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Abstract The objective of this paper is to construct the (p, q)-analogue of univariate Bern-
stein operators, denoted by

(
By,l
p,qf

)
(y, z) and

(
Bz,n
p,q f

)
(y, z), their products

(
P ln
p,qf

)
(y, z) and(

Qnl
p,qf

)
(y, z) and their Boolean sums

(
Sln
p,qf

)
(y, z) and

(
T nl
p,qf)(y, z) on a triangular domain

Th, using post quantum calculus and study their interpolating and approximating properties on
this domain. Further the remainders for approximation formulae for the corresponding oper-
ators are evaluated. The theoretical findings are then supported by graphical representations
and analysis of the operators and the functions being interpolated and approximated by them.
This lead us to establish the fact that the parameters p, q provide flexibility for approximation by
letting us maintain error within the desired limits.

1 Introduction

Weierstrass, in 1885 asserted that every continuous function on a compact interval of the real
line can be approximated by an algebraic polynomial. In 1912, S.N. Bernstein constructed these
polynomials, named after his name as Bernstein Polynomials, in order to give a constructive
proof of Weierstrass approximation theorem [25]. Since then various generalisations have been
given for Bernstein polynomials which find applications in Numerical analysis, Computer-aided
geometric design(CAGD), finite element analysis and finding solutions of differential equations.
Approximation operators on polygonal domains are needed in the finite element method for
solving differential equations with known boundary conditions. As a result, several researchers
created some more operators for better approximation and generalised Bernstein type operators
on many domains. After the papers [26, 27, 28] of R.E. Barnhill et al., Lagrange, Birkhoff and
Hermite type operators have been studied, which interpolate a given function and some of its
derivative on the boundary of triangle (as in Dirichlet, Neumann or Robin boundary conditions
for differential equation problems).They investigated interpolation operations on triangles with
curved sides (one, two, or all curved sides), many of which were related to the finite element
method and computer-aided geometric design. D. D. Stancu investigated polynomial interpo-
lation on triangular boundary data and the error bound for smooth interpolation [31, 32]. P.
Blaga and G. Coman extended Bernstein operator on triangle and defined boolean sum op-
erators [29]. Catinas extended some interpolation operators to triangle with one curved side
[30]. T. Acar et al. studied approximation properties of Bivariate Bernstein-Stancu-Chlodowsky,
Bernstein-Kantorovich type operators etc. in [1, 2, 3]. Better unifrom approximation by a new
set of Bivariate Bernstein Operators is studied in [43].Also, Inverse result in simultaneous ap-
proximation by Baskakov-Durmeyer-Stancu operators are given by [34]. Q. B. Cai constructed
approximating operator λ-Bernstein operators based on parameter λ in [6, 7]. N. Braha et al.
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studied λ-Bernstein operators via power series summability methods in [5]. Mursaleen et al.
investigated approximation behaviors of q-Bernstein shifted operators and q-Bernstein Schurer
operators in [17, 18]. Khalid et al. recently generalised Bernstein type operators and investi-
gated their applications in Computer Aided Geometric Design (CAGD) [12, 13]. Other appli-
cations of Bernstein type operators for the creation of Bezier curves and surfaces can be found
in [4, 8, 9, 10, 22, 23, 24]. To provide flexibility about a particular control point, weighted lupas
bernstein bezier curves using (p, q)-integers are constructed in [11]. Using q-calculus (quantum
analogue), Lupaş [33] and Phillips [20] generalised the Bernstein polynomials to q-Bernstein
polynomials. More on q-Bernstein polynomials can be found in [21]. In 2015 Mursaleen et
al. [19] defined (p,q)-analogue of Bernstein polynomials with the help of post quantum calcu-
lus. Convergence of sequences 1

[n]p,q
and [n−1]p,q

[n]p,q
is of importance for convergence of sequence

of operators based on (p, q)-calculus. All six different possibilities of convergence with proof
are discussed in [15]. One can also see the convergence behavior of different type of operators
based on (p, q)-calculus in [16, 35, 36, 37, 38, 39, 40, 41]. Motivated by the papers of Khan et al.
[14] and P. Blaga at al. [29], we construct (p, q)-Bernstein operators on a triangular domain.
The products and Boolean sums of these operators are used to construct new set of operators.
We shall then inspect the interpolating and approximating properties of these operators. Using
the concept of modulus of continuity and Peano’s theorem, the remainders of the corresponding
approximation formulae are also evaluated. Towards the end of the paper the accuracy of the
approximation and the role played by the parameters p and q is illustrated by graphical repre-
sentation of given functions with suitable (p,q)-Bernstein operators.
Now we recall some definitions of (p, q)-calculus. For any p, q > 0 and positive integer l, the
(p, q)-integer written as [l]p,q is defined by

[l]p,q =
pl − ql

p− q
.

