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Abstract In this study, the positive solutions of the Diophantine equation D : x2−
(
σ2 + 4

)
y2−

(2σ − 2)x−
(
2σ4 + 8σ2

)
y − σ6 − 4σ4 + σ2 − 2σ − 3 = 0 on the set Z are investigated, along

with some recurrence relations that provide the relationships among these solutions. In addition,
solutions of the Diophantine equation D in terms of generalized Fibonacci and Lucas sequences
are examined. Furthermore, we search for the solutions of this equation over finite fields Fp

where p is prime and p > 5. Finally, an example is given that satisfies our results.

1 Introduction

An equation with all coefficients and all its solutions being integers is called a Diophantine
equation. The most common usage, quadratic Diophantine equations, takes the form

ax2 + bxy + cy2 + dx+ ey + f = 0. (1.1)

There are many variants of Diophantine equations. Among these, Pell equation is common and
is in the form of

x2 − dy2 = N, (1.2)

where d is not a square number, and N is a constant. Here Eq. (1.2) corresponds to a particular
instance of Eq. (1.1); see in [1]. In February 1657, French mathematician Pierre de Fermat
(1607-1665) challenged English mathematicians John Wallis (1616-1703) and Lord William
V. Brouncker (1620-1684) to solve the nonlinear Diophantine equation x2 − dy2 = 1. The
French mathematician Bernard de Bessey (1605-1675) succeeded in finding the solutions for this
equation for d ≤ 150. The fact that, this equation is referred to as the “Pell equation” is entirely
due to an error. This error stems from the Swiss mathematician Leonhard Euler’s (1707-1783)
mistakenly ascribing Brouncker’s work to the English mathematician John Pell (1611-1685), see
in [2]. It was proved by the French mathematician Joseph Louis Lagrange (1736-1813) in 1766
that if N equals 1, this equation has infinite integer solutions; see in [3]. It has also been proved
by Tekcan in [4] that if N is equal to 2t, t ∈ N, there are infinitely many integer solutions. The
solutions of Eq. (1.2) are denoted by (xn, yn) for n ≥ 1. The smallest positive integer solution
(x1, y1) is called the fundamental solution. Other solutions of Eq. (1.2) can be generated from
the fundamental solution (x1, y1). Readers can consult [5, 6, 7, 8, 9, 10, 11, 12] to learn more
about Diophantine and Pell equations.

Let σ and τ be two nonzero integers, and let σ2 − 4τ > 0. Let (Un (σ, τ))n≥1 be the general-
ized Fibonacci sequence defined by U0 (σ, τ) = 0, U1 (σ, τ) = 1, and

Un+1 (σ, τ) = σUn (σ, τ)− τUn−1 (σ, τ)
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for n ≥ 1. Also, let (Vn (σ, τ))n≥1 be the generalized Lucas sequence defined by V0 (σ, τ) = 2,
V1 (σ, τ) = σ, and

Vn+1 (σ, τ) = σVn (σ, τ)− τVn−1 (σ, τ)

for n ≥ 1. The Binet’s formula for generalized Fibonacci and Lucas sequences are given by

Un (σ, τ) =
γn − δn

γ − δ
and Vn (σ, τ) = γn + δn

for n ≥ 0, respectively, where γ and δ are the roots of the characteristic equation x2−σx+τ = 0,
which are

γ =
σ +

√
σ2 − 4τ
2

and δ =
σ −

√
σ2 − 4τ
2

.

Also, it is clear that γ + δ = σ, γ − δ =
√
σ2 − 4τ , and γδ = τ . If σ = 1 and τ = −1,

then Un (σ, τ) = Fn and Vn (σ, τ) = Ln, where Fn and Ln are the classical Fibonacci and
Lucas sequences. For further information on generalized Fibonacci and Lucas sequences, see
[2, 13, 14, 15, 16, 17].

In this paper, the positive integer solutions of the Diophantine equation

D : x2 −
(
σ2 + 4

)
y2 − (2σ − 2)x−

(
2σ4 + 8σ2) y − σ6 − 4σ4 + σ2 − 2σ − 3 = 0 (1.3)

are examined.
The primary objective of examining the Diophantine equation D provided in (1.3) in this

paper is to demonstrate that a seemingly complicated Diophantine equation can be simplified
through various transformations. Another reason is the presence of hidden Fibonacci and Lucas
sequences among the solutions of the Diophantine equation D in Eq. (1.3).

