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Abstract In this paper, we investigate the hyperstability of the following o-Jensen functional
equation

flz+o)+ flz+7(y) =2f(z),

where f : X — Y with X is normed space, Y is ulrametric n-Banach space, and o, 7 : X — X
are homomorphisms. In addition, we prove some interesting corollaries corresponding to some
inhomogeneous outcomes.

1 Introduction

Throughout this paper, Q stands for the set of all rational numbers, N the set of all positive
integers, Ng = N U {0}, N,,,, the set of all integers greater than or equals mo (mo € N) , R, =
[0,00) and we use the notation X, for the set X\{0}. The famous talk of S. M. Ulam in 1940
[45] seems to be the starting point for studying the stability of functional equations, in which
he discussed a number of important unsolved problems. Among these was the question of the
stability of group homomorphisms.

Ulam problem:[45] Given a group G4, a metric group G, with metric d(- , -) and a positive
number ¢, does there exist a § > 0 such that if f : G; — G, satisfies

d(f(xy), f@)f(y) <e

forall x,y € Gy, then a homomorphism ¢ : G| — G, exists with

d(f(z), ¢(x)) <o

forall x € Gy?

These kinds of questions serve as the foundation for the theory of stability. Under the assumption
that G| and G, are Banach spaces, the case of approximately additive mappings was solved by
D. H. Hyers in 1941 [34].

Hyers’ [34] and Ulam [45] referred to this property as the stability of the functional equation
flz+y) = f(z)+ f(y). Hyers’ work has initiated much of the current research in the theory of
the stability of functional equations. In 1978, the theorem of Hyers was significantly generalized
by Th. Rassias [42], taking into account cases where the relevant inequality is not bound. This
property was called the Hyers-Ulam-Rassias stability of the additive Cauchy functional equation
flz+y) = f(@)+ f(y)

This terminology also applies to other functional equations. The result of Rassias [42] has been
further generalized by Rassias [43], Th. Rassias and P. Semrl [44], P. Gavrugd [32], and S. -M.
Jung [36]. Simultaneously, a special kind of stability has emerged, which is called the hypersta-
bility of functional equations. This kind states that if f satisfies a stability inequality related to
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the given equation, then it is also a solution to this equation. It seems that the first hyperstability
result was published in [15] and concerned ring homomorphisms. The term "hyperstability",
on the other hand, appeared for the first time in [37]. Hyperstability is frequently mistaken for
superstability, which also admits bounded functions. Further, J. Brzdek and K. Ciepliriski [17]
introduced the following definition which describes the main ideas of such a hyperstability no-
tion for equations in several variables (R™ stands for the set of all nonnegative reals and CP
denotes the family of all functions mapping a set D # ¢ into a set C # ¢).

Definition 1.1. [17] Let S be a nonempty set, (Y, d) be a metric space, ¢ € Rﬁn and F, F» be
two operators mapping a nonempty set D C Y into Y'5". We say that the operator equation

Frp(zy, -+ xn) = Fap(xr, - ,@n), 1, ,ZTn €S, (1.1)
is e-hyperstable provided every (o € D that satisfies the inequality
d(Frpo(zr,- -+ an) , Fago(zr, - an)) <elar, -, @), @1, - ,2, €8, (1.2)
fulfils the equation (1.1).

Brzdek et al. [17] proved the fixed point theorem for a nonlinear operator in metric spaces
and used this result to study the Hyers-Ulam stability of some functional equations in non-
Archimedean metric spaces. In this work, they also obtained the fixed point result in arbitrary
metric spaces as follows:

Theorem 1.2. [17] Let X be a nonempty set, (Y, d) be a complete metric space, and A : YX —
Y X be a non-decreasing operator satisfying the hypothesis

lim Aé,, =0
n—oo
or every sequence 1 0, in Y~ with
for every seq {00}, en
lim 6, =0
n—oo

Suppose that T : YX — Y X is an operator satisfying the inequality
d(TE(x), Ti(x)) < A(AE w)(x), &EueY™, zeX, (1.3)

where A : YX x YX :— RY is a mapping which is defined by

A(E, p)(x) = d(E(x), u(x)), &EpeY™, zeX. (1.4)
If there exist functions € : X — Ry and ¢ : X — Y such that
d((Te)(2), (x)) < e(x) (1.5)
and
e (x) =Y (A")(x) < o0 (1.6)
neNy
forall x € X, then the limit
Jim (T"p) () (1.7

exists for each x € X. Moreover, the function 1) € YX defined by

P(x) = nli_)n(lo (T"¢)(x) (1.8)
is a fixed point of T with

d(go(m) , z/z(x)) < e&*(z) (1.9)
forallz € X.

