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Abstract Introduced the concepts of intrinsic ideals and inlets in an Almost Distributite
tice(ADL). Characterized the intrinsic ideals in terms of inlets. Establishext afssquivalent
conditions for an ideal of an ADL to become intrinsic. Finally, derived sdopological prop-
erties of the prime spectrum of intrinsic ideals of an ADL.

1 Introduction

The concept of an Almost Distributive Lattice(ADL) was introduced bya8w U.M., and Rao
G.C., B] as a common abstraction of many existing ring theoretic generalizatiom80oblean
algebra on one hand and the class of distributive lattices on the othert pafer, the concept of
an ideal in an ADL was introduced analogous to that in a distributive latticét aves observed
that the set of all principal ideals of an ADL forms a distributive lattice. Tisvided a path

to extend many existing concepts of lattice theory to the class of ADLs4]JitHe concepts of
D—filters and primeD—filters are introduced in an ADL and studied their properties.7Ind
relation between thé—complement and — c—irreducible element is established with suitable
examples. In1], the properties of divisibility in a distributive lattice are studied with respect
to a filter. In [3], the idea of intrinsic ideals is introduced and the prime ideals of distributive
lattices are used to study specific characteristics of these ideal, thd concept of —ideals

is introduced in an ADL and their properties are discussed.

In this paper, the notions of intrinsic ideals and inlets are introduced to ARLs.derived
that the class of all intrinsic ideals forms a distributive lattice and then prthaddhe class of
all inlets of an ADL forms a sublattice to the lattice of all intrinsic ideals. The inicifdeals
are characterized in element wise. Some equivalent conditions aldistsd for every ideal
of an ADL to become an intrinsic ideal. A congruence is introduced on ah &ml then a set
of equivalent conditions is given for the respective quotient ADL tcobee a Boolean algebra.
Certain basic properties of prime intrinsic ideals of an ADL are investig#testt of equivalent
conditions is given for the prime spectrum of intrinsic ideals of an ADL tcobse a Hausdorff
space. A necessary and sufficient condition is given for the primarsipe of intrinsic ideals to
become a regular space.

2 Preliminaries

In this section, we review key definitions and important results related to 2t will be
necessary for the discussions in this paper.

Definition 2.1.[8] An Almost Distributive Lattice(ADL) with zero is an algeb® Vv, A, 0) of
type (2,2,0) satisfying the following properties:
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D) (@vy)rz=(zr2)V(yA2)

2 zA(yVvz2)=(zAy)V(zAz),

Q) (zVvy) Ay =y,

4) vy rne=uz,

() zV(zAy)=u,

(6) 0Nz =0, foranyx,y,z € R.

If (R,V,A,0)isanADL, foranya, b € R, definea < bif and only ifa = aAb or equivalently,
aV b = b, then< is a partial ordering orkR. An elementm in R is said to bemaximalif it is
maximal with respect to the partial orderirgon R.

Definition 2.2.[8] Let R be a non-empty set. Fixa € R. For anyz,y € R, definex Ay =
y,xVy =xif x # zo, andzo Ay = zo, z0 Vy = y if x = x9. Then(R, Vv, A, zo) is an ADL and

it is called a Discrete ADL withxg as its 0. Alternatively, Discrete ADL is defined as an ADL in
which every non-zero element is maximal in the pdset<).

Theorem 2.3.[8] Let R be an ADL. Then for any, b, c € R, we have the following:
(1) avb=a<aAnb=0,

9) (avb)Ae=(bVa)Ac,
10) aAb=0ifand only ifb Aa = 0.

(2) avb=bsanb=aq,

(3) a Ab=bAawhenevern < b,
(4) Ais associative i,

(5 aAnbAc=bAaAc,

(6) aV(bAc)=(aVb)A(aVec),
(7) ana=aandaVa=a,

(8) OVa=aandan0=0,
(9)

(

Theorem 2.4.[8] Let R be an ADL andn € R. Then the following are equivalent:
(1) mis maximal inR,

(2) mvae=m forall z € R,

(3) mAxz =gz forall x € R,
)

(4) (m] =

Definition 2.5.[8] A nonempty subsel of R is called anideal (respectively dilter) of R, if
aVbaAnz el (respectivelyu Ab,zVa e I)foralla,beIandallx € R.

Definition 2.6.[2] For any nonempty subset of an ADL R, defined* = {z € R|aAz =
0 foralla € A }. Here A* is called the annihilator ofl in R.

For anya € R, we have{a} (a]*, where(a] is the principal ideal generated hy An
element: of an ADL R is called dense eIement( |* = {0} and the seD of all dense elements
in ADL is a filter if D is non-empty.

Definition 2.7.[4] For any subsetl of an ADL R, define(4, D) = {z € R|aVvz € Dforalla €
A}

For anya € R, we simply represer{a}, D) by (a, D). Clearly,(m, D) = R, wherem is a
maximal element of:. It is also obvious that0, D) = D andD C (z, D) forall z € R.

Proposition 2.8.[4] Let R be an ADL. For any:, b, c € R, we have
(1) a <bimplies(a, D) C (b, D),
(2) (aNb,D) = (a,D)n(b,D),
(3) ((aVvb,D),D) = ((a, D), D) ((b, D), D),
(4) (a,D) = Rifand onlyifa € D.



