + α)x5 + 1)⟩,

J3 = ⟨ζ0(x
10 + (α9 + α7 + α6 + α5 + α4 + α2)x5 + 1), ζ1(x

10 + (α9 + α7 + α6 + α5 + α4

+α2)x5 + 1), . . . , ζ7(x
10 + (α9 + α7 + α6 + α5 + α4 + α2)x5 + 1)⟩

are skew cyclic codes over F1024 [v1, v2, v3]. Therefore, the code C = ⟨ϖ0J0, ϖ1J1, ϖ2J2, ϖ3J3⟩ .

The following proposition can be taken into consideration as a direct result of Theorem 4.4:
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Proposition 4.9. Assume that tij(x) are monic generator polynomials of the skew ν-cyclic codes
Cij , for 0 ≤ i ≤ 3 and 0 ≤ j ≤ 7. If C be a skew Θ-cyclic code of length n over R, such that
ord(Θ)|n. Then,

1. C⊥ = ⟨ϱ0ρ0s
∗
00(x), ϱ0ρ1s

∗
01(x), . . . , ϱ3ρ7s

∗
37(x)⟩ .

2. C⊥ = ⟨s(x)⟩, where s(x) =
3∑

i=0

7∑
i=0

ϱiρjs
∗
ij(x), whith s∗ij(x) are defined as follows, xn−1 =

sij(x)tij(x), sij(x), tij(x) ∈ A [x, ν]. Assume that tij(x) = a0 + a1x + . . . + alx
l and

sij(x) = b0+b1x+ . . .+bn−lx
n−l, then the dual of the skew ν-cyclic code Cij is generated

by s∗ij(x) such that, s∗ij(x) = bn−l + ν(bn−l−1)x+ . . .+ ν(b0)xn−l.

5 Codes over R with Dual-Containing Skew Cyclic Properties

Dual-containing skew cyclic codes over R are a fascinating and mathematically rich area of
coding theory. These codes are a subset of linear block codes defined over the ring R, where
R represents a general non-commutative ring, extending the concept of skew polynomial rings.
Unlike traditional cyclic codes, which are defined over fields, dual-containing skew cyclic codes
offer unique properties and advantages in terms of error correction and code construction.

In these codes, the duality property plays a crucial role. The dual code of a given skew cyclic
code is also a skew cyclic code. This duality concept allows for the creation of efficient and
versatile error-correcting codes that find applications in various communication and information
storage systems.

Corollary 5.1. Let Cik = ⟨tik(x)⟩, for 0 ≤ i ≤ 3 and 0 ≤ k ≤ 7 be a skew Θ-cyclic code of
length n over B such that n is the multiple of ord(Θ). Then Cik contains its dual if and only if
xn − 1 is divisible by s∗ik(x)sik(x) on the right, for 0 ≤ i ≤ 3 and 0 ≤ k ≤ 7.

Proof. Let Cik = ⟨tik(x)⟩ contain its dual code. Since sik(x) ∈ C⊥
ik ⊆ Cik = ⟨tik(x)⟩, where

0 ≤ i ≤ 3 and 0 ≤ k ≤ 7, there exists a polynomial mik(x) such that s∗ik(x) = mik(x)tik(x),
for 0 ≤ i ≤ 3 and 0 ≤ k ≤ 7. Consequently,

s∗ik(x)sik(x) = mik(x)tik(x)sik(x) = mik(x)sik(x)tik(x) = mik (x
n − 1) . (5.1)

Given that the order of the automorphism Θ is a divisor of n,

xn − 1 = tik(x)sik(x) = sik(x)tik(x) ∈ Z(B [x,Θ]).

Therefore, the product s∗ik(x)sik(x) is divisible by xn − 1 on the right.
On the contrary, suppose s∗ik(x)sik(x) is divisible by xn − 1 on the right. In this case, there

exists a polynomial m(x) such that s∗ik(x)sik(x) = m(x)(xn − 1). Now, consider q(x) ∈ C⊥
ik =

⟨s∗ik(x)⟩. Hence, we can express q(x) as q(x) = ϑ (x) s∗ik(x). If we multiply both sides by
sik(x), we obtain

q(x)sik(x) = ϑ (x) s∗ik(x)sik(x)

= ϑ (x)m(x)(xn − 1)

= ϑ (x)m(x)sik(x)tik(x)

= ϑ (x)m(x)tik(x)sik(x).