In 2013, Brzdek [19] gave the fixed point result by applying Theorem 1.2 as follows:
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Theorem 1.3. [19] Let X be a nonempty set, (Y,d) be a complete metric space, fi,--- , fr :
X — Xand Ly,...,L, : X — R, be given mappings. Suppose that T : YX — YX and
A :RY — R are two operators satisfying the conditions

A(TeE() , Tu(x)) < ih(x)d(f(fi(w)),u(fi<x>))7 (1.10)

forallé,p e YX x € X and

r

Ad(x) =Y Li(x)s(fi(z)), deRY zeX. (1.11)

i=1

If there exist functions € : X — Ry and ¢ : X — Y such that

d(Te(), ¢(@)) < () (1.12)
and -
e*(z) := Z (A") (z) < 00 (1.13)

n=0

for all x € X, then the limit (1.7) exists for each x € X. Moreover, the function (1.8) is a fixed
point of T with (1.9) for all x € X.

Brzdek [19] then used this theorem to improved, extended, and complemented several earlier
classical stability results concerning the additive Cauchy equation. Many papers on the stability
and hyperstability of functional equations were published thanks to this important achievement.
For example, we refer to [1]-[11], [22]-[24], and [40]. Another point worth noting is that there
were other versions of Theorem 1.3 in ultrametric space [5], in 2-Banach space [6], [22], and in
n-Banach space [23] that helped to discuss many results on the stability of functional equations.
For more details on the stability and hyperstability in 2-Banach spaces and n-Banach spaces,
we refer the reader to seeing the survey [12].

M. Almahalebi et al. [9] proved a new version of Theorem 1.3 in ultrametric n-Banach space as
follows:

Theorem 1.4. Let m € N. Supposing that:

(i) X is a nonempty set, (Y, |-,--- ,-||s) is an ultrametric (m + 1)-normed space on a non-
Archimedean field and g : X — Y is a surjective mapping,

(ii) The mappings fi,...,fr: X — X, Ly,...,L, : X — R, and the operator T : YX — YX
are such that

7e@-Tut) o) 0| < max {L@eG@)-ur@) o).

}

1<i<r
(1.14)
forallé,peYX andall x,z, - ,zm € X,
(iii) The functions ¢ : X™! — R, and ¢ : X — Y are such that

and the operator A : RX™" — RX™"" is such that

lim A" (z,21, " ,2m) =0 (1.16)

n— oo
forall x,z, - ,zm € X, where

AS (2,21, 2m) 1= max {Li(x)é(fi(a:),zl,-~- ,zm)}, o€ Rfm+l,x,z1,~-~ ,zm € X.
- (1.17)
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Then we have:

(i) Foreachzx,z, - ,zym € X, the limit

¢(z) == lim T"(z) (1.18)

n—oo
exists and the function ¢ : X — 'Y, defined in this way, is the unique fixed point of T with

ng(m) —(x),9(21),,9(2m) H* < sup {A"s (T, 21,y 2m) }7 (1.19)

neNy
(ii) If

A| sup {A”s (x, 21, ,zm)} < sup {A”+15(:v,zl,~~ s Zm) }, (1.20)
neNy n€eNy

then 1) is the unique fixed point of T satisfying (1.19).

Let X and E be real vector spaces. If an additive function o : X — Y satisfies o(z + y) =
o(z)+o(y) and o (o(x)) = @ forall z,y € X, then o is called an involution of X see [41]. For
given involutions o, 7 : X — X, the functional equation

flz+o) + fle+7() =2f(z), z,yeX (1.21)

is called a Jensen functional equation with involutions. The general solution of (1.21) has been
given by B. Fadli et al. [29] when f : X — Y with X is a commutative semigroup and Y is a
commutative group (2-torsion free in the first equation and uniquely 2-divisible in the second).
Namely, they prove the following theorem.

Theorem 1.5. [29] Suppose that X is a 2-torsion free. The general solution f : X — Y of the
functional equation (1.21) is given by f(z) = A(z) +a, x € X where A: X — 'Y is an additive
mapping such that Aot = —Aoo and a € Y is a constant.