Intrinsic Prime Spectrum of ADLs 125

3 Intrinsic ideals of ADLs

In this section, the notion of intrinsic ideals is introduced. A characterizatieorém of in-
trinsic ideals is given. It is proved that the class of all intrinsic ideals farosmplete distribu-
tive lattice. A set of equivalent conditions is given for an ideal of an ADlbecome intrinsic.
Also, the notion of inlets is introduced in an ADL. The notion of weakly quasiplemented
ADLs is introduced and then weakly quasi-complemented ADLs are cfegiized in terms of
inlets.

Now, we begin with the following definition.

Definition 3.1. For any non-empty subsstof an ADL R, the setS+ is defined ass* = {a €
R|(a,D) C (s, D), for somes € S}.

Lemma 3.2.Let S, T be two non-empty subsets of an ABLThen we have the following:
(1) S cC S+,
(2) S CTimpliesS+ C T+,
( ) SLL SL
(4) D

Proof. (1) and (2) are clear.

(3) By (1) and (2), we have tha§+ C S++. Leta € S++. Then there exists € S+
such that(a, D) C (s, D). Sinces € S*, there exists € S such that(s, D) C (¢, D). Then
(a,D) C (s,D) C (¢, D) andt € S. Thereforea € S+ and hences++ C S+. Thusst = §++.

(4) Clearly, for anyd € D, we have thatd, D) = R. That implies(a, D) C R = (d, D), for all
a € R. Thereforea € D+, for all a € R. HenceD' = R. ]

In case ofS = {s}, we simply denote[s}* by (s)*, where(s)* = {a € R| (a,D) C
(s,D)}.
Lemma 3.3.For any elements, ¢ of an ADL R, we have the following:
(1) (0)* ={a€R|(a,D) =D},
2) (s)==((sP™,
3) ()t =(s)"

(2)
(3)
(4) s < timplies(s)* C (t)*,

(5) s € (t)" implies(s)" C (1),

6) (sAt)t=(tAs)t and(svt) = (tVvs)t,
(7)

(8)

(

( -
7) (s)tn(t)t = (snt)h,
8) (s,D) = (t,D)ifand onlyif (s)* = (¢)+,
9) (s)* = (t)* implies (sAec)t = (tAc)tand(sVe)t = (tVe)t, foranye € R.

Proof. (1) Itis clear.

(2) Leta € (s)*. Then(a,D) C (s,D). Sinces € (s], we get thata € ((s])*. Therefore
(s)* C ((s])*. Leta € ((s])*. Then there exists € (s] such that(a, D) C ( D). Since
b € (s], we get(b,D) C (s,D). Hence(a D) C (b,D) C (s,D). Thusa € (s)*+. Therefore
((s])* C (s)*, which gives thats)t = ((s])*.

(3) Itisclear.

(4) Assume that < t. Then(s] C (¢]. Thatimplies(s)* = (s]+ C
(5) Lets € (¢)*. Then(s] C (¢)*. By (3), we get(s)* C (t)1+ =
(6) Since(s At,D) = (tAs,D)and(s Vi, D)= (tVs,D),we get (6).

(7) Foranys,t € R,we have(sAt)t C (s)tN(t)*. Leta € (s):N(¢t)*. Then(a, D) C (s, D

and(a, D) C (¢, D). That implies(a, D) C (s D)n(t,D) = (sAt, D). Thereforen € (s A t)
and hencés)- N (t)* C (s At)L. Thus(s)t N (H)+ = (s At)L.

(8) Assume thats, D) = (¢, D). Then clearly(s)* = (¢)*. Conversely, assume th@at)*

(t)*1. Sinces € (s)* = (t)*, we get(s,D) C (¢, D). Similarly, we can obtain that, D)

(s, D). Therefore(s, D) = (t, D).

(t]* = ()
(1)
et

|—\_/

N1l
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(9) Assume thats)* = (¢)*. Then(s, D) = (t, D). Letc € R. Now (s A c)* = (s)* N (c)+ =
ttne)t=(@{tAe)t. Nowz € (sVe)t < (2,D) C (sVe,D) = (((sVe,D),D),D) =
(((s ((e,D), D), D) = (((t, D), D) N (() D),D),D) = (((t Ve, D),D),D) = (tV
c, O

,D), D) N
D) & x e (tVve)t. Therefore(s ve)t = (t v
Lemma 3.4.For any ideall of an ADLR, I+ is an ideal ofR containing!.

Proof. Clearly, we we have C I+. Leta,b € I+. Then there exist, ¢ € I such that(a, D) C
(s,D) and (b, D) C (t,D). Sinces,t € I, we haves Vvt € I. Now (a V b,D) = (((a Vv
b,D), D), D) = ((((a, D), D) N ((b, D), D)),D) < ((((s,D), D) N ((t, D), D)), D) = (((s v
t,D),D),D) = (sVt,D).SincesVt € I,we getthatvb € I+. Leta € I+. Then there exists
an element € I such that(a, D) C (s,D). Letb € R Then(a Ab,D) C (a,D) N (b,D) C
(a, D) C (s, D). Sinces € I, we get thats A b € I+. Thereforel* is an ideal ofR containing
1. O

Lemma 3.5.Let I andJ be any two ideals of an ADR. Then we have
(1) ItnJt=InJ)*,
(2) IV )t =TV IhH)t,