So, [q(x)sik(x)− ϑ (x)m(x)tik(x)sik(x)] = 0. Since sik(x) is a non-zero polynomial, we con-
clude that

[q(x)− ϑ (x)m(x)tik(x)] = 0,

this suggests that q(x) = ϑ (x)m(x)tik(x), confirming that q(x) ∈ Cik = ⟨tik(x)⟩, for 0 ≤ i ≤ 3
and 0 ≤ k ≤ 7. Consequently, C⊥

ik ⊆ Cik.

Example 5.2. To illustrate, when we factorize the polynomial x21 − 1 over the field F49, we
obtain

x21 − 1 = (x+ 3)7(x+ 5)7(x+ 6)7.
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Let tik(x) = (x+ 3), the codes Cik = ⟨x+ 3⟩ are skew cyclic codes over F49, for 0 ≤ i ≤ 3 and
0 ≤ k ≤ 7. Consider sik(x) = x20 + 4x19 + 2x18 + x17 + 4x16 + 2x15 + x14 + 4x13 + 2x12 +
x11 + 4x10 + 2x9 + x8 + 4x7 + 2x6 + x5 + 4x4 + 2x3 + x2 + 4x+ 2. Then

x21 − 1 = (x+ 3)(x20 + 4x19 + 2x18 + x17 + 4x16 + 2x15 + x14 + 4x13 + 2x12 + x11

+4x10 + 2x9 + x8 + 4x7 + 2x6 + x5 + 4x4 + 2x3 + x2 + 4x+ 2).

Theorem 5.3. Consider the skew Θ-cyclic code C over the ring R of length n, where n is a mul-

tiple of ord(Θ). This code is defined as C =
3⊕

i=0
ϖi

[
7⊕

k=0
ζkCik

]
. For this code C, the condition

C⊥ ⊆ C holds if and only if the product s∗ik(x)sik(x), for 0 ≤ i ≤ 3 and 0 ≤ k ≤ 7, is a right
divisor of xn − 1.

Proof. Let s∗ik(x)sik(x) be such that it can be divided by xn − 1 on the right, where 0 ≤ i ≤ 3
and 0 ≤ k ≤ 7. According to Corollary 5.1, we can establish that C⊥

ik is a subset of Cik for all i
and k in the specified ranges. Implies that

3⊕
i=0

ϖi

[
7⊕

k=0

ζkC
⊥
ik

]
⊆

3⊕
i=0

ϖi

[
7⊕

k=0

ζkCik

]
.

As a result, we can conclude that C⊥ is a subset of C.
Conversely, if C⊥ is a subset of C, then it follows that

3⊕
i=0

ϖi

[
7⊕

k=0

ζkC
⊥
ik

]
⊆

3⊕
i=0

ϖi

[
7⊕

k=0

ζkCik

]
.

When we consider this equation modulo ϖiζk, we can deduce that C⊥
ik is a subset of Cik for all

i and k in the specified ranges. Consequently, we can affirm that s∗ik(x)sik(x) is divisible by
xn − 1 on the right, where 0 ≤ i ≤ 3 and 0 ≤ k ≤ 7.

The corollary presented below is a straightforward result derived from the preceding theorem.

Corollary 5.4. Consider a skew Θ-cyclic code C of length n over R. This code is defined as
C = ⟨ϖ0ζ0t00(x), ϖ0ζ1t01(x), . . . , ϖ3ζ7t37(x)⟩, where n is a multiple of ord(Θ). The condi-

tion C⊥ ⊆ C holds if and only if, for all 0 ≤ i ≤ 3 and 0 ≤ k ≤ 7, the dual code C⊥
ik is a subset

of the code Cik.

6 Conclusion

In this research paper, we delve deep into the properties and applications of skew cyclic codes
over the ring R, offering a thorough analysis that contributes significantly to the field of cod-
ing theory. Our study commences with a detailed exposition of the foundational framework of
linear codes over R, followed by an intricate examination of the distinctive structural attributes
delineating skew cyclic codes over the same algebraic structure. Furthermore, an exhaustive clas-
sification of the various skew cyclic codes over the ring R is presented, furnishing a meticulous
and comprehensive overview of their diversity and characteristics. By addressing these facets,
the manuscript endeavors to enhance comprehension regarding the attributes and utilizations of
skew cyclic codes over the ring R, thereby enriching the field of algebraic coding theory.
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