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Abstract In this paper, Giaccardi inequality is derived for isotonic linear functions using
h-convex functions. Petrovi¢ inequality for h-convex functions is recaptured for isotonic linear
functionals. Several subsequenct results are obtained by using specific kind of utilized functions.
Moreover, some examples of isotonic linear functionals are presented to get integral and discrete
variants for measurable spaces. Additionally, mean value theorems are derived for funtionals
linked with newly derived inequalities.

1 Introduction

In 2007, VaroSanec [17] introduced the class of h-convex functions which unifies a number
of classes of convex, P-, s-convex, Godunova-Levin and s-Godunova-Levin functions. An h-
convex function is defined as a non-negative function o : I — R which satisfies the inequality

a(Bl+ (1= B)m) < h(B)a(l) + h(1 — B)a(m), (LD

where h : J 2 (0,1) — R be non-negative function, 3 € (0,1), l,m € I, and I, J are intervals
in R. A function « is said to be h-concave, if the inequality (1.1) is reversed. It is usual to write
a € SX(h,I) if a is h-convex function on I. In the same paper, it is given that a function 17 is
/33 —convex on interval (0, 1). Analytically,

a(l) =17 and h(B) = B5 for 1,8 € (0,1), (1.2)

satisfy the inequality (1.1). Note that a({) = I2 is not convex on (0, 1).

Alomari in [2], introduced the idea of h-chord and stated its geometrical interpretation with
h-convex function as follows: For any h-convex function « : I — R, the graph of o must be on
or below the h-chord joining the endpoints (I, «()) and (m, a(m)) for all [, m € I, that is,

a(t) < la(m) ~ a0l (225 ) + a0 = L(3:n).

forany ! <t <mandi,m € I, where L(3; h) is representing h-chord. For example, if we draw
the graph of the function given in (1.2) and some h-chords (see Figure 1), then one can note, for
any two values from (0, 1), the corresponding graph of the function between these two values
is below the h-chord joining the corresponding points on the graph. This shows that h-convex
functions are quite interesting and should be further researched and explored. Before discussing

the motivation, let’s look at the definition of isotonic linear functionals, (see [15, Page 47]).

Definition 1.1. Let £(E) be the class of functions defined on a non-empty set E with the follow-
ing properties:

L1: If @ and ¢ are in £(E), so is ac + by for any a,b € R.
L2: 1(k) =l fork € Eisin £(E).
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Figure 1. Note that graph of the function is below the h-chord joining any two points on the
graph, that is, graph of the function is below the h-chord joining points X; and Y; or X; and Y,
or X and Y3 on left and similarly function is below h-chord joining points X; and Y] or X, and
Y, or X3 and Y3 on right.

A functional A defined on £(E) is an isotonic linear functional if it satisfies:
Al: Ifa,p € £(E), a,b € R, then A(aa + bp) = aA(x) + bA(p).
A2: If a > 0 for o € £(EE), then A(«r) > 0.

One can see various examples of isotonic linear functionals discovered on timescale in [3].
Examples which are very common and simple included:

.A((,Q) = Z qnPn

nek

when E is a subset of {1,2,3, ...} with all ¢, > 0 and

Atg) = [

when p defined as a positive measure on E.

In literature, scientists and mathematicians considered convex functions and isotonic linear

functionals to produce compelling and interesting results. See for similar literature in [5, 8, 9,
10, 11, 16, 20] and the reference therein. The older examples include generalization of a famous
Jensen inequality for isotonic linear functional given by Jessen [12] in 1931. Many researchers
and mathematicians later presented functional generalizations of famous inequalities, for exam-
ple, Jensen’s inequality [1], Hadamard inequality [6], Griiss inequality [7], Holder inequality
[18], Ostrowski inequality [21]. Applications of such generalizations in various branches of
mathematics and related sciences provide motivation for their further investigations.
The aim of this paper is to get a generalized version of Giaccardi inequality for isotonic linear
functionals via h-convexity. By applying this inequality with specific conditions, subsequent
results provide Petrovi¢ inequality and several other versions in discrete, integral and time scale
forms. Next, we give the classical Giaccardi inequality and its varients for isotonic linear func-
tionals.

Theorem 1.2. [19] Let 1 := (I, s, ..., 1,,) € I" be non-negative n-tuples q := (q1, @, .-, qn) be
positive numbers and ly, l,, := E?:l q;l; € I such that

(Li = 1o) (I, — 1;) > 0, where I, # lo. (1.3)

If a: I — R is a convex function, then

ln—l() ln_lo

S gatt) < 2oLl =0 g Zima b)) (14)
i=1

where I is an interval in R.