Proof. (1) Clearly, we have thgtf N J)* C I+ N J+. Leta € I+ N J*. Then there exist € T
andt € J such thata, D) C (s, D) and(a, D) C (¢, ) Thatimplies(a, D) C (s, D)N(t,D) =
(sAt,D).Sinces At € INJ,we getthau € (INJ)+. Thereforelt nJ+ C (InJ)+. Hence
rtagt= (InJ)*t.
(2) Clearly, we have thatvJ C I+vJ+ and hencélv.J)*t C (I+vJ4)+L. Leta € (ItvJh)t.
Then there exists € I+ v J+ such thata, D) C (s, D). Sinces € I+ v J*, there exisb € I+
andc € J* such thats = bV c. Sinceb € I+, there exist$’ € I such that(b D) (v, D).
Sincec € J+, there exists’ € J such that(c D) C (¢,D). Since(b,D) C (b’ D) and
(¢, D) € (¢, D), we get that( (', D), D) € ((b, D), D) and((¢, D), D) < ((c, D), D). Then
(0" v ¢, D), D) = ((t,D),D)n((¢', D), D) < ((b, D), D) N ((c, D), D) = ((bVe¢,D),D).
Therefore(a D) C (s,D) = (bVe¢, D) C (b Vv, D). Sincet v € IV .J, we get that
€ (IV J)*. Hence(I+ v J+)L C (IvJ)*. m

Proposition 3.6.Let R be an ADL with maximal element and I be any ideal ofR. Then the
following conditions are equivalent:

(1) I+ =R,
(2) I*ND #19,
(3) IND #0.

Proof. (1) = (2): Assume thaf+ = R. Thenm € I'+. Sincem € D, we get/- N D # ().

(2) = (3): Assume that+ N D # (). Then choose € I+ N D. Sincea € D, by Proposition
2.8(4), we get(a, D) = R. Sincea € I+, there existss € I such thatR = (a, D) C (s, D).

Then(s, D) = R and hence € D. Therefores € I N D. ThusI N D # §.

(3) = (1): Assume thaf N D # (. Then choose € I N D. Sinces € D, we have(s, D) = R.

That implies(a, D) C (s,D) = R, for all a € R. Thereforea € I+, for all € R. Hence
I+ =R. O

Now we introduce the definition of intrinsic ideal in an ADL.
Definition 3.7. An ideal I of an ADL R is calledintrinsicif I = I+,

Example 3.8.Let R = {0,1,2,3,4,5,6, 7} and define/, A on R as follows:
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AN0|1]2|3]4|5|6|7 v|i0|1|2|3|4|5|6|7
0j0/{0|0|0|j0|0O|O]|O 0/0|1|2|3|4|5|6|7
110(112|3|4|5|6]|7 11111 )1(1;1|1]|1
2011|234 |5|6|7 2122|1222 |2|2]|2
3/]0/3|3|13(0]0|3|0 313|123 ]1|2|6|6
4104|5045 7|7 414 |11(1(1|4/4|1)|4
5/0[4|5|0(4|5(7]|7 5/5(2(2|2|5|5[|2]|5
6/0/6|6|3|7|7(6]|7 6/6|1(2|6[1|2|6]|6
7107|707 |7|7|7 7711|1264 |5|6|7
Then(R,V, A) is an ADL. Clearly, we have thab = {1,2,6}. We have that0, D) =

D,(3,D) = {1,2,4,5,6,7},(4,D) = (5,D) = (7,D) = {1,2,3,6} and(1,D) = (2,D) =

(6, D) = R.Thenclearly0)* = {0}, (3)* = {0,3}, (4)+ = (5)+ = (7)+ = {0,4,5,7}, and(1)* =
(2)+ = (6)* = R. Consider the idealf = {0, 3} andl, = {0, 3,6, 7}. Clearly,I; is an intrinsic
ideal. Butl; is not intrinsic, becausg = L # I.

Proposition 3.9.Let R be an ADL. If NV is maximal in the class of all ideals which are not
meetingD, thenM is an intrinsic ideal.

Proof. Let N be an ideal which is maximal with respect to the propertywbfh D = (. By
Proposition3.6, we getN- N D = () and N+ # R. ThenN* is a proper ideal of? such that
N C N+. By the maximality ofN, we getN = N-+. ThereforeN is an intrinsic ideal of?. O

Let us denote the class of all intrinsic ideals of the ABLby N'(R). Then it is clear that
N (R) need not be a sublattice of the distributive lattigé?) of all ideals of . However, in the
following, we derive that\'(R) forms a distributive lattice on its own.

Theorem 3.10.For any ADL R, the set\/(R) of all intrinsic ideals of R forms a distributive
lattice with greatest elemerit.

Proof. For anyI, J € N(R), define the operations andLl on N'(R) as follows:
InJ=(InJ)randIuJ=(ItvJH)t=(UvJ)*t

Clearly, (I nJ)+ is the infimum of7 and J in NV(R). Also (I v J)+ is an upper bound of
andJ. By Lemma3.52), we have(I+ v J+)+ = (I v J)+. SupposekX € N(R) such that
I C KandJ C K. Leta € (I v J)t. Then there exist e I C K andj € J C K such that
(a,D) C (iVj,D).Sincei Vv j € K, we geta € K+ = K. Therefore(I v J)=* is the supremum
of both7 and.J in A/(R). Then it can be easily verified thgV/'(R), N, ) is a distributive lattice.
Clearly, R is the greatest element of the lattic§'(R), N, L). O

In the following, we characterize the intrinsic ideal of an ADL in element wise

Theorem 3.11.For any ideall of an ADLR, the following are equivalent:
(1) Iisintrinsic,
(2) foranya € R, a € I'ifand only if(a)* C I,
(3) foranya,b € R, (a, D) = (b, D) anda € I implyb € I,
(4) foranya,b € R, (a)* = (b)*+ anda € I implyb € I,
(5)

Proof. (1) = (2): Assume (1). Suppose € I. Lets € (a)*. Then(s,D) C (a, D). Since
a € I,we getthats € I+ = I. Hence(a)* C I. Converse is clear.

