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Abstract Introduced the concepts of intrinsic ideals and inlets in an Almost DistributiveLat-
tice(ADL). Characterized the intrinsic ideals in terms of inlets. Established a set of equivalent
conditions for an ideal of an ADL to become intrinsic. Finally, derived some topological prop-
erties of the prime spectrum of intrinsic ideals of an ADL.

1 Introduction

The concept of an Almost Distributive Lattice(ADL) was introduced by Swamy U.M., and Rao
G.C., [8] as a common abstraction of many existing ring theoretic generalizations ofa Boolean
algebra on one hand and the class of distributive lattices on the other. In that paper, the concept of
an ideal in an ADL was introduced analogous to that in a distributive lattice andit was observed
that the set of all principal ideals of an ADL forms a distributive lattice. Thisprovided a path
to extend many existing concepts of lattice theory to the class of ADLs. In [4], the concepts of
D−filters and primeD−filters are introduced in an ADL and studied their properties. In [7], a
relation between theθ−complement andθ − e−irreducible element is established with suitable
examples. In [1], the properties of divisibility in a distributive lattice are studied with respect
to a filter. In [3], the idea of intrinsic ideals is introduced and the prime ideals of distributive
lattices are used to study specific characteristics of these ideals. In [5], the concept ofν−ideals
is introduced in an ADL and their properties are discussed.

In this paper, the notions of intrinsic ideals and inlets are introduced to ADLs.It is derived
that the class of all intrinsic ideals forms a distributive lattice and then provedthat the class of
all inlets of an ADL forms a sublattice to the lattice of all intrinsic ideals. The intrinsic ideals
are characterized in element wise. Some equivalent conditions are established for every ideal
of an ADL to become an intrinsic ideal. A congruence is introduced on an ADL and then a set
of equivalent conditions is given for the respective quotient ADL to become a Boolean algebra.
Certain basic properties of prime intrinsic ideals of an ADL are investigated.A set of equivalent
conditions is given for the prime spectrum of intrinsic ideals of an ADL to become a Hausdorff
space. A necessary and sufficient condition is given for the prime spectrum of intrinsic ideals to
become a regular space.

2 Preliminaries

In this section, we review key definitions and important results related to ADLthat will be
necessary for the discussions in this paper.

Definition 2.1. [8] An Almost Distributive Lattice(ADL) with zero is an algebra(R,∨,∧,0) of
type (2,2,0) satisfying the following properties:



124 M. Sambasiva Rao and Noorbhasha Rafi

(1) (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z),

(2) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),

(3) (x ∨ y) ∧ y = y,

(4) (x ∨ y) ∧ x = x,

(5) x ∨ (x ∧ y) = x,

(6) 0∧ x = 0, for anyx, y, z ∈ R.

If (R,∨,∧,0) is an ADL, for anya, b ∈ R, definea ≤ b if and only ifa = a∧b or equivalently,
a ∨ b = b, then≤ is a partial ordering onR. An elementm in R is said to bemaximalif it is
maximal with respect to the partial ordering≤ onR.

Definition 2.2. [8] Let R be a non-empty set. Fixx0 ∈ R. For anyx, y ∈ R, definex ∧ y =
y, x∨ y = x if x 6= x0, andx0 ∧ y = x0, x0 ∨ y = y if x = x0. Then(R,∨,∧, x0) is an ADL and
it is called a Discrete ADL withx0 as its 0. Alternatively, Discrete ADL is defined as an ADL in
which every non-zero element is maximal in the poset(R,≤).

Theorem 2.3.[8] LetR be an ADL. Then for anya, b, c ∈ R, we have the following:

(1) a ∨ b = a⇔ a ∧ b = b,
(2) a ∨ b = b⇔ a ∧ b = a,
(3) a ∧ b = b ∧ a whenevera ≤ b,
(4) ∧ is associative inR,
(5) a ∧ b ∧ c = b ∧ a ∧ c,
(6) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),
(7) a ∧ a = a anda ∨ a = a,
(8) 0∨ a = a anda ∧ 0 = 0,
(9) (a ∨ b) ∧ c = (b ∨ a) ∧ c,
(10) a ∧ b = 0 if and only ifb ∧ a = 0.

Theorem 2.4.[8] LetR be an ADL andm ∈ R. Then the following are equivalent:

(1) m is maximal inR,
(2) m ∨ x = m for all x ∈ R,
(3) m ∧ x = x for all x ∈ R,
(4) (m] = R.

Definition 2.5. [8] A nonempty subsetI of R is called anideal (respectively afilter) of R, if
a ∨ b, a ∧ x ∈ I (respectivelya ∧ b, x ∨ a ∈ I) for all a, b ∈ I and allx ∈ R.

Definition 2.6. [2] For any nonempty subsetA of an ADL R, defineA∗ = { x ∈ R | a ∧ x =
0 for all a ∈ A }. HereA∗ is called the annihilator ofA in R.

For anya ∈ R, we have{a}∗ = (a]∗, where(a] is the principal ideal generated bya. An
elementa of an ADLR is called dense element if(a]∗ = {0} and the setD of all dense elements
in ADL is a filter if D is non-empty.

Definition 2.7. [4] For any subsetA of an ADLR, define(A,D) = {x ∈ R | a∨x ∈ D for all a ∈
A}.

For anya ∈ R, we simply represent({a}, D) by (a,D). Clearly,(m,D) = R, wherem is a
maximal element ofR. It is also obvious that(0, D) = D andD ⊆ (x,D) for all x ∈ R.

Proposition 2.8.[4] LetR be an ADL. For anya, b, c ∈ R, we have

(1) a ≤ b implies(a,D) ⊆ (b,D),
(2) (a ∧ b,D) = (a,D) ∩ (b,D),
(3) ((a ∨ b,D), D) = ((a,D), D)∩ ((b,D), D),
(4) (a,D) = R if and only ifa ∈ D.
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3 Intrinsic ideals of ADLs

In this section, the notion of intrinsic ideals is introduced. A characterization theorem of in-
trinsic ideals is given. It is proved that the class of all intrinsic ideals formsa complete distribu-
tive lattice. A set of equivalent conditions is given for an ideal of an ADLto become intrinsic.
Also, the notion of inlets is introduced in an ADL. The notion of weakly quasi-complemented
ADLs is introduced and then weakly quasi-complemented ADLs are characterized in terms of
inlets.

Now, we begin with the following definition.

Definition 3.1.For any non-empty subsetS of an ADL R, the setS⊥ is defined asS⊥ = {a ∈
R | (a,D) ⊆ (s,D), for somes ∈ S}.

Lemma 3.2.LetS, T be two non-empty subsets of an ADLR. Then we have the following:

(1) S ⊆ S⊥,
(2) S ⊆ T impliesS⊥ ⊆ T⊥,
(3) S⊥⊥ = S⊥,
(4) D⊥ = R.