Using Theorem 1.4 as a basic tool, we discuss some hyperstability results for the equation
(1.21) in ultrametric n-Banach spaces.

2 Preliminaries

The concept of n-normed space was given by A. Misiak [38] as a generalization of the notions
of classical normed space and of a 2-normed space introduced by S. Gdhler [30], [31]. We need
to recall some basic facts concerning n-normed spaces and some preliminary results.

Definition 2.1. [38] Let n € N,, X be a real linear space with dim X > n. An n-norm on X is a

real function ||-,--- ,-|| : X™ — [0, 0o) satisfies the following conditions:
@) Hxl, e ,an = 0if and only if x|, - - - , z,, are linearly dependent,
(i) ||z, @n|| = ||zi, - 2, || for every permutaion (iy, - -« ,i,) of (1,-- ,n),
(iii) ||owr, - an|| =l |21, 2],
(V) |lz1 4y 22, @] < o,z ||+ ||y 22, 2|

forall « € R, and all z,y,zy,--+ ,z, € X. The pair (X,

|-, o ,H) is called an n-normed

space.
We note that Hx1,~-~ ,a:nH >0forall xy,--- ,x, € X because
2||x]a"' 7xn|| > Hxl — T, aan

= ||()’... ,an

=0.
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Example 2.2. R" equipped with the function ||-,--- ,-|| , defined by
Tl ot Tin
Hxl,n- ,mnHE = ‘det(mij) | = abs
Tnl o Tpn
where ©; = (21, , %) € R" fori € {1,--- ,n}, is n-normed space.
Lemma 2.3. [24] Let (X, H, e ,||) be an n-normed space. If {xk}keN is a convergent se-

quence of elements of X, then

, forevery vy, y, € X.

g n. -l = | im

K. Hensel [33] has presented a normed space which does not have the Archimedean property.
The non-Archimedean framework is of particular relevance since the theory of non-Archimedean
spaces has piqued the interest of physicists for their research, particularly in quantum physics
difficulties, p-adic strings, and superstrings.

In the following, we present some basic concepts on the non-Archimedean normed spces (or
more details, we refer to [27]).

Definition 2.4. [27] Let K be a field. A valuation on K is amap | - | : K — R such that for some
real number C' > 1, the following hold:

(6] ’x‘ > 0 for any « € K with equality only for z = 0,
(i) |zy| = |z| - |y| forany 2,y € K,
(iii) For any z € K, if |z| < 1, then |z + 1| < C.

The valuation |-| such that |z| = 1 for every non zero z and |0| = 01is called the trivial valuation.

Definition 2.5. [27] A valuation | : ] on K satisfies the ultrametric inequality if for any z,y € K

yl}-

’x+y‘ Smax{’x

)
Such valuation is called a non-Archimedean valuation.

Proposition 2.6. [27] A valuation |.| on K satisfies the ultrametric inequality if and only if one
can take C = 1 in Definition 2.4.

Example 2.7. (Non-Archimedean valued field)
Let p be a fixed prime number. Because of the unique fraction in Z, every non-zero rational
number x can be written as

’x‘ _p™ ifx#0
r 0 ifz=0

|- |p is called the p-adic valuation. The completion of Q with respect to | - ‘p is called the field
of p-adic numbers and is denoted Q,,.

By the trivial valuation we mean the function | - | taking everything but 0 into 1 and |0‘ =0.
In any non-Archimedean field, we have |1‘ = ’ . 1| =1and |n| <lforneN

Definition 2.8. Let X be a vector space over a field K with a non-Archimedean non-trivial val-
uation ] . ] A non-Archimedean norm on X is a map H . H* : X — R, satisfying the following
conditions:
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(i) ||z||, = 0if and only if z = 0,
(i) [Azl[, = [A] [|=]

,»forany z € X and any A € K,
(i) ||z +y|, < max {[|z|, , |jy||,}. forany z,y € X.

Condition (3) of Definition 2.8 is referred to as the ultrametric or strong triangle inequality.
The paire (X - H *) is called a non-Archimedean normed space or an ultrametric normed space.
For example, the paire (Qy, | - |,) is a non-Archimedean normed space.