(2) = (3): Assume (2). Let,b € R with (a, D) = (b, D) anda € I. By our assumption, we
get that(a)*+ C I. Since(a, D) = (b, D), we have thata)t = (b)* and hence € (b)* C I.
Thereforeb € I.

(3) = (4): By Lemma3.3(8), it is clear.

(4) = (5): Assume (4). Clearly, we have that] C (a)*, foralla € I and hencd = |J (a] C
acl
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U (a)*. Letb € | (a)*. Then there exists € I such thab € (z)+. Thenwe getb)* C (z)*.
acl acl

That implies(b)*+ = (b)* N (z)* = (z Ab)*. Sincez A b € I, by condition (4), we get € 1.
Therefore|J (a)*+ C I. Hence |J (a)* C I. Thusl = |J (a)*.
acl acl acl

(5) = (1): Assume (5). Clearly, we have thatC I+. Leta € I+. Then there exists € I

such that(a, D) C (s, D). That impliesa € (s)*. Sinces € I, we get thata € |J (s)* = I.
sel

Thereforel*+ C I and hencd is intrinsic. O

Proposition 3.12.Let I be an intrinsic ideal and® a prime ideal of an ADLR such thatPnD =
() andI C P. If Pis minimal, thenP is an intrinsic ideal.

Proof. SupposeP is not an intrinsic ideal ok. Then there exists elementsb € R such that
(a)t = (b)*, a € Pandb ¢ P. Considerk = (R\ P) V [a A b). Supposd N K # (). Then
choose an element € I N K. Thenz € I andz € K. Sincex € K, there exist- € R\ P
ands € [a A b) such that: = » A s. Sinces € [a A b), we get thats V (a A b) = s. Now,
x=rAs=rA(sV(aAb))=(rAs)V(rAanb). Thatimpliesr AaAb= (rAs)A(rAaAb).
Sincexr = r As € I, we getthatr Aa Ab € I. Since(a)t = (b)*, by Lemma3.3(9), we get
(r Ab)t = (r AaAb)t. Sincel is aintrinsic ideal and Aa Ab € I, we getr Ab e I C P.
That impliesr € P orb € P, which is a contradiction. Therefolen K = (). Hence there exists
a prime idealM/ suchthatk " M = @ andl C M. SinceK "M =), wegetM C R\ K C P
because o\ P C K. SinceaA\b € K, we getaAb ¢ M. ThatimpliesaAb € P andaAb ¢ M.
Thereforel C M C P. SincePND = (), we haveM N D = (). HenceP is not a minimal in the
class of all prime ideals witl* N D = () and containing/, which is a contradiction. Therefore
P is an intrinsic ideal. |

Corollary 3.13. If {0} is an intrinsic ideal of an ADLR, then every minimal prime ideal & is
an intrinsic ideal.

Proof. Let P be a minimal prime ideal oR. Suppose there existse R such thats € PN D.
Since P is minimal, there exists a non-zero elemént P such thatu A b = 0. That implies
a ¢ D, which is a contradiction. Therefor@ N D = (. Since{0} C P, by Propositior8.12 P
is intrinsic. O

Proposition 3.14.Let R be an ADL. Then the following are equivalent:
(1) fora,b € R, (a,D) = (b, D) implies(a] = (b],
(2) fora,be R, (a)* = (b)* implies(a] = (b],
(3) every ideall with I N D = () is intrinsic,
(4) every prime ideaP with P N D = ( is intrinsic.

Proof. (1) = (2): By Lemma3.3(6), it is clear.
(2) = (3) and(3) = (4) are obvious.

(4) = (1): Assume that condition (4) holds. Letb € R with (a, D) = (b, D). By Lemma
3.38), we have thata)- = (b)*. We prove thata] = (b]. Suppos€a] # (b]. Without loss of
generality, assume thét] ¢ (b]. Thena ¢ (b]. Then there exists a prime ideBlof R such that
b€ (b] C P anda ¢ P. Suppose” N D # (). ThenP+ = R, which givesa € P+. That implies
P ¢ Pt we get a contradiction t&# C P+. ThereforeP N D = (). By our assumption, we get
that P is intrinsic. Sinceh € P and(a)* = (b)*, we get that € P, which is a contradiction to
a ¢ P.Hence(a] = (V). O

The ideal of the form(a)* is called aninlet of R. Since(0, D) = D, we can observe that
(0)* ={r € R|(x,D) = D}.

Proposition 3.15.Let R be an ADL and: € R. Then the following are equivalent:

(1) (a)* =R,
(2) (a)=ND #0,
(3) a€D.