Proof. (1) and (2) are clear.
(3) By (1) and (2), we have thatS⊥ ⊆ S⊥⊥. Let a ∈ S⊥⊥. Then there existss ∈ S⊥

such that(a,D) ⊆ (s,D). Sinces ∈ S⊥, there existst ∈ S such that(s,D) ⊆ (t,D). Then
(a,D) ⊆ (s,D) ⊆ (t,D) andt ∈ S. Thereforea ∈ S⊥ and henceS⊥⊥ ⊆ S⊥. ThusS⊥ = S⊥⊥.

(4) Clearly, for anyd ∈ D, we have that(d,D) = R. That implies(a,D) ⊆ R = (d,D), for all
a ∈ R. Thereforea ∈ D⊥, for all a ∈ R. HenceD⊥ = R.

In case ofS = {s}, we simply denote{s}⊥ by (s)⊥, where(s)⊥ = {a ∈ R | (a,D) ⊆
(s,D)}.

Lemma 3.3.For any elementss, t of an ADLR, we have the following:

(1) (0)⊥ = {a ∈ R | (a,D) = D},
(2) (s)⊥ = ((s])⊥,
(3) (s)⊥⊥ = (s)⊥,
(4) s ≤ t implies(s)⊥ ⊆ (t)⊥,
(5) s ∈ (t)⊥ implies(s)⊥ ⊆ (t)⊥,
(6) (s ∧ t)⊥ = (t ∧ s)⊥ and(s ∨ t)⊥ = (t ∨ s)⊥,
(7) (s)⊥ ∩ (t)⊥ = (s ∧ t)⊥,
(8) (s,D) = (t,D) if and only if (s)⊥ = (t)⊥,
(9) (s)⊥ = (t)⊥ implies (s ∧ c)⊥ = (t ∧ c)⊥ and(s ∨ c)⊥ = (t ∨ c)⊥, for anyc ∈ R.

Proof. (1) It is clear.
(2) Let a ∈ (s)⊥. Then (a,D) ⊆ (s,D). Sinces ∈ (s], we get thata ∈ ((s])⊥. Therefore
(s)⊥ ⊆ ((s])⊥. Let a ∈ ((s ])⊥. Then there existsb ∈ (s] such that(a,D) ⊆ (b,D). Since
b ∈ (s ], we get(b,D) ⊆ (s,D). Hence(a,D) ⊆ (b,D) ⊆ (s,D). Thusa ∈ (s)⊥. Therefore
((s ])⊥ ⊆ (s)⊥, which gives that(s)⊥ = ((s])⊥.
(3) It is clear.
(4) Assume thats ≤ t. Then(s] ⊆ (t ]. That implies(s)⊥ = (s]⊥ ⊆ (t ]⊥ = (t)⊥.
(5) Let s ∈ (t)⊥. Then(s] ⊆ (t)⊥. By (3), we get(s)⊥ ⊆ (t)⊥⊥ = (t)⊥.
(6) Since(s ∧ t,D) = (t ∧ s,D) and(s ∨ t,D) = (t ∨ s,D), we get (6).
(7) For anys, t ∈ R, we have(s∧ t)⊥ ⊆ (s)⊥∩(t)⊥. Leta ∈ (s)⊥∩(t)⊥. Then(a,D) ⊆ (s,D)
and(a,D) ⊆ (t,D). That implies(a,D) ⊆ (s,D)∩ (t,D) = (s ∧ t,D). Thereforea ∈ (s ∧ t)⊥

and hence(s)⊥ ∩ (t)⊥ ⊆ (s ∧ t)⊥. Thus(s)⊥ ∩ (t)⊥ = (s ∧ t)⊥.
(8) Assume that(s,D) = (t,D). Then clearly(s)⊥ = (t)⊥. Conversely, assume that(s)⊥ =
(t)⊥. Sinces ∈ (s)⊥ = (t)⊥, we get(s,D) ⊆ (t,D). Similarly, we can obtain that(t,D) ⊆
(s,D). Therefore(s,D) = (t,D).
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(9) Assume that(s)⊥ = (t)⊥. Then(s,D) = (t,D). Let c ∈ R. Now (s ∧ c)⊥ = (s)⊥ ∩ (c)⊥ =
(t)⊥ ∩ (c)⊥ = (t ∧ c)⊥. Now x ∈ (s ∨ c)⊥ ⇔ (x,D) ⊆ (s ∨ c,D) = (((s ∨ c,D), D), D) =
(((s,D), D) ∩ ((c,D), D), D) = (((t,D), D) ∩ ((c,D), D), D) = (((t ∨ c,D), D), D) = (t ∨
c,D) ⇔ x ∈ (t ∨ c)⊥. Therefore(s ∨ c)⊥ = (t ∨ c)⊥.

Lemma 3.4.For any idealI of an ADLR, I⊥ is an ideal ofR containingI.

Proof. Clearly, we we haveI ⊆ I⊥. Let a, b ∈ I⊥. Then there exists, t ∈ I such that(a,D) ⊆
(s,D) and (b,D) ⊆ (t,D). Sinces, t ∈ I, we haves ∨ t ∈ I. Now (a ∨ b,D) = (((a ∨
b,D), D), D) = ((((a,D), D) ∩ ((b,D), D)), D) ⊆ ((((s,D), D) ∩ ((t,D), D)), D) = (((s ∨
t,D), D), D) = (s∨ t,D). Sinces∨ t ∈ I, we get thata∨ b ∈ I⊥. Let a ∈ I⊥. Then there exists
an elements ∈ I such that(a,D) ⊆ (s,D). Let b ∈ R Then(a ∧ b,D) ⊆ (a,D) ∩ (b,D) ⊆
(a,D) ⊆ (s,D). Sinces ∈ I, we get thata ∧ b ∈ I⊥. ThereforeI⊥ is an ideal ofR containing
I.

Lemma 3.5.Let I andJ be any two ideals of an ADLR. Then we have

(1) I⊥ ∩ J⊥ = (I ∩ J)⊥,
(2) (I ∨ J)⊥ = (I⊥ ∨ J⊥)⊥.

Proof. (1) Clearly, we have that(I ∩ J)⊥ ⊆ I⊥ ∩ J⊥. Let a ∈ I⊥ ∩ J⊥. Then there exists ∈ I
andt ∈ J such that(a,D) ⊆ (s,D) and(a,D) ⊆ (t,D). That implies(a,D) ⊆ (s,D)∩(t,D) =
(s∧ t,D). Sinces∧ t ∈ I ∩ J, we get thata ∈ (I ∩ J)⊥. ThereforeI⊥ ∩ J⊥ ⊆ (I ∩ J)⊥. Hence
I⊥ ∩ J⊥ = (I ∩ J)⊥.