Definition 2.9. [26] Let X be a vector space with dim X > n over a valued field K with a
non-Archimedean valuation | : ’ A function H, e ,H* : X" — [0,00) is said to be a non-
Archimedean n-norm if

(@) ||lz1,--+ ,zn|, = Oifand only if zy,- - - , z, are linearly dependent,

(i) [|zr, - @0, = ||zi, - 24, ||, for every permutaion (iy,--- ,i,) of (1,--- ,n),
i) oz, -zl = fol v 7l

(V) || 4y, 22, 2|, Smax {||z, 20, ||, s [y 22, 20|, }

forall « € K, and all z,y, 2y, ,z, € X. Then (X,
n-normed space or an ultrametric n-normed space.

e ||*) is called a non-Archimedean

Example 2.10. Let p be a fixed prime number. We defined an ultrametric n-norm on Qj by

1, saall, = [ det(zi) |,
where z; = (241, , Tin) € Qp fori e {1,---,n}.
If (X, ||+ ,-||,) is an ultrametric n-normed space, then
k
;%»1727"' » Tn * < 1??§)(k{||yi7x2’.“ 79371,”*}

foranyk € Ny, o, -+ jx, € Xandally; € X forie {l,--- n}.
According to the conditions in Definition 2.9, we have the following lemma.

Lemma 2.11. Let (X, ||, cee ||*) be an ultrametric n-normed space. If z\,--- ,z, € X are
linearly independent, x € X and
H;E,w2,~-~ 7“’””* =0 foreverywy, - ,w, € {z1,- + ,2n},
then x = (.
Lemma 2.12. A sequence (yk)k y Of elements of an ultrametric n-normed space (X, H, ceey H*)
is called a Cauchy sequence if t%zere are linear independent points z,, - - - , z, € X such that
hm Hyk — Y, W2, 7wnH* = O forevery W, , Wy S {Zlv' o 7277,} .

k,£— o0

Definition 2.13. A sequence {yj }, _, is said to be convergent if there exists a y € X with
lim ||yx —y, 22, ,an||, =0 forevery ap, - ,z, € X.
k—o00 *
In this case, we call that {yj }, _, converges to y or that y is the limit of {y }, _ and we write

{Ur} ey — v ask — oo

By condition (4) in Definition 2.9, we have

||yk — Yo, T2, amn||* S @Sl_}lél%—l {Hy_H-] — Y5, X2, aan*}v (6 < k)
forallx,,---  x, € X. Therefore, a sequence {yk}keN is Cauchy in (X, H, cee H*) if and only

if {Yrs1 = Yr o COMVerges to zero in an ultrametric n-normed space (X, o]l
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Definition 2.14. If every Cauchy sequence in an ultrametric n-normed space (X, ||-,---,-||,)

converges to some y € X, then (X, ||-,--- ,-||,) is said to be complete. Any complete ultrametric
n-normed space is said to be an ultrametric n-Banach space.

Now we state the following results as a lemma.

Lemma 2.15. Let (X, || RN ||*) be an ultrametric n-normed space. Then the following con-
ditions hold:
(l) ’Hxvg:Za”' 7an* - ||yaI27”' aan* < ||I*y7l’2,"' 7In||* forallx,y,x2,~~ y T, €
X,

(ii) if v € X and |

T, Ly, ,mnH* =0 forallxy, - ,x, € X, thenx =0,

(iii) if {xk }keN is a convergent sequence of elements of X, then

lim ||xkay2a"' aynH* = ‘ lim Tk Y2, " 3 Yn forallyZa"' yUn € X.
k—> o0 k—o0 .
3 Hyperstability results
In this section, we assume p € N, (X, || - ||) is a normed space, and (Y, ||-,--- H*) is an ultra-

metric (p + 1)-Banach space on a non-Archimedean field K with a non-Archimedean valuation
‘ : |>|< K — R+.

Theorem 3.1. Let hy, hy : XP™2 — R be two functions such that
U:= {n € N:a, :=max {A](n)AJ(n),\]" (n)AT"(n)} < 1},

where
Ai(n) :==inf{t € Ry : hi(nz,z1,- -+, 2,) <

thi(x, 21, - ,zp)},
M (n):=inf{t € Ry : hi(z +no(x), 21, ,2) <thi(z, 2z, ,2)},
and
AT (n) :=inf{t € Ry : hi(z +no(z) — n7(x), 21, ,2p) < thi(w, 21, ,2p)}
forallz,zy,--- 2z, € X andn € N, where i = 1,2 such that
nhﬁngo AT (n)A2(—n) =0.