The (p, q) Binomial expansion and the (p, q) Binomial coefficients are respectively given by

(ay + bz)lp,q =
l∑

i=0

[
l

i

]
p,q

al−ibiyl−izi,

and [
l

i

]
p,q

:=
[l]p,q!

[i]p,q![l − i]p,q!
.

Further, the recurrence relations of (p, q) Binomial coefficients are given by[
l+ 1
i

]
p,q

= ql−i+1

[
l

i− 1

]
p,q

+ pi

[
l

i

]
p,q

(1.1)

and [
l+ 1
i

]
p,q

= pl−i+1

[
l

i− 1

]
p,q

+ qi

[
l

i

]
p,q

. (1.2)

.

2 Construction of (p, q)-Bernstein Operators on
triangular domain

Consider the standard triangular domain given as follows:

Th = {(y, z) ∈ R2 | y ≥ 0, z ≥ 0, y + z ≤ h}, for h > 0.

Let us consider a real-valued function f defined on Th.Through the point (y, z) ∈ Th, let us
consider the parallel lines also parallel to the coordinate axes intersecting the edges Γj , j =
1, 2, 3, of the triangle respectively at the points (0, z) , (h− z, z), (y, 0) and (y, h− y).
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Let us consider △y
l = {[i]p,q h−z

[l]p,q
, i = 0, l} and △z

n= {[j]p,q h−y
[n]p,q

, j = 0, n} which act as
partitions of the intervals [0, h− z] and [0, h− y], respectively.

Now, the (p, q)-Bernstein Operators By,l
p,q and Bz,n

p,q on triangle Th are given by

(By,l
p,qf)(y, z) =


l∑

i=0
p̂l,i(y, z)f

(
[i]p,q

pi−l[l]p,q
(h− z), z

)
, (y, z) ∈ Th \ (0, h),

f(0, h), (0, h) ∈ Th

and

(Bz,n
p,q f)(y, z) =


n∑

j=0
q̂n,j(y, z)f

(
y,

[j]p,q
pj−n[n]p,q

(h− y)

)
, (y, z) ∈ Th \ (h, 0),

f(h, 0), (h, 0) ∈ Th

where

p̂l,i(y, z) =

[
l

i

]
p,q

yi
∏l−i−1

s=0 ((h− z)ps − qsy)p
i(i−1)−l(l−1)

2

(h− z)l
, 0 ≤ y + z ≤ h (2.1)

and

q̂n,j(y, z) =

[
n

j

]
p,q

zj
∏n−j−1

t=0 ((h− y)pt − qtz)p
j(j−1)−n(n−1)

2

(h− y)n
, 0 ≤ y + z ≤ h. (2.2)

It can be clearly seen that for p = 1, the above operators turns out to Phillips-type q-Bernstein
operators on triangles as in [14]. Using the Principle of Mathematical Induction and the recur-
rence relations (1.1) and (1.2), it can be easily proved that

(h− z)l :=
l∑

i=0

[
l

i

]
p,q

yi
l−i−1∏
s=0

((h− z)ps − qsy)p
i(i−1)−l(l−1)

2 , (2.3)

and

(h− y)n :=
n∑

j=0

[
n

j

]
p,q

zj
n−j−1∏
t=0

((h− y)pt − qtz)p
j(j−1)−n(n−1)

2 . (2.4)

Definition 2.1. If the operator By,l
p,q preserve the monomial of highest degree say k, i.e., By,l

p,qy
k =

yk then we say that operator By,l
p,q has degree of exactness k. Then we write dex(By,l

p,q) = k.