(2) Clearly, we have thatI∨J ⊆ I⊥∨J⊥ and hence(I∨J)⊥ ⊆ (I⊥∨J⊥)⊥. Leta ∈ (I⊥∨J⊥)⊥.
Then there existss ∈ I⊥ ∨ J⊥ such that(a,D) ⊆ (s,D). Sinces ∈ I⊥ ∨ J⊥, there existb ∈ I⊥

andc ∈ J⊥ such thats = b ∨ c. Sinceb ∈ I⊥, there existsb′ ∈ I such that(b,D) ⊆ (b′, D).
Sincec ∈ J⊥, there existsc′ ∈ J such that(c,D) ⊆ (c′, D). Since(b,D) ⊆ (b′, D) and
(c,D) ⊆ (c′, D), we get that((b′, D), D) ⊆ ((b,D), D) and((c′, D), D) ⊆ ((c,D), D). Then
((b′ ∨ c′, D), D) = ((b′, D), D) ∩ ((c′, D), D) ⊆ ((b,D), D) ∩ ((c,D), D) = ((b ∨ c,D), D).
Therefore(a,D) ⊆ (s,D) = (b ∨ c,D) ⊆ (b′ ∨ c′, D). Sinceb′ ∨ c′ ∈ I ∨ J, we get that
a ∈ (I ∨ J)⊥. Hence(I⊥ ∨ J⊥)⊥ ⊆ (I ∨ J)⊥.

Proposition 3.6.LetR be an ADL with maximal elementm and I be any ideal ofR. Then the
following conditions are equivalent:

(1) I⊥ = R,
(2) I⊥ ∩D 6= ∅,
(3) I ∩D 6= ∅.

Proof. (1) ⇒ (2): Assume thatI⊥ = R. Thenm ∈ I⊥. Sincem ∈ D, we getI⊥ ∩D 6= ∅.

(2) ⇒ (3): Assume thatI⊥ ∩ D 6= ∅. Then choosea ∈ I⊥ ∩ D. Sincea ∈ D, by Proposition
2.8(4), we get(a,D) = R. Sincea ∈ I⊥, there existss ∈ I such thatR = (a,D) ⊆ (s,D).
Then(s,D) = R and hences ∈ D. Therefores ∈ I ∩D. ThusI ∩D 6= ∅.
(3) ⇒ (1): Assume thatI ∩D 6= ∅. Then chooses ∈ I ∩D. Sinces ∈ D, we have(s,D) = R.
That implies(a,D) ⊆ (s,D) = R, for all a ∈ R. Thereforea ∈ I⊥, for all a ∈ R. Hence
I⊥ = R.

Now we introduce the definition of intrinsic ideal in an ADL.

Definition 3.7.An idealI of an ADLR is calledintrinsic if I = I⊥.

Example 3.8.LetR = {0,1,2,3,4,5,6,7} and define∨, ∧ onR as follows:
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∧ 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 1 2 3 4 5 6 7

3 0 3 3 3 0 0 3 0

4 0 4 5 0 4 5 7 7

5 0 4 5 0 4 5 7 7

6 0 6 6 3 7 7 6 7

7 0 7 7 0 7 7 7 7

∨ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 1 2 3 1 2 6 6

4 4 1 1 1 4 4 1 4

5 5 2 2 2 5 5 2 5

6 6 1 2 6 1 2 6 6

7 7 1 2 6 4 5 6 7

Then (R,∨, ∧) is an ADL. Clearly, we have thatD = {1,2,6}. We have that(0, D) =
D, (3, D) = {1,2,4,5,6,7}, (4, D) = (5, D) = (7, D) = {1,2,3,6} and(1, D) = (2, D) =
(6, D) = R. Then clearly(0)⊥ = {0}, (3)⊥ = {0,3}, (4)⊥ = (5)⊥ = (7)⊥ = {0,4,5,7}, and(1)⊥ =
(2)⊥ = (6)⊥ = R.Consider the idealsI1 = {0,3} andI2 = {0,3,6,7}.Clearly,I1 is an intrinsic
ideal. ButI2 is not intrinsic, becauseI⊥2 = L 6= I2.

Proposition 3.9.Let R be an ADL. IfN is maximal in the class of all ideals which are not
meetingD, thenM is an intrinsic ideal.

Proof. Let N be an ideal which is maximal with respect to the property ofM ∩ D = ∅. By
Proposition3.6, we getN⊥ ∩ D = ∅ andN⊥ 6= R. ThenN⊥ is a proper ideal ofR such that
N ⊆ N⊥. By the maximality ofN , we getN = N⊥. ThereforeN is an intrinsic ideal ofR.

Let us denote the class of all intrinsic ideals of the ADLR by N (R). Then it is clear that
N (R) need not be a sublattice of the distributive latticeI(R) of all ideals ofR. However, in the
following, we derive thatN (R) forms a distributive lattice on its own.

Theorem 3.10.For any ADLR, the setN (R) of all intrinsic ideals ofR forms a distributive
lattice with greatest elementR.

Proof. For anyI, J ∈ N (R), define the operations∩ and⊔ onN (R) as follows:

I ∩ J = (I ∩ J)⊥ and I ⊔ J = (I⊥ ∨ J⊥)⊥ = (I ∨ J)⊥

Clearly, (I ∩ J)⊥ is the infimum ofI andJ in N (R). Also (I ∨ J)⊥ is an upper bound ofI
andJ . By Lemma3.5(2), we have(I⊥ ∨ J⊥)⊥ = (I ∨ J)⊥. SupposeK ∈ N (R) such that
I ⊆ K andJ ⊆ K. Let a ∈ (I ∨ J)⊥. Then there existi ∈ I ⊆ K andj ∈ J ⊆ K such that
(a,D) ⊆ (i∨ j,D). Sincei∨ j ∈ K, we geta ∈ K⊥ = K. Therefore(I ∨ J)⊥ is the supremum
of bothI andJ in N (R). Then it can be easily verified that(N (R),∩,⊔) is a distributive lattice.
Clearly,R is the greatest element of the lattice(N (R),∩,⊔).

In the following, we characterize the intrinsic ideal of an ADL in element wise.

Theorem 3.11.For any idealI of an ADLR, the following are equivalent:

(1) I is intrinsic,
(2) for anya ∈ R, a ∈ I if and only if(a)⊥ ⊆ I,
(3) for anya, b ∈ R, (a,D) = (b,D) anda ∈ I imply b ∈ I,
(4) for anya, b ∈ R, (a)⊥ = (b)⊥ anda ∈ I imply b ∈ I,
(5) I =

⋃

a∈I

(a)⊥.