2 Integer Solutions of a Diophantine Equation and Some Obtained Recursive
Relations

In this section, the positive integer solutions of the Diophantine equation

D : x2 −
(
σ2 + 4

)
y2 − (2σ − 2)x−

(
2σ4 + 8σ2) y − σ6 − 4σ4 + σ2 − 2σ − 3 = 0

and some properties of these solutions will be researched. It is a difficult task to determine
whether D has a solution or not. Therefore, applying an appropriate linear transformation to
D will transform it into another Diophantine equation, which will more easily determine the
solution set of D. By applying these linear transformations,

T :=

{
x = u+ h

y = v + k
(2.1)

will be used to D, for some h, k ∈ Z. As a result of this applied linear transformation, the
equation

T (D) = D̃ : (u+ h)
2 −

(
σ2 + 4

)
(v + k)

2

− (2σ − 2) (u+ h)−
(
2σ4 + 8σ2) (v + k)− σ6 − 4σ4 + σ2 − 2σ − 3 = 0 (2.2)

is obtained. After making the necessary adjustments in Eq. (2.2), the coefficients u and v must
be zero. Therefore 2h−2σ+2 = 0 and −2

(
σ2 + 4

)
k−2σ2

(
σ2 + 4

)
= 0. From here, h = σ−1

and k = −σ2. As a result, with x = u+ σ − 1 and y = v − σ2 in Eq. (2.2), it becomes the Pell
equation

D̃ : u2 −
(
σ2 + 4

)
v2 = 4. (2.3)

It is much easier to search the solution set of Eq. (2.3) than Eq. (1.3); see [7].
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Theorem 2.1. Let D̃ be the Diophantine equation given in (2.3). Then, the continued fraction
expansion of

√
σ2 + 4 is

√
σ2 + 4 =



[
2; 4
]

,σ = 1[
σ;

σ

2
, 2σ
]

,σ > 1 is even[
σ;

σ − 1
2

, 1, 1,
σ − 1

2
, 2σ

]
,σ > 1 is odd

Proof. If σ = 1, then
√
σ2 + 4 =

√
5. So,

√
5 = 2 +

(√
5 − 2

)
= 2 +

1
1√
5−2

= 2 +
1√

5 + 2
= 2 +

1

4 +
(√

5 − 2
)

= 2 +
1

4 + 1
1√
5−2

= 2 +
1

4 + 1√
5+2

= 2 +
1

4 + 1
4+(

√
5−2)

.

Hence,
√

5 = [2; 4, 4, 4, . . .] =
[
2; 4
]
.

If σ > 1 is even, then√
σ2 + 4 = σ +

(√
σ2 + 4 − σ

)
= σ +

1
1√

σ2+4−σ

= σ +
1

√
σ2+4+σ

4

= σ +
1

σ
2 +

√
σ2+4−σ

4

= σ +
1

σ
2 + 1

4√
σ2+4−σ

= σ +
1

σ
2 + 1√

σ2+4+σ

= σ +
1

σ
2 + 1

2σ+(
√
σ2+4−σ)

.

Hence,
√
σ2 + 4 =

[
σ; σ

2 , 2σ
]
. Also, if σ > 1 is odd, a similar path is followed and it is easily

proved that
√
σ2 + 4 =

[
σ; σ−1

2 , 1, 1, σ−1
2 , 2σ

]
.

Theorem 2.2. The fundamental solution of D̃ is given by

(u1, v1) =
(
σ2 + 2, σ

)
.

Proof. The Fundamental solution of D̃ is (u1, v1) =
(
σ2 + 2, σ

)
. Indeed, If σ is written instead

of v in the equation u2−
(
σ2 + 4

)
v2 = 4, then u2 =

(
σ2 + 4

)
v2+4 =

(
σ2 + 2

)2 and u = σ2+2
is found. From that point, (u1, v1) =

(
σ2 + 2, σ

)
is the fundamental solution of D̃.

Theorem 2.3. Let define the set {(un, vn)}n≥1, where

(
un

vn

)
=

1
2n−1

(
σ2 + 2 σ

(
σ2 + 4

)
σ σ2 + 2

)n−1(
σ2 + 2

σ

)
(2.4)

for n ≥ 1. Then, (un, vn) is the nth solution of D̃.