Theorem 2.2. For a real-valued function f defined on Th, we have

(i)By,l
p,qf = f on Γ2 ∪ Γ3;

(ii)(By,l
p,qei0) (y, z) = yi, i = 0, 1 (dex(By,l

p,q) = 1),

(iii)(By,l
p,qe20) (y, z) = y2 +

pl−1y(h− y − z)

[l]p,q
,

(By,l
p,qeij) (y, z) =


zjyi, i = 0, 1, j ∈ N;

zj
(
y2 + pl−1y(h−y−z)

[l]p,q

)
, i = 2, j ∈ N;

where eij(y, z) = yizj and dex (By,l
p,q) denotes degree of exactness of the operator By,l

p,q.
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Proof. By the definition of the operator, (By,l
p,qf)(0, h) = f(0, h). So we caculate the moments

only on Th \ (0, h). The interpolation property represented by (i) follows from the relations

p̂l,i (0, z) =


1, if i = 0,

0, i ̸= 0

and

p̂l,i(h− z, z) =


1, if i = l,

0, i ̸= l.

To prove properties (ii), we proceed in the following way

(By,l
p,qe00) (y, z) =

l∑
i=0

[
l

i

]
p,q

yi∏l−i−1
s=0 ((h − z)ps − qsy)p

i(i−1)−l(l−1)
2

(h − z)l

=
(h − z)l

(h − z)l
= 1;

(By,l
p,qe10)(y, z) =

l∑
i=0

[
l

i

]
p,q

p
i(i−1)−l(l−1)

2 ui∏l−i−1
s=0 ((h − z)ps − qsy)

(h − z)l
[i]p,q

pi−l[l]p,q
(h − z)

=

l∑
i=0

[i]p,q

pi−l [l]p,q

[
l

i

]
p,q

p
i(i−1)−l(l−1)

2 yi∏l−i−1
s=0 ((h − z)ps − qsy)

(h − z)l−1

=

l−1∑
i=0

[
l − 1
i

]
p,q

p
i(i−1)−(l−1)(l−2)

2 yi+1∏l−i−2
s=0 ((h − z)ps − qsy)

(h − z)l−1

= y

l−1∑
i=0

[
l − 1
i

]
p,q

p
i(i−1)−(l−1)(l−2)

2 yi∏(l−1)−i−1
s=0 ((h − z)ps − qsy)

(h − z)l−1

= y;

(By,l
p,qe20) (y, z) =

l∑
i=0

[
l

i

]
p,q

p
i(i−1)−l(l−1)

2 yi∏l−i−1
s=0 ((h − z)ps − qsy)

(h − z)l

[i]2p,q(h − z)2

p2(i−1)[l]2p,q

=
1

pl(l−1)/2
(h − z)

2
y

l−1∑
i=0

[
l − 1
i

]
p,q

p
i(i+1)

2 yi [i+1]p,q
[l]p,q

∏l−i−2
s=0 ((h − z)ps − qsy)

(h − z)l
1

p2(i−l+1)
(h − z)

2

=
1

pl(l−1)/2
(h − z)

2
y

l−1∑
i=0

[
l − 1
i

]
p,q

p
i(i+1)

2 yi pi+q[i]p,q
[l]p,q

∏l−i−2
s=0 ((h − z)ps − qsy)

(h − z)l
1

p2(i−l+1)

=
(h − z)2ypl−1

[l]p,q
+

(h − z)2y

pl(l−1)/2

l−1∑
i=0

q[i]p,q
[l]p,q

[
l − 1
i

]
p,q

p
i(i+1)

2 yi∏l−i−2
s=0 ((h − y)ps − qsy)

(h − z)l
1

p2(i−l+1)

=
(h − z)2ypl−1

[l]p,q
+

q[l − 1]p,qy2

[l − 1]p,q

l−2∑
i=0

[
l − 1
i

]
p,q

p
i(i−1)−(l−2)(l−3)

2 yi∏l−2−i−1
s=0 ((h − z)ps − qsy)

(h − z)l−2

=
(h − z)2ypl−1

[l]p,q
+

q[l − 1]p,qy2

[l − 1]p,q

= y
2
+

(h − z − y)ypl−1

[l]p,q
.
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This completes the proof of theorem 2.2.

Remark 2.3. For a real-valued function f defined on Th, we can prove the following in the
similar way as we have done earlier.

(i)Bz,n
p,q f = f on Γ1 ∪ Γ3;

(ii)(Bz,n
p,q e0j) (y, z) = zj , j = 0, 1 (dex(Bz,n

p,q ) = 1),

(iii)(Bz,n
p,q e02) (y, z) = z2 +

z(h− y − z)

[n]p,q
,

(Bz,n
p,q eij) (y, z) =


yizj , j = 0, 1, i ∈ N;

yi
(
z2 + pn−1z(h−y−z)

[n]p,q

)
, j = 2, i ∈ N.