Proof. (1) ⇒ (2): Assume (1). Supposea ∈ I. Let s ∈ (a)⊥. Then(s,D) ⊆ (a,D). Since
a ∈ I,we get thats ∈ I⊥ = I. Hence(a)⊥ ⊆ I. Converse is clear.
(2) ⇒ (3): Assume (2). Leta, b ∈ R with (a,D) = (b,D) anda ∈ I. By our assumption, we
get that(a)⊥ ⊆ I. Since(a,D) = (b,D), we have that(a)⊥ = (b)⊥ and henceb ∈ (b)⊥ ⊆ I.
Thereforeb ∈ I.

(3) ⇒ (4): By Lemma3.3(8), it is clear.
(4) ⇒ (5): Assume (4). Clearly, we have that(a] ⊆ (a)⊥, for all a ∈ I and henceI =

⋃

a∈I

(a] ⊆
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⋃

a∈I

(a)⊥. Let b ∈
⋃

a∈I

(a)⊥. Then there existsx ∈ I such thatb ∈ (x)⊥. Then we get(b)⊥ ⊆ (x)⊥.

That implies(b)⊥ = (b)⊥ ∩ (x)⊥ = (x ∧ b)⊥. Sincex ∧ b ∈ I, by condition (4), we getb ∈ I.
Therefore

⋃

a∈I

(a)⊥ ⊆ I. Hence
⋃

a∈I

(a)⊥ ⊆ I. ThusI =
⋃

a∈I

(a)⊥.

(5) ⇒ (1): Assume (5). Clearly, we have thatI ⊆ I⊥. Let a ∈ I⊥. Then there existss ∈ I
such that(a,D) ⊆ (s,D). That impliesa ∈ (s)⊥. Sinces ∈ I, we get thata ∈

⋃

s∈I

(s)⊥ = I.

ThereforeI⊥ ⊆ I and henceI is intrinsic.

Proposition 3.12.LetI be an intrinsic ideal andP a prime ideal of an ADLR such thatP ∩D =
∅ andI ⊆ P. If P is minimal, thenP is an intrinsic ideal.

Proof. SupposeP is not an intrinsic ideal ofR. Then there exists elementsa, b ∈ R such that
(a)⊥ = (b)⊥, a ∈ P andb /∈ P . ConsiderK = (R \ P ) ∨ [a ∧ b). SupposeI ∩K 6= ∅. Then
choose an elementx ∈ I ∩ K. Thenx ∈ I andx ∈ K. Sincex ∈ K, there existr ∈ R \ P
ands ∈ [a ∧ b) such thatx = r ∧ s. Sinces ∈ [a ∧ b), we get thats ∨ (a ∧ b) = s. Now,
x = r∧ s = r∧ (s∨ (a∧ b)) = (r∧ s)∨ (r∧a∧ b). That impliesr∧a∧ b = (r∧ s)∧ (r∧a∧ b).
Sincex = r ∧ s ∈ I, we get thatr ∧ a ∧ b ∈ I. Since(a)⊥ = (b)⊥, by Lemma3.3(9), we get
(r ∧ b)⊥ = (r ∧ a ∧ b)⊥. SinceI is a intrinsic ideal andr ∧ a ∧ b ∈ I, we getr ∧ b ∈ I ⊆ P .
That impliesr ∈ P or b ∈ P , which is a contradiction. ThereforeI ∩K = ∅. Hence there exists
a prime idealM such thatK ∩M = ∅ andI ⊆M . SinceK ∩M = ∅, we getM ⊆ R \K ⊆ P
because ofR\P ⊆ K. Sincea∧b ∈ K, we geta∧b /∈M . That impliesa∧b ∈ P anda∧b /∈M .
ThereforeI ⊆M ⊂ P . SinceP ∩D = ∅, we haveM ∩D = ∅. HenceP is not a minimal in the
class of all prime ideals withP ∩ D = ∅ and containingI, which is a contradiction. Therefore
P is an intrinsic ideal.

Corollary 3.13. If {0} is an intrinsic ideal of an ADLR, then every minimal prime ideal ofR is
an intrinsic ideal.

Proof. Let P be a minimal prime ideal ofR. Suppose there existsa ∈ R such thata ∈ P ∩D.
SinceP is minimal, there exists a non-zero elementb /∈ P such thata ∧ b = 0. That implies
a /∈ D, which is a contradiction. ThereforeP ∩D = ∅. Since{0} ⊆ P , by Proposition3.12, P
is intrinsic.

Proposition 3.14.LetR be an ADL. Then the following are equivalent:

(1) for a, b ∈ R, (a,D) = (b,D) implies(a] = (b],
(2) for a, b ∈ R, (a)⊥ = (b)⊥ implies(a] = (b],
(3) every idealI with I ∩D = ∅ is intrinsic,
(4) every prime idealP with P ∩D = ∅ is intrinsic.

Proof. (1) ⇒ (2): By Lemma3.3(6), it is clear.
(2) ⇒ (3) and(3) ⇒ (4) are obvious.
(4) ⇒ (1): Assume that condition (4) holds. Leta, b ∈ R with (a,D) = (b,D). By Lemma
3.3(8), we have that(a)⊥ = (b)⊥. We prove that(a] = (b]. Suppose(a] 6= (b]. Without loss of
generality, assume that(a] * (b]. Thena /∈ (b]. Then there exists a prime idealP of R such that
b ∈ (b] ⊆ P anda /∈ P . SupposeP ∩D 6= ∅. ThenP⊥ = R, which givesa ∈ P⊥. That implies
P * P⊥, we get a contradiction toP ⊆ P⊥. ThereforeP ∩D = ∅. By our assumption, we get
thatP is intrinsic. Sinceb ∈ P and(a)⊥ = (b)⊥, we get thata ∈ P, which is a contradiction to
a /∈ P. Hence(a] = (b].

The ideal of the form(a)⊥ is called aninlet of R. Since(0, D) = D, we can observe that
(0)⊥ = {x ∈ R | (x,D) = D}.

Proposition 3.15.LetR be an ADL anda ∈ R. Then the following are equivalent:

(1) (a)⊥ = R,
(2) (a)⊥ ∩D 6= ∅,
(3) a ∈ D.
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Lemma 3.16.LetR be an ADL with maximal elements. For anya, b ∈ R, the following proper-
ties hold:

(1) a ∨ b is a maximal element implies(a)⊥ ∨ (b)⊥ = R,
(2) For anya /∈ D, (a,D) ∩ (a)⊥ = ∅,
(3) (a ∨ b)⊥ = ((a)⊥ ∨ (b)⊥)⊥.