Proof. The proof of the theorem will be done using mathematical induction on n. From Eq.
(2.4) and for n = 1, we have(

u1

v1

)
=

1
20

(
σ2 + 2 σ

(
σ2 + 4

)
σ σ2 + 2

)0(
σ2 + 2

σ

)
=

(
σ2 + 2

σ

)
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and can be seen as (u1, v1) =
(
σ2 + 2, σ

)
, which is the fundamental solution of D̃. Let us assume

that Eq. (2.4) is true for n. That is, u2
n −

(
σ2 + 4

)
v2
n = 4.(

un+1

vn+1

)
=

1
2n

(
σ2 + 2 σ

(
σ2 + 4

)
σ σ2 + 2

)n(
σ2 + 2

σ

)

=
1
2

(
σ2 + 2 σ

(
σ2 + 4

)
σ σ2 + 2

)
1

2n−1

(
σ2 + 2 σ

(
σ2 + 4

)
σ σ2 + 2

)n−1(
σ2 + 2

σ

)

=
1
2

(
σ2 + 2 σ

(
σ2 + 4

)
σ σ2 + 2

)(
un

vn

)

=

(
1
2

(
σ2 + 2

)
un + 1

2σ
(
σ2 + 4

)
vn

1
2σun + 1

2

(
σ2 + 2

)
vn

)
.

Thus, we obtain

un+1 =
1
2
(
σ2 + 2

)
un +

1
2
σ
(
σ2 + 4

)
vn and vn+1 =

1
2
σun +

1
2
(
σ2 + 2

)
vn.

If these equations are written in u2 −
(
σ2 + 4

)
v2, then we have

u2
n+1 −

(
σ2 + 4

)
v2
n+1 =

[
1
2
(
σ2 + 2

)
un +

1
2
σ
(
σ2 + 4

)
vn

]2

−
(
σ2 + 4

) [1
2
σun +

1
2
(
σ2 + 2

)
vn

]2

=
1
4
(
σ2 + 2

)2
u2
n + 2.

1
4
(
σ2 + 2

)
σ
(
σ2 + 4

)
unvn

+
1
4
σ2(σ2 + 4

)2
v2
n − 1

4
(
σ2 + 4

)
σ2u2

n

− 2.
1
4
(
σ2 + 2

)
σ
(
σ2 + 4

)
unvn

− 1
4
(
σ2 + 4

) (
σ2 + 2

)2
v2
n

= u2
n −

(
σ2 + 4

)
v2
n

= 4.

Therefore, (un+1, vn+1) becomes a solution of D̃ too.

Corollary 2.4. Let (un, vn) and (un+1, vn+1) be two consecutive solutions of D̃. Then,

un+1 =
1
2
(
σ2 + 2

)
un +

1
2
σ
(
σ2 + 4

)
vn and vn+1 =

1
2
σun +

1
2
(
σ2 + 2

)
vn (2.5)

for n ≥ 1.

Theorem 2.5. Let (un−2, vn−2) , (un−1, vn−1), and (un, vn) be three consecutive solutions of D̃.
Then,

un =
(
σ2 + 2

)
un−1 + un−2 and vn =

(
σ2 + 2

)
vn−1 + vn−2 (2.6)

Proof. From Eq. (2.4) we have(
un

vn

)
=

1
2n−1

(
σ2 + 2 σ

(
σ2 + 4

)
σ σ2 + 2

)n−1(
σ2 + 2

σ

)
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for n ≥ 1. If 1
2

(
σ2 + 2 σ

(
σ2 + 4

)
σ σ2 + 2

)
is taken M here, that is,

M =
1
2

(
σ2 + 2 σ

(
σ2 + 4

)
σ σ2 + 2

)
,

then Eq. (2.4) becomes

(
un

vn

)
=

1
2n−1

(
σ2 + 2 σ

(
σ2 + 4

)
σ σ2 + 2

)n−1(
σ2 + 2

σ

)

=
1
2

(
σ2 + 2 σ

(
σ2 + 4

)
σ σ2 + 2

)
1

2n−2

(
σ2 + 2 σ

(
σ2 + 4

)
σ σ2 + 2

)n−2(
σ2 + 2

σ

)

= M

(
un−1

vn−1

)
.