Intrinsic Prime Spectrum of ADLs 129

Lemma 3.16.Let R be an ADL with maximal elements. For amy) € R, the following proper-
ties hold:

(1) aVbisamaximal element implie&)* v (b)* = R,

(2) Foranya ¢ D, (a,D)N (a)* =0,

(3) (aVvb)t=((a)"V (D))"
Proof. (1) Leta,b € R be such that v b is a maximal element. TheR = (a VvV b] = (a] Vv (0] C
(a)* v (b)*. That implies(a)* v (b)* = R.
(2) Leta € R be such that ¢ D. Suppose € (a, D) N (a)t. Then((s, D), D) C (a, D) and
(s,D) C (a,D). Thatimpliesz € ((a, D), ) C ((s,D),D) C (a, D). Therefores = aVa € D,
which is a contradiction. Hende, D) N (a)* = 0.
(3) Itis clear by Lemma&.52). |

Obviously each inlet is an intrinsic ideal and hence for any two irlets and (b)* their
supremum inV'(R) is given by

(@)t U @) =((a]v )" =((avb)t=(avD)*
Also their infimum inA (R) is (a)* N (b)+ = (a A b)*.

Theorem 3.17.For any ADL R, the classV. (R) of all inlets is a lattice(NV,(R),N,L) and
sublattice to the distributive lattice\V'(R), N, U, R) of all intrinsic ideals ofk. MoreoverN. (R)
has the same greatest elemént= (d)*, d € D asN'(R) while N, (R) has the smallest element
(s)* if and only if R has an element of the form(s, D) = D.

Proof. Clearly (V4 (R),N, L) is a sublattice to the distributive lattideV'(R), N, ). It is re-
maining to prove the statement concerning the smallest elemekit 6R). Supposes)* is
the smallest element of . (R). Leta € (s,D). Thena Vv s € D. Now, for anya € R
(a)t = (a)t U (s)t = (a Vv s)t = R which gives that € D. Hence(s, D) C D. Therefore
(s, D) = D. Conversely, assume th&thas an element such that(s, D) = D. Leta € (s)*.
Then(a,D) C (s,D) = D C (¢,D), for all t € R. Hencea € (t)* for all t € R. Thus
(s)* C (t)* forallt € T. Hence(s)* is the smallest element of , (R). O

In any ADL R, it is a well known fact that the quotient algebf¢ = {[a], | a« € L},
where[a],, is the congruence class @fwith respect tap, is a quotient lattice with respect to the
operations given byu]s N [b]s = [a Abl, and [a]y V [b]y = [a V by, forall a,b € R.

Proposition 3.18.Define a binary relations on an ADLR by
(a,b) € ¢ ifand only if (a)+ = (b)*+

for all a,b € R. Theng is a congruence ok where(0)~ is the smallest congruence class and
D is the unit congruence class &/ ¢. Furthermore ker ¢ is an intrinsic ideal ofR.

Proof. From (9) of Lemma8.3, ¢ is a congruence oR. Clearly,(0)~ is the smallest congruence
class ofR/¢. Leta,b € D. By Proposition3.15 we get(a)t = (b)t = R. Thus(a,b) € ¢.
ThereforeD is a congruence class &f/¢. Now, lets € D anda € R. SinceD is a filter, we get
sVa € D. SinceD is a congruence class with respectstave getfalys V [s]y = [a V s]g = D.
ThereforeD is the unit congruence class 8f/¢. Clearly, we have thater ¢ is an ideal ofR.
Leta € ker ¢. Then(a)t = (0)*. Lets € (a)*. Then(s)* C (a)* = (0)*. Since 0< s,
we get(0)+ C (s)1. Hence(s): = (0)+, which means that € ker ¢. Hence(a)t C ker ¢.
Thereforeker ¢ is an intrinsic ideal ofR. O

Definition 3.19.An ADL R is said to beweakly quasi-complementéftto eacha € R, there
existsb € R such thata A b))+ = (0)+ anda v b € D.

From the Exampl&.8, it is clearly observed thak is weakly quasi-complemented. We
now characterize weakly quasi-complemented ADLs with help of inlets axdahgruence.

Theorem 3.20.The following conditions are equivalent in an ADL

(1) R is weakly quasi-complemented,
(2) M. (R)is a Boolean algebra,
(3) R/¢is aBoolean algebra.
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Proof. (1) = (2): Assume that? is weakly quasi-complemented. Let)t € N, (R). Then
there existe’ € R such that Aa’ =0andaVa' € D. Hence(a) N (')t = (and')t = (0)*
and(a)t U (a’)* = (a Vv a')*t = R. ThereforeV, (R) is a Boolean algebra.

(2) = (3): Assume thatV, (R) is a Boolean algebra. Lét]s € L/¢. Then(a)t € Ny (R).
Hence there exist®)1 € N, (R) such that(a A b))+ = (a)t N (b)* = (0)* and(a Vv b))+ =
(a)t U (b)* = R. Hencea A b € [0y anda vV b € D. Thusa]s N [b]s = [a A bl, = [0], and
[a]e V [bly = [a V by = D. ThereforeR/¢ is a Boolean algebra.

(3) = (1): Assume thai?/¢ is a Boolean algebra. Lete R. Then[a], € R/¢. SinceR/¢
is a Boolean algebra, there exi$tg], € R/¢ such thatja A a’], = [a]s N [a'], = [0]4 and
[aVa'ly =lals V[a]s = D. Thus(a A a’)*+ = (0)+ anda v o’ € D. ThereforeR is weakly
quasi-complemented. ]

Theorem 3.21.Every ADLR is epimorphic to the latticé\, (R), L, N) of inlets.
Proof. Define a mapping> : R — N (R) by ¢(x) = (z)* for all z € R. Clearly,v is well-
defined. Leta,b € R. Theny(a Ab) = (a Ab)*+ = (a)t N (b)L = ¢(a) N (b). By Lemma
3.163), we getyy(a Vv b) = (aVb)* = ((a)* Vv (b)1)t = (a)* U (b)* = v(a) U (b). Therefore
1 is @ homomorphism. Clearly; is surjective. ]

Proposition 3.22.Every maximal intrinsic ideal of an ADR is prime.