Proof. (1) Leta, b ∈ R be such thata∨ b is a maximal element. ThenR = (a∨ b] = (a]∨ (b] ⊆
(a)⊥ ∨ (b)⊥. That implies(a)⊥ ∨ (b)⊥ = R.
(2) Let a ∈ R be such thata /∈ D. Supposes ∈ (a,D) ∩ (a)⊥. Then((s,D), D) ⊆ (a,D) and
(s,D) ⊆ (a,D). That impliesa ∈ ((a,D), D) ⊆ ((s,D), D) ⊆ (a,D). Thereforea = a∨a ∈ D,
which is a contradiction. Hence(a,D) ∩ (a)⊥ = ∅.
(3) It is clear by Lemma3.5(2).

Obviously each inlet is an intrinsic ideal and hence for any two inlets(a)⊥ and(b)⊥ their
supremum inN (R) is given by

(a)⊥ ⊔ (b)⊥ = ((a] ∨ (b ])⊥ = ((a ∨ b ])⊥ = (a ∨ b)⊥

Also their infimum inN (R) is (a)⊥ ∩ (b)⊥ = (a ∧ b)⊥.

Theorem 3.17.For any ADLR, the classN+(R) of all inlets is a lattice(N+(R),∩,⊔) and
sublattice to the distributive lattice(N (R),∩,⊔, R) of all intrinsic ideals ofR. Moreover,N+(R)
has the same greatest elementR = (d)⊥, d ∈ D asN (R) whileN+(R) has the smallest element
(s)⊥ if and only ifR has an elements of the form(s,D) = D.

Proof. Clearly (N+(R),∩,⊔) is a sublattice to the distributive lattice(N (R),∩,⊔). It is re-
maining to prove the statement concerning the smallest element ofN+(R). Suppose(s)⊥ is
the smallest element ofN+(R). Let a ∈ (s,D). Thena ∨ s ∈ D. Now, for anya ∈ R
(a)⊥ = (a)⊥ ⊔ (s)⊥ = (a ∨ s)⊥ = R which gives thats ∈ D. Hence(s,D) ⊆ D. Therefore
(s,D) = D. Conversely, assume thatR has an elements such that(s,D) = D. Let a ∈ (s)⊥.
Then (a,D) ⊆ (s,D) = D ⊆ (t,D), for all t ∈ R. Hencea ∈ (t)⊥ for all t ∈ R. Thus
(s)⊥ ⊆ (t)⊥ for all t ∈ T . Hence(s)⊥ is the smallest element ofN+(R).

In any ADL R, it is a well known fact that the quotient algebraR/φ = {[a]φ | a ∈ L},
where[a]φ is the congruence class ofa with respect toφ, is a quotient lattice with respect to the
operations given by[a]φ ∩ [b]φ = [a ∧ b]φ and [a]φ ∨ [b]φ = [a ∨ b]φ, for all a, b ∈ R.

Proposition 3.18.Define a binary relationφ on an ADLR by

(a, b) ∈ φ if and only if (a)⊥ = (b)⊥

for all a, b ∈ R. Thenφ is a congruence onR where(0)⊥ is the smallest congruence class and
D is the unit congruence class ofR/φ. Furthermore,ker φ is an intrinsic ideal ofR.

Proof. From (9) of Lemma3.3, φ is a congruence onR. Clearly,(0)⊥ is the smallest congruence
class ofR/φ. Let a, b ∈ D. By Proposition3.15, we get(a)⊥ = (b)⊥ = R. Thus(a, b) ∈ φ.
ThereforeD is a congruence class ofR/φ. Now, lets ∈ D anda ∈ R. SinceD is a filter, we get
s ∨ a ∈ D. SinceD is a congruence class with respect toφ, we get[a]φ ∨ [s]φ = [a ∨ s]φ = D.
ThereforeD is the unit congruence class ofR/φ. Clearly, we have thatker φ is an ideal ofR.
Let a ∈ ker φ. Then(a)⊥ = (0)⊥. Let s ∈ (a)⊥. Then(s)⊥ ⊆ (a)⊥ = (0)⊥. Since 0≤ s,
we get(0)⊥ ⊆ (s)⊥. Hence(s)⊥ = (0)⊥, which means thats ∈ ker φ. Hence(a)⊥ ⊆ ker φ.
Thereforeker φ is an intrinsic ideal ofR.

Definition 3.19.An ADL R is said to beweakly quasi-complementedif to eacha ∈ R, there
existsb ∈ R such that(a ∧ b)⊥ = (0)⊥ anda ∨ b ∈ D.

From the Example3.8, it is clearly observed thatR is weakly quasi-complemented. We
now characterize weakly quasi-complemented ADLs with help of inlets and the congruenceφ.

Theorem 3.20.The following conditions are equivalent in an ADLR:

(1) R is weakly quasi-complemented,
(2) N+(R) is a Boolean algebra,
(3) R/φ is a Boolean algebra.
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Proof. (1) ⇒ (2): Assume thatR is weakly quasi-complemented. Let(a)⊥ ∈ N+(R). Then
there existsa′ ∈ R such thata∧ a′ = 0 anda∨ a′ ∈ D. Hence(a)⊥∩ (a′)⊥ = (a∧ a′)⊥ = (0)⊥

and(a)⊥ ⊔ (a′)⊥ = (a ∨ a′)⊥ = R. ThereforeN+(R) is a Boolean algebra.
(2) ⇒ (3): Assume thatN+(R) is a Boolean algebra. Let[a]φ ∈ L/φ. Then(a)⊥ ∈ N+(R).
Hence there exists(b)⊥ ∈ N+(R) such that(a ∧ b)⊥ = (a)⊥ ∩ (b)⊥ = (0)⊥ and(a ∨ b)⊥ =
(a)⊥ ⊔ (b)⊥ = R. Hencea ∧ b ∈ [0]φ anda ∨ b ∈ D. Thus[a]φ ∩ [b]φ = [a ∧ b]φ = [0]φ and
[a]φ ∨ [b]φ = [a ∨ b]φ = D. ThereforeR/φ is a Boolean algebra.
(3) ⇒ (1): Assume thatR/φ is a Boolean algebra. Leta ∈ R. Then[a]φ ∈ R/φ. SinceR/φ
is a Boolean algebra, there exists[a′]φ ∈ R/φ such that[a ∧ a′]φ = [a]φ ∩ [a′]φ = [0]φ and
[a ∨ a′]φ = [a]φ ∨ [a′]φ = D. Thus(a ∧ a′)⊥ = (0)⊥ anda ∨ a′ ∈ D. ThereforeR is weakly
quasi-complemented.

Theorem 3.21.Every ADLR is epimorphic to the lattice(N+(R),⊔,∩) of inlets.