Consider the approximation formula

f = By,l
p,qf +Ry,l

p,qf,

we prove the following result.

Theorem 2.4. If f is a continuous function on the interval [0, h−z] i.e. f(., z) ∈ C[0, h−z], then

∣∣∣(Ry,l
p,qf)(y, z)

∣∣∣ ≤ (1 +
h
√

pl−1

2δ
√
[l]p,q

)
M
(
f(., z); δ

)
, z ∈ [0, h].

where M(f(., z); δ). modulus of continuity of the function f with respect to the first variable y.
Moreover, if δ = 1√

[l]p,q
and 0 < q < p ≤ 1, then

∣∣∣(Ry,l
p,qf)(y, z)

∣∣∣ ≤ (1 +
h

2

)
M

(
f(., z);

1√
[l]p,q

)
, z ∈ [0, h].

Proof. Since by definition, (By,l
p,qf)(0, h) = f(0, h) so because of the interpolation property

remainder will be zero at (0, h). Further we have∣∣∣∣∣(Ry,l
p,qf)(y, z)

∣∣∣∣∣ ≤
l∑

i=0

p̂l,i(y, z)

∣∣∣∣∣f(y, z)− f

(
[i]p,q(h− z)

pi−l[l]p,q
, z

)∣∣∣∣∣.
Since ∣∣∣∣∣f(y, z)− f

(
[i]q(h− z)

pi−l[l]p,q
, z

)∣∣∣∣∣ ≤
(

1
δ

∣∣∣∣∣y − [i]p,q(h− z)

pi−l[l]p,q

∣∣∣∣∣+ 1

)
M(f(., z); δ),

one obtains

∣∣∣∣∣(Ry,l
p,qf)(y, z)

∣∣∣∣∣ ≤
l∑

i=0

p̂l,i(y, z)

(
1
δ

∣∣∣∣∣y − [i]p,q(h− z)

pi−l[l]p,q

∣∣∣∣∣+ 1

)
M(f(., z); δ)

≤

[
1 +

1
δ

( l∑
i=0

p̂l,i(y, z)
(
y − [i]p,q(h− z)

pi−l[l]p,q

)2
)1/2

]
M(f(., z); δ)

=

[
1 +

1
δ

√
y(h− y − z)pl−1

[l]p,q

]
M(f(., z); δ).
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As

max
Th

[y(h− y − z)] =
h2

4
,

it follows that ∣∣∣(Ry,l
p,qf)(y, z)

∣∣∣ ≤ (1 +

√
pl−1h

2δ
√
[l]p,q

)
M(f(., z); δ).

Clearly for δ = 1√
[l]p,q

and 0 < q < p ≤ 1, we obtain

∣∣∣(Ry,l
p,qf)(y, z)

∣∣∣ ≤ (1 +
h

2

)
M

(
f(., z);

1√
[l]p,q

)
. □

Theorem 2.5. If f(., z) ∈ C2[0, h] and 0< q < p ≤ 1, then

(Ry,l
p,qf)(y, z) = − y(h− y − z)

2[l]p,q
f (2,0)(ξ, z), ξ ∈ [0, h− z] (2.5)

and ∣∣∣(Ry,l
p,qf)(y, z)

∣∣∣ ≤ h2

8[l]p,q
M20f, (y, z) ∈ Th,

where
Mijf = max

Th

∣∣f (i,j)(y, z)
∣∣.

Proof. As dex(By,l
p,q) = 1, using Peano’s theorem, we obtain

(
Ry,l

p,qf
)
(y, z) =

∫ h−z

0
K20(y, z; t)f (2,0)(t, z)dt,

here the kernel given by

K20(u, v; t) := Ry,l
p,q

[
(y − t)+

]
= (y − t)+ −

l∑
i=0

p̂l,i(y, z)

(
[i]p,q

h− z

[l]p,q
− t

)
+

It is easy to follows from Mean Value Theorem,

(
Ry,l

p,qf
)
(y, z) = f (2,0)(ξ, z)

∫ h−z

0
K20(y, z; t)dt, ξ ∈ [0, h− z].

After some simple calculation, we get

(Ry,l
p,qf)(y, z) = − y(h− y − z)

2[l]p,q
f (2,0)(ξ, z),

where ξ ∈ [0, h− z].
With the help of equation (2.5), we get∣∣∣(Ry,l

p,qf)(y, z)
∣∣∣ ≤ h2

8[l]p,q
M20f, (y, z) ∈ Th. □

Remark 2.6. From (2.5) it can be deduced that
• If f(., z) is a concave function then

(
Ry,l

p,qf
)
(y, z) ≥ 0, i.e.(

By,l
p,qf

)
(y, z) ≤ f(y, z).