Proof. Let N be a maximal intrinsic ideal of an ADR. Leta,b € R be such that ¢ N and
b¢ N.ThenNU(a)* = RandNU(b)t = R.Now,R = RNR = {NU(a)t}n{NU(b)t} =
Nu{(a)tn®)*t}=NuU(anb)*.

Supposer A b € N. SinceN is intrinsic, we geta A b)t C N. HenceN = R, which is a
contradiction. Thereforé’ is prime. |

Theorem 3.23.Let I be an intrinsic ideal and” a filter of an ADLR such that’ N F = (). Then
there exists a prime intrinsic idedt such that’ C PandP N F = {.

Proof. Let I be an intrinsic ideal and’ a filter of a R such thatl N F = (. Considerg =
{J | Jisanintrinsicideal] C JandJ N F = (}. Clearlyl € G. Clearly, G satisfies the
hypothesis of Zorn's Lemma and hengdas a maximal element, let it Bé Suppose:,b € R
suchthat ¢ N andb ¢ N. ThenN C NV (a] C NV (a)* andN Cc NV (b] C NV (b)*. By the
maximality of N, we get{ NV (a)t}NF # @ and{NV(b)1}NF # 0. Chooses € {NV(a)Lt}NF
andt € {NV (b)*}nF. ThensAt € F.Now, s At € {NV (a)r} n{NV (b)*} =
NV{(a)tn(b)*} = NV (anb)*. Suppose b € N. SinceN is intrinsic, we gefaAb)- C N.
Hencesnt € N andthus At € NN F # (), which is a contradiction. Therefor€ is prime. O

Corollary 3.24. Let I be an intrinsic ideal of an ADIR andz ¢ I. Then there exists a prime
intrinsic ideal P of R such that/ C P andx ¢ P.

Corollary 3.25. For any intrinsic ideall of an ADLR, we have
I =(\{P| P isaprime intrinsic ideal o? such that/ C P}

Corollary 3.26. The intersection of all prime intrinsic ideals is equal(@=.

Let I be an intrinsic ideal an@ be a prime intrinsic ideal of an ADIR such thatl C P.
ThenP is called a minimal prime intrinsic ideal belonging fdf there exists no prime intrinsic
ideal@ such thatl € @ c P. A minimal prime intrinsic ideal belonging t®)~ is simply called
minimal prime intrinsic.

In the following theorem, a necessary and sufficient condition is préoeal prime intrinsic
ideal of an ADL to become minimal.

Theorem 3.27.Let I be an intrinsic ideal and® a prime intrinsic ideal of an ADLR such that
I C P. ThenP is a minimal prime intrinsic ideal belonging tbif and only if to eachu € P,
there exist$ ¢ P such thatu A b € I.
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Proof. Assume thatP is a minimal prime intrinsic ideal belonging to SinceP is a proper
intrinsic ideal, by PropositioB.6, we getPn D = (). ThenR\ P is a maximal filter with respect
to the property thatR\ P)N I = (. Letz € P. ThenclearlyR\ P C (R\ P) V [a). By the
maximality of R\ P, we get{(R\ P)V[a)} NI # 0. Chooses € {(R\ P)V[a)}NI. Then we
gets =t Aaforsomet € R\ Pands € I. Thereforet A a = s € I wheret ¢ P. Conversely,
assume that the condition holds. Supp&sis not a minimal prime intrinsic ideal belonging to
I. Then there exists a prime intrinsic idddlof R such tha C K ¢ P. Choosen € P\ K.
Then, by the assumed condition, there exists P such thatu Ab € T C K. Sincea ¢ k, it
gives thath € K C P, which is a contradiction. Therefor is a minimal prime intrinsic ideal
belonging tof. ]

By taking {0} in place ofI in Theorem3.27, we get the following

Corollary 3.28. A prime intrinsic idealP of an ADL is minimal if and only if to each € P,
there existd ¢ P such thata A b € (0)*.

4 Prime spectrum of intrinsic ideals

In this section, we discuss some algebraic properties of prime intrinsitsidéan ADL.
A set of equivalent conditions is given for the space of prime intrinsial&def an ADL to
become a Hausdorff space. For any ARl let us denote the class of all prime intrinsic ideals
of R by Spec-(R). For anyX C R, let K(X) = {P € Spec-(R) | X ¢ P} and for any
a€ R,K(a) =K({a}).

We have the following result which can be verified directly.

Lemma 4.1.Let R be an ADL. For any:, b € R, the following properties hold:
(1) U K(a) = Spect(R),

(2) K(a) NK(b) = K(a Ab),

(3) K(a) UK(b) = K(a V),

(4) K(a) =0 ifand only if a € (0)*,

(5) K(a) = Spec (R) ifand only if a € D.

From the above lemma, it can be easily observed that the colleption)|= € R} forms a
base for a topology ofipec*(R) which is called a hull-kernel topology.