Proof. Define a mappingψ : R −→ N+(R) by ψ(x) = (x)⊥ for all x ∈ R. Clearly,ψ is well-
defined. Leta, b ∈ R. Thenψ(a ∧ b) = (a ∧ b)⊥ = (a)⊥ ∩ (b)⊥ = ψ(a) ∩ ψ(b). By Lemma
3.16(3), we getψ(a∨ b) = (a∨ b)⊥ = ((a)⊥∨ (b)⊥)⊥ = (a)⊥ ⊔ (b)⊥ = ψ(a)⊔ψ(b). Therefore
ψ is a homomorphism. Clearly,ψ is surjective.

Proposition 3.22.Every maximal intrinsic ideal of an ADLR is prime.

Proof. Let N be a maximal intrinsic ideal of an ADLR. Let a, b ∈ R be such thata /∈ N and
b /∈ N . ThenN ⊔(a)⊥ = R andN ⊔(b)⊥ = R. Now,R = R∩R = {N ⊔(a)⊥}∩{N ⊔(b)⊥} =
N ⊔ {(a)⊥ ∩ (b)⊥} = N ⊔ (a ∧ b)⊥.

Supposea ∧ b ∈ N . SinceN is intrinsic, we get(a ∧ b)⊥ ⊆ N . HenceN = R, which is a
contradiction. ThereforeN is prime.

Theorem 3.23.Let I be an intrinsic ideal andF a filter of an ADLR such thatI ∩F = ∅. Then
there exists a prime intrinsic idealP such thatI ⊆ P andP ∩ F = ∅.

Proof. Let I be an intrinsic ideal andF a filter of aR such thatI ∩ F = ∅. ConsiderG =
{J | J is an intrinsic ideal,I ⊆ J andJ ∩ F = ∅}. Clearly I ∈ G. Clearly, G satisfies the
hypothesis of Zorn’s Lemma and henceG has a maximal element, let it beN. Supposea, b ∈ R
such thata /∈ N andb /∈ N . ThenN ⊂ N ∨(a] ⊆ N ∨(a)⊥ andN ⊂ N ∨(b] ⊆ N ∨(b)⊥. By the
maximality ofN , we get{N∨(a)⊥}∩F 6= ∅ and{N∨(b)⊥}∩F 6= ∅. Chooses ∈ {N∨(a)⊥}∩F
and t ∈ {N ∨ (b)⊥} ∩ F . Then s ∧ t ∈ F. Now, s ∧ t ∈ {N ∨ (a)⊥} ∩ {N ∨ (b)⊥} =
N∨{(a)⊥∩(b)⊥} = N∨(a∧b)⊥. Supposea∧b ∈ N . SinceN is intrinsic, we get(a∧b)⊥ ⊆ N .
Hences∧ t ∈ N and thuss∧ t ∈ N ∩F 6= ∅, which is a contradiction. ThereforeN is prime.

Corollary 3.24. Let I be an intrinsic ideal of an ADLR andx /∈ I. Then there exists a prime
intrinsic idealP ofR such thatI ⊆ P andx /∈ P .

Corollary 3.25. For any intrinsic idealI of an ADLR, we have

I =
⋂

{P | P is a prime intrinsic ideal ofR such thatI ⊆ P}

Corollary 3.26. The intersection of all prime intrinsic ideals is equal to(0)⊥.

Let I be an intrinsic ideal andP be a prime intrinsic ideal of an ADLR such thatI ⊆ P .
ThenP is called a minimal prime intrinsic ideal belonging toI if there exists no prime intrinsic
idealQ such thatI ⊆ Q ⊂ P . A minimal prime intrinsic ideal belonging to(0)⊥ is simply called
minimal prime intrinsic.

In the following theorem, a necessary and sufficient condition is provedfor a prime intrinsic
ideal of an ADL to become minimal.

Theorem 3.27.Let I be an intrinsic ideal andP a prime intrinsic ideal of an ADLR such that
I ⊆ P . ThenP is a minimal prime intrinsic ideal belonging toI if and only if to eacha ∈ P ,
there existsb /∈ P such thata ∧ b ∈ I.
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Proof. Assume thatP is a minimal prime intrinsic ideal belonging toI. SinceP is a proper
intrinsic ideal, by Proposition3.6, we getP ∩D = ∅. ThenR\P is a maximal filter with respect
to the property that(R \ P ) ∩ I = ∅. Let x ∈ P . Then clearlyR \ P ⊂ (R \ P ) ∨ [a). By the
maximality ofR \P , we get{(R \ P )∨ [a)}∩ I 6= ∅. Chooses ∈ {(R \P )∨ [a)}∩ I. Then we
gets = t ∧ a for somet ∈ R \ P ands ∈ I. Thereforet ∧ a = s ∈ I wheret /∈ P . Conversely,
assume that the condition holds. SupposeP is not a minimal prime intrinsic ideal belonging to
I. Then there exists a prime intrinsic idealK of R such thatI ⊆ K ⊂ P . Choosea ∈ P \K.
Then, by the assumed condition, there existsb /∈ P such thata ∧ b ∈ I ⊆ K. Sincea /∈ k, it
gives thatb ∈ K ⊂ P , which is a contradiction. ThereforeP is a minimal prime intrinsic ideal
belonging toI.

By taking{0} in place ofI in Theorem3.27, we get the following

Corollary 3.28. A prime intrinsic idealP of an ADL is minimal if and only if to eacha ∈ P ,
there existsb /∈ P such thata ∧ b ∈ (0)⊥.

4 Prime spectrum of intrinsic ideals

In this section, we discuss some algebraic properties of prime intrinsic ideals of an ADL.
A set of equivalent conditions is given for the space of prime intrinsic ideals of an ADL to
become a Hausdorff space. For any ADLR, let us denote the class of all prime intrinsic ideals
of R by Spec⊥(R). For anyX ⊆ R, let K(X) = {P ∈ Spec⊥(R) | X * P} and for any
a ∈ R,K(a) = K({a}).

We have the following result which can be verified directly.

Lemma 4.1.LetR be an ADL. For anya, b ∈ R, the following properties hold:

(1)
⋃

a∈R

K(a) = Spec⊥(R),

(2) K(a) ∩ K(b) = K(a ∧ b),
(3) K(a) ∪ K(b) = K(a ∨ b),
(4) K(a) = ∅ if and only if a ∈ (0)⊥,
(5) K(a) = Spec⊥(R) if and only if a ∈ D.

From the above lemma, it can be easily observed that the collection{K(x)|x ∈ R} forms a
base for a topology onSpec⊥(R) which is called a hull-kernel topology.

Theorem 4.2.In any ADLR, the following properties hold:

(1) For anyx ∈ R, K(x) is compact inSpec⊥(R),
(2) LetC be a compact open subset ofSpec⊥(R). ThenC = K(a) for somea ∈ R,
(3) Spec⊥(R) is aT0-space,
(4) The mapa 7→ K(a) is a homomorphism fromR onto the lattice of all compact

open subsets ofSpec⊥(R).