• If f(., z) is a convex function then
(
Ry,l

p,qf
)
(y, z) ≤ 0, i.e.(

By,l
p,qf

)
(y, z) ≥ f(y, z),

for y ∈ [0, h− z] and z ∈ [0, h]. □
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Remark 2.7. Based on the following approximation formula

f = Bz,n
p,q f +Rz,n

p,q f.

we can deduce the following results for the remainder Rz,n
p,q f .

1. If f(y, .) ∈ C[0, h− y], then

∣∣∣(Rz,n
p,q f)(y, z)

∣∣∣ ≤ (1 +

√
pn−1h

2δ
√
[n]p,q

)
M
(
f(y, .); δ

)
, y ∈ [0, h].

and for δ = 1√
[n]p,q

and 0 < q < p ≤ 1, we have

∣∣∣(Rz,n
p,q f)(y, z)

∣∣∣ ≤ (1 +
h

2

)
M

(
f(y, .);

1√
[n]p,q

)
, y ∈ [0, h].

2. If f(y, .) ∈ C2[0, h] and 0 < q < p ≤ 1, then

(Rz,n
p,q f)(y, z) = − z(h− y − z)

2[n]p,q
f (0,2)(y, η), η ∈ [0, h− y],

and ∣∣∣(Rz,n
p,q f)(y, z)

∣∣∣ ≤ h2

8[n]p,q
M02f, (y, z) ∈ Th,

where
Mijf = max

Th

∣∣f (i,j)(y, z)
∣∣.

3 Product Operators

Let P ln
p,q = By,l

p,qBz,n
p,q and Qnl

p,q = Bz,n
p,q By,l

p,q be the products of the operators By,l
p,q and Bz,n

p,q .

The operator P ln
p,q is given by

(Pln
p,qf)(y, z) =



l∑
i=0

n∑
j=0

p̂l,i(y, z)q̂n,j

(
[i]p,q (h−z)

pi−l [l]p,q
, z

)
f

(
[i]p,q (h−z)

pi−l[l]p,q
, [j]p,q

(pi−l [l]p,q−[i]p,q )h+z[i]p,q

pj−npi−l [l]p,q [n]p,q

)
, (y, z) ∈ Th \ {(0, h), (h, 0)},

f(0, h), (0, h) ∈ Th,

f(h, 0), (h, 0) ∈ Th.

Theorem 3.1. For the product operator P ln
p,q the following relations hold:

(i) (P ln
p,qf)(y, 0) = (By,l

p,qf)(y, 0),
(ii) (P ln

p,qf)(0, z) = (Bz,n
p,q f)(0, z),

(iii) (P ln
p,qf)(y, h− y) = f(y, h− y), y, z ∈ [0, h].

Some simple calculation shows that the above relations are satisfied by the product operator.
Moreover, it is clear from the property (i) and (ii) that
(P ln

p,qf)(0, 0) = f(0, 0). □

Remark 3.2. The product operator P ln
p,q interpolates the real valued function f at the

vertex (0, 0) and on the hypotenuse y + z = h of the triangle Th. □

We can define the product operator Qnl
p,q as follows

(Qnl
p,qf)(y, z) =



l∑
i=0

n∑
j=0

p̂l,i(u,
[j]p,q (h−y)

pj−n [n]p,q
)q̂n,j(y, z)f

(
[i]p,q

(pj−n [n]p,q−[j]p,q )h+y[j]p,q

pj−npi−l [l]p,q [n]p,q
, [j]p,q

(h−y)

pj−n [n]p,q

)
, (y, z) ∈ Th \ {(0, h), (h, 0)},

f(0, h), (0, h) ∈ Th,

f(h, 0), (h, 0) ∈ Th.
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Moreover, (Qnl
p,qf)(y, z) satisfies the following properties:

(i) (Qnl
p,qf)(y, 0) = (By,l

p,qf)(y, 0),
(ii) (Qnl

p,qf)(0, z) = (Bz,n
p,q f)(0, z),

(iii) (Qnl
p,qf)(h− z, z) = f(h− z, z), y, z ∈ [0, h].