1244 A.U. Rehman, A. Rani, G. Farid, L. Rathour and L. N. Mishra

Theorem 1.3. [4] Consider an isotonic linear functional A defined on £(E), ly € R and ¢ €
L(E) such that ly # A(p) and

(A(p) — ¢(r)) (p(k) = lp) > 0 forall k € E. (1.5)
If a is convex on interval [ly, A(p)] or on interval [A(p), o] and a(p) € £(E), then
Ala(p)) < {[A(p) = A(Dlla(A(p)) + [A(1) — 1 A(e)allo) }/[A(e) — L] (1.6)
is valid.

Further, we organize the work as follows: Functional version of Giaccardi inequality for
h—convex functions is proved and Petrovi¢ inequality is stated as its special case in Section 2.
In the same section in terms of applications, integral versions of the aforesaid inequalities are
given in particular cases. Section 3 consists of Lagrange mean value theorems constructed for
functionals associated with the generalized Giaccardi and Petrovi¢ inequalities.

2 Main results
To present the key findings of the paper, following definition and result are very important.
Definition 2.1. A function % : J — R be a supermultiplicative function if

h(mima) > h(my)h(m;) 2.1

for all m;, my € J and m;, m; > 1. If inequality (2.1) is reversed, then A is said to be submulti-
plicative function. If the equality holds in (2.1), then A is said to be a multiplicative function.

Lemma 2.2. [17] Let h : J — R be a non-negative supermultiplicative function and let f :
I — R be a function such that « € SX(h,I). Then for u,v,w € I[,u < v < w such that
w—u,w —v,v —u € J, the following inequality holds:

h(w —v)a(u) — h(w — u)a(v) + h(v — u)a(w) > 0. (2.2)

The following theorem establishes the Giaccardi inequality for isotonic linear functionals
with respect to h-convex functions.

Theorem 2.3. Let A be an isotonic linear functional defined on £(E), ly € R and ¢ € £(E) such
that ly # A(p) and condition (1.5) is satisfied. If h : J — R be a positive supermultiplicative
function and oo € SX (h, [lo, A(¢)]) or o € SX (h,[A(p),lo]), then

Atate)) = A = o) + AREEZ S o). )
Proof. From condition (1.5), we have that
lo < (k) < A(p) for k € E (2.4)
or
A(p) < (k) <l for k € E. (2.5

Keeping in mind the condition (2.4), & is supermultiplicative and o € SX (h, [ly, A(¢)]), we set
u=1lp, v =¢(k) and w = A(p) in Lemma 2.2 to get the following inequality

h(A(p) — (k) allo) = h (A(p) —lo) e (p(k)) + h (o(k) = lo) a (A(p)) 2 0,
A function A is given to be positive, so we can write

() = lo) h(A(p) — ¢(x))
ma(A( N+ ma(%) —a(p) > 0.
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As the right hand side of above inequality is in £(E), by using the property stated in clause (A2)
of the isotonic linear functionals, one has

h(p(k) —b) hA(p) =¢(K) 0y,
A<h(A(SD)—lo) AN+ = aig) — 1) 200 (@)20'

Since h(A(p) — ly), a(lp) and « (A(yp)) are reals, by using clause (A1) of the isotonic linear
functionals, one get

A(h(e(k) = b))
h(A(p) = lo)
This is equivalent to inequality (2.3).

In a similar way, for condition (2.5), h is supermultiplicative and « € SX (h, [A(p), lo]), we
setu = A(p), v = p(x) and w = I in Lemma 2.2 to get required result. i

In [13], using the h-convexity of the function, the Ginaccardi inequality has been proved with
the stronger condition on / that h(8) + h(1 — 8) < 1 for 3 € (0, 1). Such condition restrict the
particular values of i for which h-convex functions becomes P-functions, s-convex, Godunova-
Levin functions and s-Godunova-Levin functions. It is critical to provide the theorem in the
absence of such stronger conditions. It is stated as follows:

Theorem 2.4. Let 11, s, ...,l, € I, where I C R be an interval, q1,q,...,q, € (0,00) and

lo,ly := Y"1, qil; € I such that )
(li = lo)(ln — ;) > 0, (2.6)

where I, # lo. If o« € SX (h, I), then

> gials) < Ca(l,) + Da(l), Q2.7
i=1

where

_ i ilz‘h(lz‘ —lo) and D — > e ({ih(ln —li).
(T, —lo) (T, — lo)