Theorem 4.2.In any ADLR, the following properties hold:
(1) Foranyz € R, K(z) is compact inSpect(R),
(2) LetC be a compact open subset$fec(R). ThenC = K(a) for someu € R,
(3) Spect(R) is aTp-space,
(4) The mam — K(a) is @ homomorphism from onto the lattice of all compact
open subsets dfpect (R).

Proof. (1) Leta € RandA C R be such thak(a) C |J K(b). LetI be the ideal generated
beA

by the setd. Suppose: ¢ I+. By Corollary3.24 there exits a prime intrinsic ide&l such that
I+ C Panda ¢ P. HenceP € K(a) € |J K(b). Thereforeb ¢ P for someb € A, which
beA

is a contradiction to that € A C I C I+ C P. Thereforea € I+. Thena € (s)* for some
s € 1. Sincel is the |deal generated by ands € I, there exist we geil,sz, ...,8, € Aand
t € R such thats = (\/ ;) At. That implies(s)* = ((\/ s;)) At)* C (\/ ;)+. That implies

i=1 i=1 i=1

K(a) C U K(s:), which is a finite subcover of(a). HenceK(a) is compact inSpect(R).

Thus for eachz € R, K(a) is a compact open subsetgfec(R).

(2) LetC be a compact open subset$jfec(R). SinceC is open, we ge = |J K(a) for
acA
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someA C R. SinceC is compact, there exists, ap,...,a, € A suchthatC = |J K(a;) =
=1
K(V a;). ThereforeC' = K(z) for somez € R.
=1
(3) LetM andN be two distinct prime intrinsic ideals @f. Without loss of generality, assume
thatM ¢ N. Choosex € R such thatz € M anda ¢ N. HenceM ¢ K(a) andN € K(a).
ThereforeSpect (R) is aTp-space.

(4) It can be obtained from (2) and (3) of Lemmhd. O

Lemma 4.3.The following properties hold in an ADE:
(1) foranya € R, K(a) = K((a)*),
(2) forany ideall of R, K(I) = K(I1),
(3) for any intrinsic ideall of R, K(I) = U K((a)*).

acl

Proof. (1) LetP € K(z) N Spect(R). Thena ¢ P. SinceP is intrinsic, we get(a)* ¢ P.
HenceP € K((a)*). Thereforek(a) C K((a)*). Similarly, the other inclusion holds.

(2) Sincel C I+, we getC(I) C K(I+). LetP € K(I+) N Spect(R). ThenI+ ¢ P. Choose
z € It andz ¢ P. Then(a, D) C (s, D), for somes € I. Hencea € (a)* C (s)1. If P ¢ K(1),
thens € I C P. SinceP is intrinsic, we getz € (a)* C (s)* C P, which is a contradiction.
ThusP € K(I). ThereforelC(I+) C K(I).

(3) LetP € K(I) N Spect(R). Thenl ¢ P. Choose: € I such thatz ¢ P. ThenP € K(a).

)
Sincea € I, we getP € |J K(a). HenceK(I) C | K(a). Conversely, letP € |J K(a).
acl acl acl
ThenP € K(a) for somea € I. Thena ¢ P for somea € I. Hencel ¢ P. ThusP € K(I).
O

Therefore K(a) C K(I).

acl

Theorem 4.4.For any ADLR, the lattice(NV (R), L, N) of all intrinsic ideals ofR is isomorphic
to the lattice of all open subsets fipec*(R)

Proof. Denote the class of all open subsets of the sgaee! (R) by . Clearly (3,n,U) is
a lattice. Definep : N(R) — S by p(I+) = K(I) for all I € N(R). By Lemma4.32),
every open subset dfpect(R) is of the formiC(I) for somel € N(R). Hence the mapping
e isonto. Letl,J € N(R) and suppose(I) = <p(.]). If I # J, then there exists € J such
thata ¢ I. By Corollary3.24 there exists” € Spect(R) such that/ C P anda ¢ P. Thus
P € K(a) for a € J. By Lemma4.3(3), we getP € U K(a) = K(J). Sincep(I) = p(J), w

getK(I) = K(J). HenceP € K(J) = K(I). Thus[ 51 P which contradicts the choice a@f.
Hencel = J and therefore is one-one.

Foranyl,J € N(R),we havep(INJ)=K(INJ)=K(I)NK(J)=e(I)Ne(J). Now,

e(TuJ) = K{IUuJ)
K((IvJ)*) by TheorenB.10
K(IvJ) by Lemma4.3(2)
K(I)UK(J) by Lemmad.1(3)
= o) Ue(J).
Henceyp is a homomorphism. Therefoyé(R) is isomorphic tos3. |

For anyA C R, denoteH(A) = {P € Spect(R) | A C P}. Then clearlyH(A) =
Spect(R) \ K(A). ThereforeH(A) is a closed set irbpect(R). Also every closed set in
Spect(R) is of the form# (A) for someA C R.

Now, we have the following result.

Theorem 4.5.Forany ADLR and X C Spect(R), the closure of is givenbyd = H( " (P)).
PcA
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Proof. Let A C Spect(R) andQ € A. Then | P C Q. ThusQ € H( () P). Therefore
PcA PcA

H( () P)is aclosed set containing. Let C be any closed set iipec (R). ThenC = H(B)
PcA
for someB C R. SinceA C C = H(B),we getthatB C Pforall P € A. HenceB C () P.
PecA
ThereforeH( (| P) € H(B) = C. HenceH( () P) is the smallest closed set containidg
PcA PcA

ThereforeA = H( () P). m
PecA

Theorem 4.6.The following conditions are equivalent in an ADA,
(1) every prime intrinsic ideal is maximal,

K(bAc).