(2.7)

From the characteristic polynomial of M ,

|λI2 −M | = 0 ⇒

∣∣∣∣∣λ− 1
2

(
σ2 + 2

)
− 1

2σ
(
σ2 + 4

)
− 1

2σ λ− 1
2

(
σ2 + 2

)∣∣∣∣∣ = 0

⇒ λ2 − λ
(
σ2 + 2

)
+ I2 = 0

for λ ∈ R. If M is written instead of λ here, we get M2 − M
(
σ2 + 2

)
+ I2 = 0 and M2 =

M
(
σ2 + 2

)
− I2. From Eq. (2.7),

(
un

vn

)
= M

(
un−1

vn−1

)
= M.M

(
un−2

vn−2

)
= M2

(
un−2

vn−2

)
=
[
M
(
σ2 + 2

)
− I2

](un−2

vn−2

)

and so,

(
σ2 + 2

)
M

(
un−2

vn−2

)
−I2

(
un−2

vn−2

)
=
(
σ2 + 2

)(un−1

vn−1

)
−

(
un−2

vn−2

)
=

((
σ2 + 2

)
un−1 − un−2(

σ2 + 2
)
vn−1 − vn−2

)
.

Thus, un =
(
σ2 + 2

)
un−1 − un−2 and vn =

(
σ2 + 2

)
vn−1 − vn−2.

Theorem 2.6. Let (un−3, vn−3), (un−2, vn−2), (un−1, vn−1), and (un, vn) be four consecutive
solutions of D̃. Then,

un =
(
σ2 + 1

)
(un−1 + un−2)− un−3 and vn =

(
σ2 + 1

)
(vn−1 + vn−2)− vn−3 (2.8)

for n ≥ 4.

Proof. The proof of the theorem will be done using mathematical induction on n. From Eq.
(2.5) we know that un+1 = 1

2

(
σ2 + 2

)
un + 1

2σ
(
σ2 + 4

)
vn and vn+1 = 1

2σun + 1
2

(
σ2 + 2

)
vn

for n ≥ 1. Also, if we consider that the fundamental solution of D̃ is (u1, v1) =
(
σ2 + 2, σ

)
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from Theorem 2.2, we have

u2 =
1
2
[(
σ2 + 2

)
u1 + σ

(
σ2 + 4

)
v1
]

=
1
2
[(
σ2 + 2

) (
σ2 + 2

)
+ σ

(
σ2 + 4

)
σ
]

= σ4 + 4σ2 + 2,

v2 =
1
2
[
σu1 +

(
σ2 + 2

)
v1
]

=
1
2
[
σ
(
σ2 + 2

)
+
(
σ2 + 2

)
σ
]

= σ3 + 2σ,

u3 =
1
2
[(
σ2 + 2

)
u2 + σ

(
σ2 + 4

)
v2
]

=
1
2
[(
σ2 + 2

) (
σ4 + 4σ2 + 2

)
+ σ

(
σ2 + 4

) (
σ3 + 2σ

)]
= σ6 + 6σ4 + 9σ2 + 2,

v3 =
1
2
[
σu2 +

(
σ2 + 2

)
v2
]

=
1
2
[
σ
(
σ4 + 4σ2 + 2

)
+
(
σ2 + 2

) (
σ3 + 2σ

)]
= σ5 + 4σ3 + 3σ,

u4 =
1
2
[(
σ2 + 2

)
u3 + σ

(
σ2 + 4

)
v3
]

=
1
2
[(
σ2 + 2

) (
σ6 + 6σ4 + 9σ2 + 2

)
+ σ

(
σ2 + 4

) (
σ5 + 4σ3 + 3σ

)]
= σ8 + 8σ6 + 20σ4 + 16σ2 + 2,

v4 =
1
2
[
σu3 +

(
σ2 + 2

)
v3
]

=
1
2
[
σ
(
σ6 + 6σ4 + 9σ2 + 2

)
+
(
σ2 + 2

) (
σ5 + 4σ3 + 3σ

)]
= σ7 + 6σ5 + 10σ3 + 4σ.

If these values are substituted in Eqs. (2.8), we get(
σ2 + 1

)
(u3 + u2)− u1 =

(
σ2 + 1

) (
σ6 + 6σ4 + 9σ2 + 2 + σ4 + 4σ2 + 2

)
−
(
σ2 + 2

)
=
(
σ2 + 1

) (
σ6 + 7σ4 + 13σ2 + 4

)
−
(
σ2 + 2

)
= σ8 + 8σ6 + 20σ4 + 16σ2 + 2

= u4

and (
σ2 + 1

)
(v3 + v2)− v1 =

(
σ2 + 1

) (
σ5 + 4σ3 + 3σ + σ3 + 2σ

)
− σ

=
(
σ2 + 1

) (
σ5 + 5σ3 + 5σ

)
− σ

= σ7 + 6σ5 + 10σ3 + 4σ

= v4.