(2.8)

Proof. Consider aset Etobe {1,2,...,n}and £(E) = {p: E — I | (i) = l;,7 € E}. Then it
is easy to see that £(IE) satisfies L1 and L2 of Definition 1.1. Also consider

Alp) = aipli) =D ails.
i€E i1

It is also easy to see that A satisfies A1, A2 of Definition 1.1. Substituting the values of A and ¢
in Theorem 2.3 to obtain

(k) = lo)(Alp) — @) = (li = lo)(In — 1;) = 0

and .
Alp) = aili # lo.
i=1
At last, expression (2.3) becomes the outcome that we need. O

The integral analogues of the above results is given in the following theorem.

Theorem 2.5. Consider a measurable space (Q, A, (), where ((Q) is positive finite measure.
Also consider a measureable function ¢ : Q — I and ly, [, p(k)d¢ € I such that [, p(r)d¢ # lo
and

((x) — lo) ( | ety - w(n)) >0, 2.9)
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Ifa € SX (h,I), then

[ ateric < ca ([ o) +Dati), 2.10)
Q Q
is valid, where

_ fQ h (90(’1) - lO) g and D — fQ h (fg @(H)d( - @(H)) ag
h (Jo e(r)dC = lo) h(foe(R)dC—1lo)

Proof. Assume that E = Q and

L(E) = {@ Q=T / o(k)d¢ exists} ,
Q
then £(IE) satisfies conditions L1 and L2 of Definition 1.1. If we take

Alp) = / (),

then A satisfies conditions Al and A2 of Definition 1.1. Using the above values of an istonic
linear functional A in Theorem 2.3 to get

() — I)(A(p) — 0(x)) = () — Io) ( | etoric - sD(H)) >0

and
Alp) = /Q P(R)dC # lo.

Finally, an inequality (2.3) becomes (2.10) as our required result.
|

Remark 2.6. In Theorems 2.3, 2.4 and 2.5, if we take particular values of h, that are, h(3) = 3,
h(B) = 1, h(B) = B*, h(B) = % and h(3) = ﬁi for 8,s € (0,1), we get respective variant
of Giacardi inequality for convex functions, P—functions, s—convex functions in second sense,
Godunova-Levin functions and s—Godunova-Levin functions of second sense respectively.

The Petrovi¢ inequality is particular case of the Giaccardi inequality. Becasue of its impor-
tance in the literature, we are stating its variant for h-convex functions in the following corollar-
ies.

Corollary 2.7. Let A be an isotonic linear functional defined on £(E) and ¢ € £(E) such that
A(p) > (k) > 00r A(p) < ¢(k) <0.Ifh:J — R be a positive supermultiplicative function
and o € SX (h, [0, A(p)]) or « € SX (h,[A(p),0]), then

A(h(p(x))) A(h(Alp) = o(x)))
Ala(p)) < ——F=a(A(p)) + a(0). (2.11)
v () TP B
Proof. 1t is easy to see that if we take [ = 0 in Theorem 2.3, then the condition (1.5) becomes
the condition of this corollary and inequality (2.3) becomes the result we required. O

The following result presents Petrovi¢ inequality for h-convex functions. It is pertinent to
mention that a similar result was published in [13] but with stronger conditions on function h.

Corollary 2.8. Let I, 1y, ..., 1,, € [0,a]™ or [a,0]", g1, 42, --., G be positive numbers such that
ln>1jorl;>1,forj=1,2,..n, (2.12)

where 1, = Sy qw; # 0. If h : J — R be a positive supermultiplicative function and
a € SX (h,[0,a]) or a € SX (h, [a,0]), then

é%a(li) < é%’h (;:l) a(l,) + éqi (1 —h (;)) a(0). (2.13)

n
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Proof. Putly = 0 in Theorem 2.4 to get the required results. O

The following corollary provides integral analogues of the well-known Petrovi¢ inequality
for h-convex functions.

Corollary 2.9. Consider a measurable space (Q, A, () with a positive finite measure ((Q). Also
consider a measurable function o : Q — I and [, ¢(k)d¢ € I such that

[ #9dc = oty or [ p()dC < ) for < (2.14)
Q Q

Ifaoe SX (h,I), then
/Qa(w)dc < hgh(@ﬂa (/Q w(@dg) | Joh Upel)dC — o(r)) © 00). @15

(fQ ‘P(’{)dc) h (fQ ‘P(’{)dc)
is valid.
Proof. Take |y = 0 in Theorem 2.5, then condition (2.9) becomes (2.14) and inequality (2.10)
becomes (2.15). O

In the following corollary integral variant of the Petrovi¢ inequality is stated. A resulting
inequality is provided at [15, Page 158] but with different conditions.