Proof. (1) < (2): Since every maximal intrinsic ideal is prime, it is clear.

(2) = (3): Assume that every prime intrinsic ideal is minimal. Ltand @ be two distinct
prime intrinsic ideals of?. By (2), P and@ are minimal. Hence, we gét ¢ Q andQ ¢ P.
Choosen € P\ Q andb € Q \ P. Then@ € K(a) \ K(b) andP € K(b) \ K(a). Therefore
Spect(R) is aTy-space.

(3) = (4): Assume thatSpec(R) is aTy-space. LetP be a prime intrinsic ideal of:. By
Theoremd.5, {P} = {P} = {Q € Specy(R) | P C Q}. ThereforeP is maximal. Thus every
prime intrinsic ideal is a maximal intrinsic ideal. Since every maximal intrinséalids prime,
we get that every prime intrinsic ideal is a minimal prime intrinsic ideal. &) € Spec*(R)
be such thaP # ). Choose:r € P anda ¢ Q. SinceP is minimal, there exists ¢ P such that
aAbe (0)1. ThusP € K(b),Q € K(a) andk(a) NK(b) = K(a Ab) = 0. ThereforeSpect(R)
is a Hausdorff space.

(4) = (5): Assume thaSpect (R) is Hausdorff. HencéC(a) is a compact subset Sfpec(R),
for eacha € R. Thenk(a) is a clopen subset dfpect (R). Leta,b € R such thats # b. Then
K(b) N {Spect(R) \ K(a)} is a compact subset of the compact spki¢k). SincekC(b) is open
in Spect(R), we getkC(b) N {Spect(R) \ K(a)} is a compact open subset®pec’ (R). Hence
by Theorem¥.2(2), there existg € R such thatC(c) = K(b) N {Spect(R) \ K(a)} Therefore
K(b) N {Spect(R) \ K(a)} \ K(b) NK(c) = K(bAc). AlsoK(aAc) = K(a)NK(c)= 0.
Thereforea A ¢ € (0)*.

(5) = (2): Let P be a prime intrinsic ideal oR. Choosez,b € R such thatz € P andb ¢ P.
Then by condition (5), there existse R such that:Ac € (0)* andkC(b)N{Spect(R)\K(a)} =
K(b A c). Then clearlyP € K(b) N {Spect(R) \ K(a)} = K(bAc). If c € P,thenbAc € P,
which is a contradiction t@ € KC(b A ¢). Hencec ¢ P. Thus for eachu € P, there existg ¢ P
such that A ¢ € (0)+. ThereforeP is a minimal prime intrinsic ideal. o

For any ADLR, itis clear that4(A) = Spect(R)\ K(A) and hence{(A) is a closed set in
Spect(R). In the following result, a necessary and sufficient condition is deffigethe space
Spect(R) to become regular.

Theorem 4.7.For any ADLR, the spacepec’(R) is a regular space if and only if for ank ¢
Spect(R) anda ¢ P, there exist an ideal of L andb € R such thatP € K(b) C H(I) C K(a).

Proof. Assume thatSpec'(R) is a regular space. Le&® € Spect(R) anda ¢ P for some
a € R. ThenP ¢ H(a). SinceSpec*(R) is a regular space, there exist two disjoint open &ets
andH in Spect(R) such that? € G andH(a) C H. ThereforeSpect(R) \ H C K(a). Since
Spect(R)\ H is a closed set, we get thépec (R)\ H = H(I), for some intrinsic ideal in R.
ThusH(I) = Spect(R)\ H C K(a). NowGNH = @ willimply that H C Spec-(R)\ G. Since
Spect(R) \ G is closed, we geSpect(R) \ G = H(J) for some intrinsic ideall of R. Since
P € G, we getP ¢ Spect(R)\ G = H(J) and hence/ ¢ P. Chooseb € J such that) ¢ P.



134 M. Sambasiva Rao and Noorbhasha Rafi

ThenP € K(b). LetT € H. ThenJ C T because o C #(J). Sinceb € J C T, we get
T € H(b). ThusH C H(b). Hence by (1)(b) = Spect(R) \ H(b) C Spect(R)\ H = H(I).
which meansC(b) C H(I). Thus for anyP € Spect(R) anda ¢ P, there exist an idedl of R
andb € R such thatP € K(b) C H(I) C K(a). Conversely, assume that for aRyc Spect(R)
anda ¢ P, there exist an ideal of R andb € R such thatP € K(b) € H(I) C K(a). To
show that the spac8pec*(R) is regular, letP € Spect(R) andH(K) be any closed set of
Spec*t(R) such thatP ¢ H(K). ThenK ¢ P. Hence there exist € K such thata ¢ P.
ThusP € K(a). Sincea ¢ P, by the assumption, there exists an idéalf L andb € R such
that P € K(b) C ”H( ) C K(a). HenceIC( )NH(K) = 0, because o € H(a) fora € K.
ThusH(K) C Spect(R) \ K(a) C Spect(R)\ H(I). ThereforeH (K ) C Spect(R)\ K(a) C
Spect(R) \ H(I). Also K(b) N K(I) = 0. Thus there exist two disjoint open sét&) andiC(I)
such thatP € K(b) andH(K) C K(I). ThereforeSpec*(R) is a regular space. O
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