Hence, it is seen that the equations are true for n = 4. Let us assume that the Eqs. (2.8) are true
for n− 1. That is,

un−1 =
(
σ2 + 1

)
(un−2 + un−3)− un−4 and vn−1 =

(
σ2 + 1

)
(vn−2 + vn−3)− vn−4
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for n ≥ 4. We will again use Eqs. (2.5) to show that these equations are also true for n.

un =
1
2
[(
σ2 + 2

)
un−1 + σ

(
σ2 + 4

)
vn−1

]
=

1
2
(
σ2 + 2

) ((
σ2 + 1

)
(un−2 + un−3)− un−4

)
+

1
2
σ
(
σ2 + 4

) ((
σ2 + 1

)
(vn−2 + vn−3)− vn−4

)
=

1
2
(
σ2 + 1

) (
σ2 + 2

)
(un−2 + un−3)−

1
2
(
σ2 + 2

)
un−4

+
1
2
(
σ2 + 1

)
σ
(
σ2 + 4

)
(vn−2 + vn−3)

− 1
2
σ
(
σ2 + 4

)
vn−4

=
(
σ2 + 1

) 1
2
[(
σ2 + 2

)
un−2 + σ

(
σ2 + 4

)
vn−2

]
︸ ︷︷ ︸

un−1

+
(
σ2 + 1

) 1
2
[(
σ2 + 2

)
un−3 + σ

(
σ2 + 4

)
vn−3

]
︸ ︷︷ ︸

un−2

− 1
2
[(
σ2 + 2

)
un−4 + σ

(
σ2 + 4

)
vn−4

]
︸ ︷︷ ︸

un−3

=
(
σ2 + 1

)
(un−1 + un−2)− un−3.

And similarly, we get

vn =
1
2
[
σun−1 +

(
σ2 + 2

)
vn−1

]
=

1
2
σ
((
σ2 + 1

)
(un−2 + un−3)− un−4

)
+

1
2
(
σ2 + 2

) ((
σ2 + 1

)
(vn−2 + vn−3)− vn−4

)
=
(
σ2 + 1

) 1
2
[
σun−2 +

(
σ2 + 2

)
vn−2

]
︸ ︷︷ ︸

vn−1

+
(
σ2 + 1

) 1
2
[
σun−3 +

(
σ2 + 2

)
vn−3

]
︸ ︷︷ ︸

vn−2

− 1
2
[
σun−4 +

(
σ2 + 2

)
vn−4

]
︸ ︷︷ ︸

vn−3

=
(
σ2 + 1

)
(vn−1 + vn−2)− vn−3.

So, the desired has been achieved.

Remark 2.7. The problem of finding integer solutions of the Pell equation over finite fields was
investigated in [9] and [10] and concluded by Özkoç and Tekcan. Since this problem has an
important place in mathematics, whether the same problem solution was valid for the problem
investigated in this paper was also investigated. The problem in the new section below is solved
using the same method in [9] and [10].

3 Solving the Pell Equation D̃ : u2 −
(
σ2 + 4

)
v2 = 4 Over Finite Fields Fp

Now, we will investigate integer solutions of the Pell equation D̃ over finite fields Fp.
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Let
(
σ2 + 4

)
≡ d (modp), for σ ≥ 1, primes p > 5 and p ∤ d. Let us define the Pell equation

D̃ ξp (d) : u2 − dv2 ≡ 4 (modp) . (3.1)

Let D̃ ξp (d) be the set of integer solutions of Eq. (3.1) over the finite fields Fp. Then,

D̃ ξp (d) =
{
(u, v) : u, v ∈ Fp, u2 − dv2 ≡ 4 (modp)

}
.

Also, let D̃ ξp (d) represent the number of integer solutions over the finite fields Fp and let Qp

be the set of quadratic residues modulo p. Then, we can state the following theorem.

Theorem 3.1. Let D̃ ξp (d) be the Pell Eq. in (3.1). So

D̃ ξp (d) =

{
p− 1
p+ 1

for d ∈ Qp

for d /∈ Qp .

where σ ≥ 1, primes p > 5 and p ∤ d.

Proof. A similar proof applied in [9] and [10] is used; thus, the proof is completed.