Proof. (1) Let a ∈ R andA ⊆ R be such thatK(a) ⊆
⋃

b∈A

K(b). Let I be the ideal generated

by the setA. Supposea /∈ I⊥. By Corollary3.24, there exits a prime intrinsic idealP such that
I⊥ ⊆ P anda /∈ P . HenceP ∈ K(a) ⊆

⋃

b∈A

K(b). Thereforeb /∈ P for someb ∈ A, which

is a contradiction to thatb ∈ A ⊆ I ⊆ I⊥ ⊆ P . Thereforea ∈ I⊥. Thena ∈ (s)⊥ for some
s ∈ I. SinceI is the ideal generated byA ands ∈ I, there exist we gets1, s2, . . . , sn ∈ A and

t ∈ R such thats = (
n
∨

i=1
si) ∧ t. That implies(s)⊥ = ((

n
∨

i=1
si) ∧ t)⊥ ⊆ (

n
∨

i=1
si)⊥. That implies

K(a) ⊆
n
⋃

i=1
K(si), which is a finite subcover ofK(a). HenceK(a) is compact inSpec⊥(R).

Thus for eacha ∈ R, K(a) is a compact open subset ofSpec⊥(R).

(2) LetC be a compact open subset ofSpec⊥(R). SinceC is open, we getC =
⋃

a∈A

K(a) for
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someA ⊆ R. SinceC is compact, there existsa1, a2, . . . , an ∈ A such thatC =
n
⋃

i=1
K(ai) =

K
(

n
∨

i=1
ai
)

. ThereforeC = K(x) for somex ∈ R.

(3) LetM andN be two distinct prime intrinsic ideals ofR. Without loss of generality, assume
thatM * N . Choosea ∈ R such thata ∈ M anda /∈ N . HenceM /∈ K(a) andN ∈ K(a).
ThereforeSpec⊥(R) is aT0-space.

(4) It can be obtained from (2) and (3) of Lemma4.1.

Lemma 4.3.The following properties hold in an ADLR:

(1) for anya ∈ R, K(a) = K((a)⊥),
(2) for any idealI ofR, K(I) = K(I⊥),
(3) for any intrinsic idealI ofR, K(I) =

⋃

a∈I

K((a)⊥).

Proof. (1) Let P ∈ K(x) ∩ Spec⊥(R). Thena /∈ P . SinceP is intrinsic, we get(a)⊥ * P .
HenceP ∈ K((a)⊥). ThereforeK(a) ⊆ K((a)⊥). Similarly, the other inclusion holds.
(2) SinceI ⊆ I⊥, we getK(I) ⊆ K(I⊥). LetP ∈ K(I⊥) ∩ Spec⊥(R). ThenI⊥ * P . Choose
x ∈ I⊥ andx /∈ P . Then(a,D) ⊆ (s,D), for somes ∈ I. Hencea ∈ (a)⊥ ⊆ (s)⊥. If P /∈ K(I),
thens ∈ I ⊆ P . SinceP is intrinsic, we geta ∈ (a)⊥ ⊆ (s)⊥ ⊆ P , which is a contradiction.
ThusP ∈ K(I). ThereforeK(I⊥) ⊆ K(I).
(3) LetP ∈ K(I) ∩ Spec⊥(R). ThenI * P . Choosea ∈ I such thata /∈ P . ThenP ∈ K(a).
Sincea ∈ I, we getP ∈

⋃

a∈I

K(a). HenceK(I) ⊆
⋃

a∈I

K(a). Conversely, letP ∈
⋃

a∈I

K(a).

ThenP ∈ K(a) for somea ∈ I. Thena /∈ P for somea ∈ I. HenceI * P . ThusP ∈ K(I).
Therefore

⋃

a∈I

K(a) ⊆ K(I).

Theorem 4.4.For any ADLR, the lattice(N (R),⊔,∩) of all intrinsic ideals ofR is isomorphic
to the lattice of all open subsets inSpec⊥(R).

Proof. Denote the class of all open subsets of the spaceSpec⊥(R) by ℑ. Clearly (ℑ,∩,∪) is
a lattice. Defineϕ : N (R) −→ ℑ by ϕ(I⊥) = K(I) for all I ∈ N (R). By Lemma4.3(2),
every open subset ofSpec⊥(R) is of the formK(I) for someI ∈ N (R). Hence the mapping
ϕ is onto. LetI, J ∈ N (R) and supposeϕ(I) = ϕ(J). If I 6= J , then there existsa ∈ J such
thata /∈ I. By Corollary3.24, there existsP ∈ Spec⊥(R) such thatI ⊆ P anda /∈ P . Thus
P ∈ K(a) for a ∈ J . By Lemma4.3(3), we getP ∈

⋃

a∈J

K(a) = K(J). Sinceϕ(I) = ϕ(J), we

getK(I) = K(J). HenceP ∈ K(J) = K(I). ThusI * P which contradicts the choice ofP .
HenceI = J and thereforeϕ is one-one.

For anyI, J ∈ N (R), we haveϕ(I ∩ J) = K(I ∩ J) = K(I) ∩ K(J) = ϕ(I) ∩ ϕ(J). Now,

ϕ(I ⊔ J) = K(I ⊔ J)

= K((I ∨ J)⊥) by Theorem3.10

= K(I ∨ J) by Lemma4.3(2)

= K(I) ∪ K(J) by Lemma4.1(3)

= ϕ(I) ∪ ϕ(J).

Henceϕ is a homomorphism. ThereforeN (R) is isomorphic toℑ.

For anyA ⊆ R, denoteH(A) = {P ∈ Spec⊥(R) | A ⊆ P}. Then clearlyH(A) =
Spec⊥(R) \ K(A). ThereforeH(A) is a closed set inSpec⊥(R). Also every closed set in
Spec⊥(R) is of the formH(A) for someA ⊆ R.

Now, we have the following result.

Theorem 4.5.For any ADLR andX ⊆ Spec⊥(R), the closure ofA is given byA = H(
⋂

P∈A

(P )).
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Proof. Let A ⊆ Spec⊥(R) andQ ∈ A. Then
⋂

P∈A

P ⊆ Q. ThusQ ∈ H(
⋂

P∈A

P ). Therefore

H(
⋂

P∈A

P ) is a closed set containingA. LetC be any closed set inSpec⊥(R). ThenC = H(B)

for someB ⊆ R. SinceA ⊆ C = H(B), we get thatB ⊆ P for all P ∈ A. HenceB ⊆
⋂

P∈A

P .

ThereforeH(
⋂

P∈A

P ) ⊆ H(B) = C. HenceH(
⋂

P∈A

P ) is the smallest closed set containingA.

ThereforeA = H(
⋂

P∈A

P ).