Based on the following approximation formula

f = P ln
p,qf +RPln

p,q f,

we present some interesting results.

Theorem 3.3. If f ∈ C(Th) and 0 < p < q ≤ 1, then∣∣∣∣(RPln

p,q f
)
(y, z)

∣∣∣∣ ≤ (1 + h)M

(
f ;

1√
[l]p,q

,
1√
[n]p,q

)
, (y, z) ∈ Th. (3.1)

Proof. Based on the approximation formula for the product operator P ln
p,qf , we have

∣∣∣(RPln

p,q f
)
(y, z)

∣∣∣ ≤ [ 1
δ1

l∑
i=0

n∑
j=0

p̂l,i(y, z)q̂n,j

(
[i]p,q

(h − z)

pi−l[l]p,q
, z

)∣∣∣∣∣y − [i]p,q
(h − z)

pi−l[l]p,q

∣∣∣∣∣
+

1
δ2

l∑
i=0

n∑
j=0

p̂l,i(y, z)q̂n,j

(
[i]p,q

(h − z)

pi−l[l]p,q
, z

)∣∣∣∣∣z − [j]p,q
(pi−l[l]p,q − [i]p,q)h + [i]p,qz

pi−lpj−n[l]p,q [n]p,q

∣∣∣∣∣
+

l∑
i=0

n∑
j=0

p̂l,i(y, z)q̂n,j

(
[i]p,q

(h − z)

pi−l[l]p,q
, z

)]
M(f ; δ1, δ2).

After some simple computations, we have

l∑
i=0

n∑
j=0

p̂l,i(y, z)q̂n,j

(
[i]p,q

(h − z)

pi−l[l]p,q
, z

)∣∣∣∣∣y − [i]p,q
(h − z)

[l]p,q

∣∣∣∣∣ ≤
√

y(h − y − z)pl−1

[l]p,q
,

l∑
i=0

n∑
j=0

p̂l,i(y, z)q̂n,j

(
[i]p,q

(h − z)

pi−l[l]p,q
, z

)∣∣∣∣∣z − [j]p,q
(pi−l[l]p,q − [i]p,q)h + [i]p,qz

pi−lpj−n[l]p,q [n]p,q

∣∣∣∣∣ ≤
√

z(h − y − z)pn−1

[n]p,q
.

Since
l∑

i=0

n∑
j=0

p̂l,i(y, z)q̂n,j

(
[i]p,q

(h − z)

pi−l[l]p,q
, z

)
= 1.

It follows that

∣∣∣(RPln

p,q f
)
(y, z)

∣∣∣ ≤ ( 1
δ1

√
y(h − y − z)pl−1

[l]p,q
+

1
δ2

√
z(h − y − z)pn−1

[n]p,q
+ 1

)
M(f ; δ1, δ2).

Since
y(h − y − z)

[l]p,q
≤

h2

4[l]p,q
,

z(h − y − z)

[n]p,q
≤

h2

4[n]p,q
, for all (y, z) ∈ Th.

For 0 < q < p ≤ 1 , we have

∣∣∣(RPln

p,q f
)
(y, z)

∣∣∣ ≤ ( h

2δ1
√

[l]p,q
+

h

2δ2
√

[n]p,q
+ 1

)
M(f ; δ1, δ2)

∣∣∣∣(RPln

p,q f
)
(y, z)

∣∣∣∣ ≤ (1 + h)M

(
f ;

1√
[l]p,q

,
1√

[n]p,q

)
. □

4 Boolean sum operators

Let Sln
p,q and T nl

p,q denote the Boolean sums of the (p, q)-Bernstein operators By,l
p,q and Bz,n

p,q then
we have:

Sln
p,q := By,l

p,q ⊕ Bz,n
p,q = By,l

p,q + Bz,n
p,q − By,l

p,qBz,n
p,q ,

T nl
p,q := Bz,n

p,q ⊕ By,l
p,q = Bz,n

p,q + By,l
p,q − Bz,n

p,q By,l
p,q.

Now we prove the following results.
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Theorem 4.1. For a real valued function f defined on Th, we have

Sln
p,qf

∣∣∣∣∣
∂Th

= f

∣∣∣∣∣
∂Th

.

Proof. By definition
Sln
p,qf = (By,l

p,q + Bz,n
p,q − By,l

p,qBz,n
p,q )f.