Example 3.2. Let σ = 2. In this case, Eq. (2.3) turns into the Pell equation u2 − 8v2 = 4. The
fundamental solution of this equation is (u1, v1) = (6, 2). Also, Eqs. (2.5), un = 3un−1 +8vn−1
and vn = un−1 + 3vn−1, for n ≥ 2. Eqs. (2.6), un = 6un−1 + un−2 and vn = 6vn−1 + vn−2, for
n ≥ 3. And finally, Eqs. (2.8), un = 5 (un−1 + un−2)−un−3 and vn = 5 (vn−1 + vn−2)−vn−3,
for n ≥ 4. Using these equations we get (u2, v2) = (34, 12) , (u3, v3) = (198, 70), (u4, v4) =
(1154, 408) , (u5, v5) = (6726, 2378), ... which are solutions to the Pell equation u2 − 8v2 = 4.
In addition, the continued fraction expansion of

√
8 is

[
2; 1, 4

]
.

Moreover, Let us take p = 17. So Q17 = {1, 2, 4, 8, 9, 13, 15, 16,} and D̃ ξ17 (8) : u2 − 8v2 ≡

4 (mod17) . Since 8 ∈ Q17, D̃ ξ17 (8) = 17 − 1 = 16. Indeed,

D̃ ξ17 (8) =
{
(u, v) : u, v ∈ F17, u2 − 8v2 ≡ 4 (mod17)

}
,

that is, D̃ ξ17 (8) = {(0, 5) , (0, 12) , (2, 0) , (5, 3) , (5, 14) , (6, 2) , (6, 15) , (8, 4) , (8, 13) , (9, 4) ,

(9, 13) , (11, 2), (11, 15) , (12, 3) , (12, 14) , (15, 0)} . Thus, D̃ ξ17 (8) = 16.

4 Solutions of the Diophantine Equation D̃ : u2 −
(
σ2 + 4

)
v2 = 4 in Terms

of Generalized Fibonacci and Lucas Sequences

In this section, we investigate the solutions of the Diophantine equation D̃ : u2−
(
σ2 + 4

)
v2 = 4

in the form of generalized Fibonacci and Lucas sequences.

Theorem 4.1. Positive integer solutions of D̃ are given by

(un, vn) = (V2n (σ,−1) , U2n (σ,−1))

for n ≥ 1.

Proof. If the generalized Fibonacci and Lucas sequences are written as Binet’s formula, we get

U2n (σ,−1) =
γ2n − δ2n

γ − δ
and V2n (σ,−1) = γ2n + δ2n

for n ≥ 1, respectively, where

γ =
σ +

√
σ2 + 4
2

and δ =
σ −

√
σ2 + 4
2

.
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So,
u2 −

(
σ2 + 4

)
v2 = V 2

2n (σ,−1)−
(
σ2 + 4

)
U2

2n (σ,−1)

=
(
γ2n + δ2n)2 −

(
σ2 + 4

)(γ2n − δ2n

γ − δ

)2

= 4γ4nδ4n

= 4(γδ)4n

= 4

for n ≥ 1. Thus, the proof is completed.

Corollary 4.2. If σ is taken as 1, then the Diophantine equation D̃ becomes u2 − 5v2 = 4, and
the positive integer solutions of D̃ are given by

(un, vn) = (L2n, F2n)

for n ≥ 1.

5 Main Results

Until this chapter, certain properties between these solutions have been proven by transforming
the Diophantine equation D into a Diophantine equation D̃ through a linear transformation T

and finding the solution set of D̃. The relationship of the solution set of D̃ with the generalized
Fibonacci and Lucas sequences is given. It has also been explained that x = u + σ − 1 and
y = v − σ2. In this section, all the results obtained through the inverse of T will be transformed
back from D̃ to D. The following theorems will be given, expressing the main results of this
paper.

Theorem 5.1. Let D be the Diophantine equation given in (1.3). So,
1. The fundamental solution of D is (x1, y1) =

(
σ2 + σ + 1, σ − σ2

)
.