Suppose that f : X — Y satisfies the inequality

Hf(x + U(y)) + f(ﬂ? + T(y)) - 2f($),g(2'1)7 e 7g(zp) S hl (Jf, 21yttt 7Zp)h2(y7 21yttt 7Zp)7
" 3.1)
forall x,y,z1--- ,2z, € Xog where g : X — Y is a surjective mapping. Then f is a solution of

(1.21) on X,.

Proof. Replacing x by x + mo(z) and y by —max in (3.1) where m € U, we get

Hf(x) + f(x + mo(z) — mT(a:)) — 2f(x + ma(x)),g(zl), o g(zp)

*

< h (x +mo(x), 21, - ,zp)hz(fmx, 21,
(3.2)
forall z, 2, ,z, € X,. For every m € U, we can define the operators Ty, : Y X0 — Y ¥0 and

p+l
XO

XZJ+I
A R = R® by

Tmé(z) :=2¢(z 4+ mo(z)) — &(z + mo(z) — m7(x)) (3.3)
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and

Apd(z, 21, -+, 2p) 1= max {5(x+ma(a:),z1,-~- ,zp),é(erma(x) —m7(x), 21, - ,zp)
3.4)

+1
forall z, 21, - ,2, € Xo, § € YXo and § € Rf’p . Note that, for every m € U, the operator
A := Ay, has the form given in (1.17) with X := X,, r = 2, Li(z) = Ly(z) = 1, fi(z) =
x +mo(z), and fo(z) =z + mo(x) — m7(z).
Furthermore, when we put

em (T, 21,0, 2p) 1= hi(z +mo(x), 21, , 2p) ho(—ma, 21, -+, 2p),

the inequality (3.2) becomes
§5m($7217"'52p)7 I,Z],"',ZPEXO, meu.

(3.5)
From here till the end of the paper, we denote by f the restriction of f : X — Y to the set
Xo C X unless we mention otherwise. Moreover, for every &, i1 € Y X0, we have

ﬁrzf(z> 7f(x)ag(zl)7”' ﬂg(zp)

*

HTmﬁ(ﬂc) — Tpe(), 9(21), -+, 9(2p) ) = H2§(3: +mo(z)) = &(z +mo(z) —mr(z))

—2p(z +mo(z)) + p(z +mo(z) —mr(z)),9(z1), -, 9(zp)

*

smm{Pwk®+ﬂwwD—u@+md@%ﬂm%~nﬂ%)

|

Smw{k@+wwwﬁ—u®+mdﬂhﬂm%~wﬂ%)

*

&(z+mo(z) —mr(z)) — p(z +mo(z) —mr(z)),9(1), -, 9(zp)

y

*

&(z+mo(z) —mr(z)) — p(z +mo(z) —mr(z)),9(z1), -, 9(z)

)

y

§(fi(x))—u(fi(m)),g(,z’]),---,g(zp) }, x, 21, ,2p € Xo, mEU.

= max {Li(a:)

This means that (1.14) holds for 7 := 7, for any m € . Next, by the definitions of A;, A7, and
A7, we have

em(x,zl, e ,zp) <A (M)A (=m) hy (@, 215+, 2p) ho (T, 21,0+ 2p), X215 ,2p € XOé
therefore, by induction, we directly obtain that G0

Alem (z, 21, 2p) S AT (M)Aa(—m) al by (@, 21,0+, 2p) ho (2, 21,0+ 4 2p) (3.7
forall z, 21, -+ , 2, € Xo, n € Ny, and m € U, where

Q= max {X{ (m)AS (m), AP (m)AT" (m)}7 meU.

Letting n — oo in (3.7), we get

nlij;o/\%5m(ffazla‘” 2p) =0, w21, 2 € Xo, meU.
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As described above, we deduce that all assumptions of Theorem 1.4 hold. Therefore, there is,
for every m € U, a unique fixed point .J,,, : Xo — Y of the operator 7, defined by

Im(z) == nl;rr;oﬁgf(x), ze€Xg,mel

such that

Hﬂmﬂmwxwm»~»w%>

< sup {Aﬁlsm (2,21, - 7zp)}, x,21, ,2p € Xo,m €U.