Corollary 2.10. Consider a measurable space (2, A, ¢) with a positive finite measure ((Q). Also
consider a measurable function ¢ : Q — I and fg o(k)d¢ € I such that

e = ) or [ o(6)dC < (o) for v < @ 2.16)
Q Q
If a is convex on I, then

[Latorc < [ etac) + ([ ac-1)ao) @.17)

is valid.

3 Mean value theorems

In this section we give Mean Values Theorems (MVTs) for the non-negative difference of the
inequality (2.3). We defined the linear functional in the following way:

Consider the closed interval [, [y € T and (Iy,...,1,,) € I". Then for a : [ — R, we define a
functional

(0, hi lo) = A}g?%fg)_—lg))a(A(@)) L AlAlp) = ()

where A is an isotonic linear functional.
By taking lp = 01in (3.1), one can get the linear functional for Petrovi¢’s inequality as follows:

T(a, h) = &(a, h; 0). (3.2)

a(lo) = Ala(p)). (.1

In the proof of [13, Theorem 2.1], it has been proved that if f is h-convex function with the
conditions that / is super-multiplicative and h(«) + h(1 — «) < 1 for @ € (0, 1), then %
is increasing for x > c.

This fact has been utilized to prove the subsequent lemma, which introduces two h-convex
functions under specific circumstances to prove MVT of Lagrange type.

Lemma 3.1. Let o : [ — Rand h : (0,00) — R* be differentiable functions such that

o Ml =lo)a’(1) = (all) = a(lo))'(I — bo)

< <NVl el 3.3
" 201l — o) — (12— BYR'(1 — lo) 0 3-3)

The functions ¥y, v, : I — R are h—convex function on I, if

Y1(1) = NI* — a(l) and 1, (1) = o(1) — ni®.
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Proof. First consider that

Y1(l) — Y1 (lo)

Gl = h(l —lo)
:N(12 — 1) ~a(l) —a(l)
h(l —1o) h(l —lo)
After differentiating, one has
gwthINhU_mﬂégiz?WU_m
B h(l — lo)a/(l) — (a(l) _ Oé(lo))h'(l _ lo)
h2 (1 —lp) )

From (3.3), one has

h(l = lo)o' (1) = (a(l) — (o)W (I = lo)
< NQ2Lh(l —lo) — (1> = BN (1 — lp)).

This leads to
Bl = lo)a’ (1) = (a(l) = a(lo)) (1 — o)
R2(1 —1p)
20h(1 — o) — (1> = )W (1 — lp)
=N : h2(l — lo)o -
This implies
20h(l — o) — (1> = )W (1 — lp)
N : h2(l — lo)0 :
B (I —1p)a' (1) — (a(l) — a(lp))h' (I — 1) >0
R2(1 — lp) -

Hence G'(v1, h;1) > 0.

Similar to the above, one may show G’(,, h;1) > 0.

It means G (1)1, h; 1) and G(v)2, h; 1) are increasing for [ > [y. Hence, 1 and v, are h—convex
functions. O

Lagrange type MVT for the functional defined in (3.1) is given in the following theorem.

Theorem 3.2~. Assuming the functional &, which is given in (3.1). For bounded functions h, h
and o € C'(I), there exists < in the interior of I such that

where (1) = 12, provided that (i, h; lo) is non-zero.

Proof. As it is given that h, b’ are boundedanda € C'(I), so there are real numbers n and N
such that h(l —1lp)e/ (1 l lo)h'(1—1
< M0/ () (@) — el ) g
2Lh(1 = lo) — (12 = I5)R' (I — lo)

Considering an h—convex function 1) defined in Lemma 3.1 to get

&1, hyly) >0,

that is
&(NI? — a(l), h;yly) > 0.
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This implies
N&(p, h;lo) > &(a, hslp). 3.5)
In a similar manner, one can consider an h—convex function v, defined in Lemma 3.1 to get
n® (o, h;ly) < &(a, h;lo). (3.6)
Combining inequalities (3.5) and (3.6), one has

Qﬁ(a, h; l())

n< ——2<<N.
= 6(p, hilo) T

So there exist ¢ in the interior of I such that

&(a, hily) _ h(s = lo)a'(s) = (als) = allo))' (s — )

(g, hilo) 26h(s — o) — (2 = BN (s — o)

This is equivalent to (3.7). O

Remark 3.3. We now discuss Theorem 3.2 and the non-negative linear functional given in (3.1)
when h and m have different particular values.