Theorem 4.6.The following conditions are equivalent in an ADLR,

(1) every prime intrinsic ideal is maximal,
(2) every prime intrinsic ideal is minimal,
(3) Spec⊥(R) is aT1-space,
(4) Spec⊥(R) is a Hausdorff space,
(5) for anya, b ∈ R, there existsc ∈ R such thata∧c ∈ (0)⊥ andK(b)∩{Spec⊥(R)\K(a)}=

K(b ∧ c).

Proof. (1) ⇔ (2): Since every maximal intrinsic ideal is prime, it is clear.
(2) ⇒ (3): Assume that every prime intrinsic ideal is minimal. LetP andQ be two distinct
prime intrinsic ideals ofR. By (2), P andQ are minimal. Hence, we getP * Q andQ * P .
Choosea ∈ P \ Q andb ∈ Q \ P . ThenQ ∈ K(a) \ K(b) andP ∈ K(b) \ K(a). Therefore
Spec⊥(R) is aT1-space.

(3) ⇒ (4): Assume thatSpec⊥(R) is aT1-space. LetP be a prime intrinsic ideal ofR. By
Theorem4.5, {P} = {P} = {Q ∈ Spec⊥F (R) | P ⊆ Q}. ThereforeP is maximal. Thus every
prime intrinsic ideal is a maximal intrinsic ideal. Since every maximal intrinsic ideal is prime,
we get that every prime intrinsic ideal is a minimal prime intrinsic ideal. LetP,Q ∈ Spec⊥(R)
be such thatP 6= Q. Choosea ∈ P anda /∈ Q. SinceP is minimal, there existsb /∈ P such that
a∧ b ∈ (0)⊥. ThusP ∈ K(b), Q ∈ K(a) andK(a)∩K(b) = K(a∧ b) = ∅. ThereforeSpec⊥(R)
is a Hausdorff space.

(4) ⇒ (5): Assume thatSpec⊥(R) is Hausdorff. HenceK(a) is a compact subset ofSpec⊥(R),
for eacha ∈ R. ThenK(a) is a clopen subset ofSpec⊥(R). Let a, b ∈ R such thata 6= b. Then
K(b) ∩ {Spec⊥(R) \ K(a)} is a compact subset of the compact spaceK(b). SinceK(b) is open
in Spec⊥(R), we getK(b)∩ {Spec⊥(R) \ K(a)} is a compact open subset ofSpec⊥(R). Hence
by Theorem4.2(2), there existsc ∈ R such thatK(c) = K(b) ∩ {Spec⊥(R) \ K(a)} Therefore
K(b) ∩ {Spec⊥(R) \ K(a)} \ K(b) ∩ K(c) = K(b ∧ c). Also K(a ∧ c) = K(a) ∩ K(c) = ∅.
Thereforea ∧ c ∈ (0)⊥.

(5) ⇒ (2): Let P be a prime intrinsic ideal ofR. Choosea, b ∈ R such thata ∈ P andb /∈ P .
Then by condition (5), there existsc ∈ R such thata∧c ∈ (0)⊥ andK(b)∩{Spec⊥(R)\K(a)} =
K(b ∧ c). Then clearlyP ∈ K(b) ∩ {Spec⊥(R) \ K(a)} = K(b ∧ c). If c ∈ P , thenb ∧ c ∈ P ,
which is a contradiction toP ∈ K(b ∧ c). Hencec /∈ P . Thus for eacha ∈ P , there existsc /∈ P
such thata ∧ c ∈ (0)⊥. ThereforeP is a minimal prime intrinsic ideal.

For any ADLR, it is clear thatH(A) = Spec⊥(R) \ K(A) and henceH(A) is a closed set in
Spec⊥(R). In the following result, a necessary and sufficient condition is derivedfor the space
Spec⊥(R) to become regular.

Theorem 4.7.For any ADLR, the spaceSpec⊥(R) is a regular space if and only if for anyP ∈
Spec⊥(R) anda /∈ P , there exist an idealI ofL andb ∈ R such thatP ∈ K(b) ⊆ H(I) ⊆ K(a).

Proof. Assume thatSpec⊥(R) is a regular space. LetP ∈ Spec⊥(R) anda /∈ P for some
a ∈ R. ThenP /∈ H(a). SinceSpec⊥(R) is a regular space, there exist two disjoint open setsG
andH in Spec⊥(R) such thatP ∈ G andH(a) ⊆ H. ThereforeSpec⊥(R) \H ⊆ K(a). Since
Spec⊥(R)\H is a closed set, we get thatSpec⊥(R)\H = H(I), for some intrinsic idealI inR.
ThusH(I) = Spec⊥(R)\H ⊆ K(a). NowG∩H = ∅ will imply thatH ⊆ Spec⊥(R)\G. Since
Spec⊥(R) \ G is closed, we getSpec⊥(R) \ G = H(J) for some intrinsic idealJ of R. Since
P ∈ G, we getP /∈ Spec⊥(R) \ G = H(J) and henceJ /∈ P . Chooseb ∈ J such thatb /∈ P .
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ThenP ∈ K(b). Let T ∈ H. ThenJ ⊆ T because ofH ⊆ H(J). Sinceb ∈ J ⊆ T , we get
T ∈ H(b). ThusH ⊆ H(b). Hence by (1),K(b) = Spec⊥(R) \ H(b) ⊆ Spec⊥(R) \H = H(I).
which meansK(b) ⊆ H(I). Thus for anyP ∈ Spec⊥(R) anda /∈ P , there exist an idealI of R
andb ∈ R such thatP ∈ K(b) ⊆ H(I) ⊆ K(a). Conversely, assume that for anyP ∈ Spec⊥(R)
anda /∈ P , there exist an idealI of R andb ∈ R such thatP ∈ K(b) ⊆ H(I) ⊆ K(a). To
show that the spaceSpec⊥(R) is regular, letP ∈ Spec⊥(R) andH(K) be any closed set of
Spec⊥(R) such thatP /∈ H(K). ThenK * P . Hence there exista ∈ K such thata /∈ P .
ThusP ∈ K(a). Sincea /∈ P , by the assumption, there exists an idealI of L andb ∈ R such
thatP ∈ K(b) ⊆ H(I) ⊆ K(a). HenceK(a) ∩ H(K) = ∅, because ofK ∈ H(a) for a ∈ K.
ThusH(K) ⊆ Spec⊥(R) \ K(a) ⊆ Spec⊥(R) \ H(I). ThereforeH(K) ⊆ Spec⊥(R) \ K(a) ⊆
Spec⊥(R) \H(I). AlsoK(b)∩K(I) = ∅. Thus there exist two disjoint open setsK(b) andK(I)
such thatP ∈ K(b) andH(K) ⊆ K(I). ThereforeSpec⊥(R) is a regular space.
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