* neNy
3.8)
It means that

I () =200 (x + mo(x)) — I (x + mo(z) — m7(z)), z€Xomel. 3.9

Now, for each m € U and z,y, z1,- - , 2, € X such that x + o(y) # 0 and = + 7(y) # 0, we
prove that

Tof(z+o)+Tnf(e+7) —2Tnf(2),9(z1),- 9 (%)

*

§ Oé:lnhl (xazla”' 7Zp)h2(yazlv"' 72;0);
(3.10)

for any n € Ny. Itis clear that if n = 0, then (3.10) holds by (3.1). Fix an n € N and assume that
(3.10) holds for any m € U and z,y, 21, - , 2z, € Xo such that z 4+ o(y) # 0 and = + 7(y) # 0.
Then, in view of (3.10), we get

Wﬁ“f@+a@n+ﬂﬂ“f@+T@D—2ﬁTV@LMA%~wM%)

*

zﬁn(@+a@»+ma@+a@»)—zm(@+a@»+nwu+a@»—mdw+dw0
+2ﬁ#<@+T@D+Ww@+¢@D)—Zﬁ(@+T@D+mv@+T@D—mdx+ﬂw0

— 4T f (@ + mo(2)) + 27, f (x + mo(z) — m7(x)), 9(21), -+, 9(2p)

*

< max{|2]*H7'£f<(m +o(y)) +molc + U(y))> + T,;;f<(x 7)) + mo (e + T(y))>

2T (o4 mo(a).a(). - 0l

*

ﬁm(u+a@»+ma@+a@»—mdx+dw0

b

+ﬁm(@+7@»+mu@+7@»—mﬂx+ﬂw0

y

= 2T f(z +mo(z) —m7()), g(21), - 9()
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< max { H’r"mf<(x +o(y)) + mo(z + J(y))> + T;;f((x +7(y)) +mo(z + T(y)))

~ 273 f (4 mo(@).g(21). -+ .9(2)

*

mf(@c L o(y) +mo(x+oly)) - m7<x+a<y>>)

)

n mf(o: () +mo(a+7(y)) — mr(e + T<y>>)

y

< o)), max {h1 (x4+mo(z),21,- ,2p) ha(y +mo(y), 21, 2p)

= 2T, f(z + mo(z) —m7(2)), g(21), - 9(2p)

hi(z 4+ mo(z) —mr(x), 21, 2p) ha(y + mo(y) — mr(y), 21, - ,zp)}

< alhy (@71, z) o (3, 21, 2p) Mk {Aﬂm)As’(mxAi’”(m)xﬂm)}
= Oé::;th (-r,Zl, e azp) h2 (yazla e 7Zp)

By mathematical induction, we deduce that (3.10) holds for any n € Ny. Letting n — oo in
(3.10) and using the surjectivity of g in view of Lemma 2.11, we obtain the equality

Im(x+0W) +JIm(xz+7(y) = 2Jm(z), 2,9, (x+0(y)),(=+7(y)) € Xo,meU. (3.11)

In this way, we find a sequence {Jm }meu of a Jensen functions with involutions on X such that

Hf(x) = Jm(2),9(21) 59 (%) || < sup {Afem (z,21,-+ ,2p)}
* neNy
< A (m)Xa(=m)hy (z, 21, 2p) ho (T, 21, -, 2p) sup {op }
neNy
(3.12)
forall z, 21, -+, 2, € Xo and m € Y. It follows, with m — oo, that f is a solution of (1.21) on
Xo. O

By similar method, we can prove the following theorem.
Theorem 3.2. Let h : XP+2 — R be a function such that
U:= {n €N:a, :=max{\7(n),\""(n)} < 1},
where
AMn) :=inf{t e Ry : h(nx, 21, , 2p) <t h(z, 21, ,2) },
A (n):=inf{t e Ry : h(z +no(x), 21, ,2) <th(z zi,-, %)},
and
AT (n) :=inf{t € Ry : h(z +no(z) —n7(zx),21, - ,2) <th(z, 2, , %)}
forallx, z1, - ,z, € X andn €N, such that

lim \7(n) + A(—n) = 0.

n—oo
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Suppose that f : X — Y satisfies the inequality

“f(x+0(y)) +f(9:+7'(y)) 72,]0(1'),9(21), T 79(217) < h((E,Zl, o azp) +h(yazla T 7Zp),
" (3.13)
forall z,y,z1--- ,z, € Xgwhere g : X — Y is a surjective mapping. Then f is a solution of

(1.21) on X,.