By the interpolation properties satisfied by By,l
p,q, Bz,n

p,q and the properties (i)-(iii) of the operator
P ln
p,q, we have

(Smn
p,q f)(y, 0) = (By,l

p,qf)(y, 0) + f(y, 0)− (By,l
p,qf)(y, 0) = f(y, 0),

(Sln
p,qf)(0, z) = f(0, z)− (Bz,n

p,q f)(0, z) + (Bz,n
p,q f)(0, z) = f(0, z),

(Sln
p,qf)(y, h− y) = f(y, h− y) + f(y, h− y)− f(y, h− y) = f(y, h− y),

for all y, z ∈ [0, h]. □
Let RSln

p,q f denotes the remainder for approximation formula for the Boolean sum operator Sln
p,q

then we have
f = Sln

p,qf +RSln

p,q f.

Theorem 4.2. If f ∈ C(Th) and 0 < q < p ≤ 1 then∣∣∣∣(RSln

p,q f

)
(y, z)

∣∣∣∣ ≤
(

1 +
h

2

)
M

(
f(., z);

1√
[l]p,q

)
+

(
1 +

h

2

)
M

(
f(y, .);

1√
[n]p,q

)

+(1 + h) M

(
f ;

1√
[l]p,q

,
1√
[n]p,q

)
, (4.1)

for all (y, z) ∈ Th.

Proof. Considering the following relation

f − Sln
p,qf = f − By,l

p,qf + f − Bz,n
p,q f − (f − P ln

p,qf),

we have ∣∣∣(RSln

p,q f
)
(y, z)

∣∣∣ ≤ ∣∣∣(Ry,l
p,qf

)
(y, z)

∣∣∣+ ∣∣∣(Rz,n
p,q f

)
(y, z)

∣∣∣+ ∣∣∣(RPln

p,q f
)
(y, z)

∣∣∣.
Now using 2.4, 2, 3.1, theorem 4.2 is established. □

Remark 4.3. We can prove the analogous results for the remainders of the Product Operator and
the boolean sum operator considering the following approximation formula

f = Qnl
p,qf +RQnl

p,q f = Bz,n
p,q By,l

p,qf +RQnl

p,q f

and

f = T nl
p,qf +RT nl

p,q f = (Bz,n
p,q ⊕ By,l

p,q)f +RT nl

p,q f. □

5 Graphical analysis

Let f(y, z) = (−10 + 20z)2 − (−10 + 20y)2 be a function on triangle Th, for analysing the
operators graphically. The graphs of operators By,l

p,qf, Bz,n
p,q f, P ln

p,qf and Sln
p,qf for the values

p = 0.80 and q = .70 are represented in figures 1b, 1c, 1d and 1e respectively. Also the graphs
of operators By,l

p,qf, Bz,n
p,q f, P ln

p,qf and Sln
p,qf for the values p = 0.90 and q = .80 are represented

in figures 2b, 2c, 2d and 2e respectively. All the graphs of operators in figure 1 are plotted for
l = n = 3 and all the graphs of operators in figure 2 are plotted for l = n = 4. One can
observe that the graphs of Boolean sum operators are more close to the graph of function and
Boolean sum operators interpolate on all the bondary of triangle Th. Actually all other operators
are defined for defining the Boolean sum operators. The parameter p and q will provide more
flexibility.
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(a) f = (−10 + 20z)2 − (−10 + 20y)2
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(b) By,l
p,qf for p = 0.80 and q = 0.70
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(c) Bz,n
p,q f for p = 0.80 and q = 0.70
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(d) P ln
p,qf for p = 0.80 and q = 0.70
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(e) Sln
p,qf for p = 0.80 and q = 0.70

Figure 1: By,l
p,qf, Bz,n

p,q f, P ln
p,qf and Sln

p,qf approximate the function f for p = 0.80, q = 0.70 and
l = n = 3.
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(a) f = (−10 + 20z)2 − (−10 + 20y)2
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(b) By,l
p,qf for p = 0.90 and q = 0.80
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(c) Bz,n
p,q f for p = 0.90 and q = 0.80
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(d) P ln
p,qf for p = 0.90 and q = 0.80
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(e) Sln
p,qf for p = 0.90 and q = 0.80

Figure 2: By,l
p,qf, Bz,n

p,q f, P ln
p,qf and Sln

p,qf approximate the function f for p = 0.90, q = 0.80 and
l = n = 4.
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