2. (un, vn) as defined in Eq. (2.4) and let the sequence

{(xn, yn)}n≥1 =
{
un + σ − 1, vn − σ2}

be given. Then (xn, yn) is the nth solution of D. Hence, D has infinitely many (xn, yn) ∈ Z×Z
solutions.
3. Let (xn−1, yn−1) and (xn, yn) be two consecutive solutions of D. Then,

xn =
1
2
[(
σ2 + 2

)
xn−1 + σ

(
σ2 + 4

)
yn−1 + σ5 + 3σ3 + σ2 − 1

]
and

yn =
1
2
[
σxn−1 +

(
σ2 + 2

)
yn−1 + σ4 − σ2 + σ

]
for n ≥ 1.
4. Let (xn−3, yn−3) , (xn−2, yn−2) , (xn−1, yn−1), and (xn, yn) be four consecutive solutions of
D. Then,

xn =
(
σ2 + 1

)
(xn−1 + xn−2)−xn−3−2σ3+2σ2 and yn =

(
σ2 + 1

)
(yn−1 + yn−2)−yn−3+2σ4

for n ≥ 4.

Proof. A similar procedure is followed to the proofs of the theorems presented in Chapter 2, and
then the proof is completed.

Theorem 5.2. Let D be the Diophantine equation given in (1.3). So, positive integer solutions
of D are given by

(xn, yn) =
(
V2n (σ,−1) + σ − 1, U2n (σ,−1)− σ2)

for n ≥ 1.
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Proof. A similar procedure is followed to the proofs of theorem 4.1, and then the proof is com-
pleted.

Corollary 5.3. If σ is taken as 1, then the Diophantine equation D becomes x2 − 5(y + 1)2
= 4,

and the positive integer solutions of D are given by

(xn, yn) = (L2n, F2n − 1)

for n > 1.

Let D be the Diophantine equation given in (1.3),
(
σ2 + 4

)
≡ d (modp), for σ ≥ 1, primes

p > 5 and p ∤ d. Also, let us define the Pell equation

Dξp (d) : x2 −
(
σ2 + 4

)
y2 − (2σ − 2)x−

(
2σ4 + 8σ2

)
y − σ6 − 4σ4 + σ2 − 2σ − 3 ≡ 0 (modp) (5.1)

and set

Dξp (d) = {(x, y) : x, y ∈ Fp, x2 −
(
σ2 + 4

)
y2 − (2σ − 2)x−

(
2σ4 + 8σ2

)
y

− σ6 − 4σ4 + σ2 − 2σ − 3 ≡ 0 (modp) }.

Let D ξp (d) represent the number of integer solutions over the finite fields Fp and let Qp be the
set of quadratic residues modulo p. Then we can state the following theorem, which is one of
the main results of this paper.

Theorem 5.4. Let D ξp (d) be the Pell equation in (5.1). So

D ξp (d) =

{
p− 1
p+ 1

for σ2 + 4 ∈ Qp

for σ2 + 4 /∈ Qp ,

where σ ≥ 1, primes p > 5 and, p ∤ (σ2 + 4).

Proof. A similar procedure is followed to the proofs of theorem 3.1, and then the proof is com-
pleted.

6 Discussion and Conclusions

In this study, positive integer solutions of the diophantine equation

D : x2 −
(
σ2 + 4

)
y2 − (2σ − 2)x−

(
2σ4 + 8σ2) y − σ6 − 4σ4 + σ2 − 2σ − 3 = 0

have been investigated. Since finding the solution set of the equation in this state has been chal-
lenging, the linear transformation T defined by x = u+ h and y = v+ k has been applied to D,
and the Diophantine equation D has been converted to the Pell equation D̃ : u2−

(
σ2 + 4

)
v2 = 4.

Finding positive solutions to this Pell equation is relatively easier now. Firstly, the fundamental
solutions of the Pell equation have been found, and other solutions have been found using the
fundamental solution. Various recursive formulas have been given with the help of the solu-
tions found, and their accuracy has been proven. An example is given that confirms the results
found for the equation D̃ : u2 −

(
σ2 + 4

)
v2 = 4. Finally, all the results for the Pell equation

D̃ : u2 −
(
σ2 + 4

)
v2 = 4 are transferred to D with the help of the inverse of the T linear trans-

formation. The importance of this study also emerges here. It is possible to transform seemingly
complex Diophantine equations into different Diophantine equations using certainly linear trans-
formations; in this way, it can be a source for researching more easily whether there is another
number sequence among the solutions of the equation. In addition, solutions of the Diophantine
equation D in terms of generalized Fibonacci and Lucas sequences have been examined. Fur-
thermore, the solutions of this equation have been searched for over finite fields Fp where p is
prime and p > 5. In future studies, the search for other number sequences (such as Pell, Pell –
Lucas, and Jacobsthal sequences) among the solutions of D appears to be an open problem.
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