As particular cases, we introduce the following two corollaries concerning the inhomogeneity
of the functional equation (1.21).

Corollary 3.3. Let hy, h, be two functions as in Theorem 3.1, and let f : X —Y and G : X* —
Y be two functions such that G(0,0) = 0 and satisfy the inequality

Hf(x—f—o(y))—}—f(x—f—r(y))—2f(:6)—G(x, y)7g(zl)a e 7g(zp) S h] (1’7 21yt azp>h2(y7 21yt 7Zp)a
) (3.14)
forallz,y,z\--- ,z, € Xowhere g : X =Y is a surjective mapping. If the functional equation
Fl@t+o() + flz+7() =2f(2) + Gla,y) (3.15)

has a solution fy: X — Y, then f is a solution of (3.15) on X.

Proof. Letvy : X — Y be a function defined by ¢(x) := f(z) — fo(z) for all z € X. Then for
all z,y,21, -+, 2, € X, we have

Hw<m+a<y>) e+ () - 20(0). g(21), - s g()

_ Hf(x + o) + fz+7(y) - 2f(x)

— G(z,y) — fo(z +0(v) — folz+ 7)) +2fo(x) + Glz,y),9(21), -+, 9(2p)

*

_ Hf<x+a<y>> +f @+ () — 27(2) - Glaw).g(21), - - g(z)

*

< hi(z, 21, zp)ha(y, 21, 4 2p).
Therefore, 1 is a solution of (3.15) on X. Moreover, we have
fleto) + fz+7() -2f(2) = Glay) = ¥(z + o)) + v (z +7(y)) - 2¢(2)
+ ol +o(y)) + oo+ 1) - 26(x) - Glavy)
=0
for all z,y € X, which means that f is a solution of (3.15) on X. O
With an analogue proof of Corollary 3.3, we can prove the following corollary.

Corollary 3.4. Let h be a function as in Theorem 3.2, and let f : X — Y and G : X*> = Y be
two functions such that G(0,0) = 0 and satisfy the inequality

£t @) 270Gl o). <oz ) ),
’ (3.16)
forallz,y,z1--- ,z, € Xowhere g : X =Y is a surjective mapping. If the functional equation

(3.15) has a solution fo : X — Y, then f is a solution of (3.15) on X.

In the case o and T are homomorphisms such that c = idx and T = —idx with X is a real
or complex vector space, we get the following Cauchy-Jensen functional equation
fet+y)+ fle—y)=2f(x), zyeX (3.17)

Therefore, we can derive the following corollaries as consequences of Theorems 3.1 and 3.2.
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Corollary 3.5. Let s,t,7,0 € R such that s < 0,t <0andr,0 > 0. If f : X — Y satisfies

<Ol H!Izz

forall x,y,z -+ ,z, € Xy, then f(x) = A(z) + a, x € Xo, where A : Xo — Y is an additive
mapping and a € Y is an arbitrary constant.

Hf<x+y>+f<x—y)—2f<x>,g<z1>,~ ()

, (3.18)

Proof. 1t is easily seen that the functions h; and h; given by

p
hi(z, 21+, 2p) 1= GIHxHS H HZZHTI
=1

and

)

p
hz(x,zl e 7Zp) = 92||yHt H HZZ’ "2
i=1

for all z,y,21---,2, € Xo where 0; x ¢, = 0 and r; + r, = r, satisfy all the conditions in
Theorem 3.1 because, for each m € N, we have

A1(—m) :inf{ﬁ€R+:h1(—mx,z1~-- ,zp) < Bhy(z, 21 - ,zp)}

=it {s Ry —mal [0 < o0l TT 0

= i=1

= [m|*,

A7 (m) :inf{ﬁ eRy :hi(z+mo(x), 2z, 2p) < Bhi(w,2 - ,zp)}

p p
= int {5 €.+ 01 0n+ el TT " < o1l T 11"}
i=1 i=1

and

27T (m) = inf{ﬁ eRy : hi(z+mo(z) —mr(x),21-,2) < Bhi(z, 21+ ,zp)}

P P
= inf{ﬂ e Ry : 01| @m+ V| [] ] < 80u|=||” T ] ||zi||”}
i=1 i=1
=2m+ 1],

also, we have \y(—m) = |m|", A3 (m) = |m + 1’ and A\J'7(m) = |2m + 1| for all m € U.
Then we obtain