(i) Taking h(v) = v®, one gets the Lagrange-type MVT for s—convex functions.

(ii) By taking h(v) = v, one gets the generalization of a result given by A. U. Rehman et al. in
[14, Corollary 2.2].

The following theorem states the Lagrange type MVT for functional attributed by the Petro-
vi¢’s inequality for h—convex function.

Theorem 3.4. Consider a functional T defined in (3.2). For bounded functions h, h' and o €
C'(I) there exists s in the interior of I such that

_ () (s) = (als) — a(0))M(s)
(e, h) = 2eh () = W) (o, h), 3.7

where (1) = 12, provided that S (i, h; 0) is non-zero.
Proof. By taking vy = 01in (3.4), one gets the required result. O

Remark 3.5. We analyse the instances for different values of & and m in Theorem 3.4 and the
non-negative linear functional given in (3.2).

(i) To get the result for s—convex function, take h(v) = v®.

(ii) By setting h(v) = v gives the result for convex functions.
The following theorem consists of a Cauchy type MVT for the functional defined in (3.1).

Theorem 3.6. Consider a functional & defined in (3.1). If aj,ap € C Y(I), then there exist < in
the interior of I such that

&(ar;h,lo) k(s —1)ai(s) —ar(s)h (s — lo) + a1 (lo)h' (s — o)

/

! , 3.8
B0z hilo)  hls — l0)ah(s) — az( )W (s — lo) + azlo) (s — lo) 59
provided that the denominators are non-zero.
Proof. Consider a function K from C'(I) defined as follows:

K =tia; — than, where t; = 6(0&2;h,l0) and t, = @(Oél;h,l()).
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Replace a with K in Theorem 3.2, then one has

0 =h(s —lo)((tiar — ta2)(s))" — (tiar — taca) ()R’ (s — lo)
+ (tran = taa) (lo)h (s — lo)
=h(c = lo)(t1a() — t2a3(<)) — tiar ()R’ (s = lo) + t2ca ()R (s — lo)
+ tiar(lo)h' (s — lo) — taca(lo)h' (s — lo)
=t {h(s — lp)a}(s) — ai()h (¢ — lo) + a1 (lo)h' (s — o)}
—t {h(s — lo)a(s) — aa(s)h/ (s — lo) + ca(lo)W (s — o)} -

This gives
ta _ h(s=lo)ai(s) = ar (W' (s = lo) + arlo)h'(s — o)
tr h(s = lo)ag(s) — e ()W (s = lo) + e (lo) (s — lo)
Now put the values of ¢; and ¢, in above expression to get the required result. O

Remark 3.7. Now we discuss the cases when h and m have different particular values in Theo-
rem 3.6 and the isotonic linear functional defined in (3.1).

(i) In a case where h(v) = v®, the result for s—convex functions can be obtained.

(ii) Cauchy-type MVT for convex function can be obtained by setting h(v) = v.

In the following theorem, Cauchy type MVT related to functional due to Petrovic’s inequality
for h—convex functions is given.

Theorem 3.8. Let the conditions of Theorem 3.2 are valid. If oy, € C (1), then there exist s
in the interior of I such that

o, h) _ W) (6) = ai(9'(s) + ar(0)'(s)

!/
_ 1 , 39
Tz )~ h(S)a(s) — aa(o)(s) + az O (S) G2
provided that the denominators are non-zero.
Proof. By setting vp = 0 in (3.8), one gets the required result. O

Remark 3.9. In Theorem 3.8, and isotonic linear functional defined in (3.2), we discuss the cases
for different values of h and m.

(i) To get the result for s—convex functions, take h(v) = v°.

(ii) A case when h(v) = v can be considered as Cauchy-type MVT for the Petrovié’s inequality
for convex functions.

Conclusion

In this paper, famous inequality known as a Giaccardi inequality is derived for isotonic linear
functional via h-convexity. Another well-known Petrovi¢ inequality is established as a partic-
ular case of the Giaccardi inequality. We derive important variants of Giaccardi and Petrovi¢
inequalities by using popular cases of an isotonic linear functional.
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