O —max{)\( YAS (m ),)\‘f’T(m))\g’T(m)}, meU
:max{}m+l|s+t,|2m+l|s+t} <1, mel.
Since, s + t < 0, then we get

lim A{(m)X\(—m) = lim |m+1| |m] =0.

m—r 00 m—r o0

According to Theorem 3.1, we get the desired result. O
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By a similar method, we have the following corollaries:

Corollary 3.6. Let s,r,60 € R such that s < O0andr,0 > 0. If f : X — Y satisfies

p
<o( el + ") T 1=
* i=1

forall x,y,z -+ ,z, € Xy, then f(z) = A(z) + a, x € Xo, where A : Xo — Y is an additive
mapping and a € Y is an arbitrary constant.

" (3.19)

Hf<x+y> Ff e =)~ 20() gz a(z)

Corollary 3.7. Let f : X — Y and G : X* — Y be two functions such that G(0,0) = 0 and
satisfy the inequality

" (3.20)

/4
<O« *llg" TT ll=

Hf(rv+y)+f(x— y)— 20(x) - Gla) g(2),- - 1 9(z)

forall z,y,z1 -+ 2z, € Xo where g : X — Y is a surjective mapping, s,t,r,0 € R such that
s < 0,t<0andr,0 > 0. If the functional equation

fle+y)+ fle—y) =2f(x) + G(z,y) (321
has a solution fy: X — Y, then f is a solution of (3.21) on X.

Corollary 3.8. Let f : X — Y and G : X* — Y be two functions such that G(0,0) = 0 and
satisfy the inequality

Hf +y)+ fa—y)~2f(2)~Clz.y). g(21), - 1 9(z) L (322)

=0l ) TT 1

forall z,y,z1--- ,z, € Xo where g : X — Y is a surjective mapping, s,r,0 € R such that
s <0, and r,0 > 0. If the functional equation (3.21) has a solution fy : X — Y, then f is a
solution of (3.21) on X.

In the following corollaries, we discuss some additional hyperstability results when X is a
C*-algebra. When we take the homomorphisms o and T of X as o(x) = x and 7(x) = x*, we
conclude the following functional equation

f(x+y)+f(m+y*) =2f(z), =z,yeX. (3.23)

The solution of (3.23) is given as f(x) = A(z) + a, x € X where A : X — Y is an additive
mapping and a € Y is an arbitrary constant such that A(x*) = —A(x).

Corollary 3.9. Let s,t,r,0 € R such that s < 0,t < Qandr,0 > 0 and let Y be an ultrametric
(m + 1)-Banach space. Assume that the function f : X — Y verifies the inequality

Hf(x +y)+ fz+y") —2f(2),9(21), -, 9(zp)

<kl ol HH%H (3.24)

forall x,y,z -+ ,z, € Xy, then f(z) = A(z) + a, x € Xo, where A : Xo — Y is an additive
mapping and a € Y is an arbitrary constant such that A(z*) = —A(x).

Proof. The proof follows from Corollary 3.5 by rewriting (3.18) as the following

Hf<x+y>+f<x— y) = 27(x) — Clary)g(a1). - 2 glz)

<9|| 1ol HH%H (3.25)

where G(z,y) = f(z —y) — f(z+y*), z,y € X. Since G(0,0) = 0 and the equation (3.23)
has a solution on X, then according to Corollary 3.7, we conclude the desired result. O
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Corollary 3.10. Let s,t, 7,0 € R such that s < 0 and r,0 > 0 and let Y be an ultrametric
(m + 1)-Banach space. Assume that the function f : X — Y verifies the inequality

= 0(0el+ i) T

forall x,y,z -+ ,z, € Xy, then f(z) = A(z) + a, x € Xo, where A : Xog — Y is an additive
mapping and a € Y is an arbitrary constant such that A(x*) = —A(z).

T

,  (3.26)

Hf<x+y> @) —2f(@) g2, glz)

Conclusions:
Throughout this paper, we demonstrate the hyperstability of a general equation with involutoins.
Additionally, we derive some colollaries as special cases and direct consequences of the main
results presented in this paper. This work perhaps open new horizons for the study of this type of
equations in ultarmetric n-Banach spaces.
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