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Abstract In the present paper, we introduce the notion of ∗-quasi-Yamabe soliton. Also, dis-
cuss the nature of the ∗-Einstein soliton and ∗-quasi-Yamabe soliton on N(k)-contact metric man-
ifolds with different types of potential vector fields. It is shown that if a (2n+ 1)-dimensional
N(k)-contact metric manifold M admits a ∗-Einstein soliton whose potential vector field F is
pointwise collinear with the Reeb vector field ζ, then F is a constant multiple of ζ, and the
soliton is steady. Moreover, it is shown that, under certain conditions, a (2n+ 1)-dimensional
N(k)-contact metric manifold endowed with a ∗-quasi-Yamabe soliton becomes a Sasakian man-
ifold, and the soliton reduces to an expanding ∗-Yamabe soliton.Next, we explore an application
of the torse-forming vector field on a N(k)-contact metric manifold in terms of ∗-Einstein soliton.
Finally, an illustrative example of a N(k)-contact metric manifold is discussed to verify some of
our results.

1 Introduction

In 2002, T. Hamada [13] defined the ∗-Ricci tensor Ric∗ on real hypersurfaces of non-flat
complex space forms by

Ric∗(X1,X2) = g(Q∗X1,X2) =
1

2
[trace(ϕ⊗ R(X1, ϕX2))]

for any X1,X2 ∈ X(M), where X(M) is the Lie algebra of all smooth vector fields on M and
R, Q∗, ϕ are the Riemannian curvature tensor, ∗-Ricci operator, and tensor field of type (1, 1),
respectively. The ∗-scalar curvature of M is denoted by r∗ and is given by r∗ = trace(Q∗). Here
⊗ represents the tensor product. A Riemannian manifold (M, g) is called ∗-Ricci flat if its Ric∗

vanishes identically. Over the years, several notion related to the ∗-Ricci tensor were initiated.
In [15], the authors initiated the notion of ∗-Ricci soliton and widely studied by many authors
[10, 11, 19, 20] and others.

In 2016, G. Catino and L. Mazzieri [6] initiated the Einstein soliton as a self-similar solution
to the Einstein flow equation given by

∂

∂t
(g(t)) = −2

(
Ric(t)− r(t)

2
g(t)

)
,
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where Ric is the (0, 2) symmetric Ricci tensor, r is the scalar curvature and g is the Riemannian
metric on a smooth manifold M and t is the time variable.

A Riemannian metric g defined on a smooth manifold M is called an Einstein soliton if there
exists a real constant τ and a smooth vector field F on M, such that

Ric(X1,X2) +
1

2
(£Fg)(X1,X2) + (τ − r

2
)g(X1,X2) = 0 (1.1)

for any X1,X2 ∈ X(M), where £Fg is the Lie derivative of the metric g along the potential vector
field F ∈ X(M). The vector field F on M plays vital roles in determining the nature of the soliton.
An Einstein soliton is said to be shrinking if τ < 0, steady if τ = 0, and expanding if τ > 0.

Very Recently, S. Roy et al. [18] initiated the concept of ∗-Einstein soliton which can be
defined as

Ric∗(X1,X2) +
1

2
(£Fg)(X1,X2) + (τ − r∗

2
)g(X1,X2) = 0 (1.2)

for any X1,X2 ∈ X(M), τ being a real constant, provided Ric∗ is a symmetric ∗-Ricci tensor.
Moreover, if the potential vector field F is the gradient of a smooth function f : M → R, then the
soliton (1.2) is called a ∗-gradient Einstein soliton. Here R represents the set of real numbers.
Therefore, ∗-gradient Einstein soliton is given by

Ric∗(X1,X2) +∇∇f(X1,X2) + (τ − r∗

2
)g(X1,X2) = 0 (1.3)

for any X1,X2 ∈ X(M), where ∇ is the Riemannian connection on M.

The notion of Yamabe flow was first initiated by Hamilton [14] to construct Yamabe metrics
on compact Riemannian manifold of dimension greater than or equal to three. The Yamabe
soliton as a self-similar solution to the Yamabe flow equation given by

∂

∂t
(g(t)) = −r(t)g(t), g(0) = g0,

where r is the scalar curvature of M.

A Riemannian metric g defined on a complete Riemannian manifold M of dimension n(≥ 3)
is called a Yamabe soliton if it obeys

1

2
(£Fg)(X1,X2) = (r − λ)g(X1,X2) (1.4)

for any X1,X2 ∈ X(M) and λ ∈ R. A Yamabe soliton is said to be shrinking if λ > 0, steady if
λ = 0, and expanding if λ < 0.

In 2021, S. Roy et al. [19] introduced the notion of ∗-Yamabe soliton as follows:

1

2
(£Fg)(X1,X2) = (r∗ − λ)g(X1,X2) (1.5)

for any X1,X2 ∈ X(M), where r∗ is the ∗-scalar curvature of M and λ ∈ R.
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In 2018, B. Y. Chen and S. Deshmukh [8] extended the notion of Yamabe soliton to quasi-
Yamabe soliton. According to [8], the metric g satisfies the equation

1

2
(£Fg)(X1,X2) = (r − λ)g(X1,X2) + σF♭(X1)F

♭(X2) (1.6)

for any X1,X2 ∈ X(M), where σ : M → R is a smooth function, F♭ is the dual 1-form of F and
λ ∈ R.

Motivated by the above studies, we develop the notion of ∗-quasi-Yamabe soliton as:

Definition 1.1. A Riemannian or pseudo-Riemannian manifold (M, g) of dimension greater than
or equal to three is said to admit ∗-quasi-Yamabe soliton if it satisfies

1

2
(£Fg)(X1,X2) = (r∗ − λ)g(X1,X2) + σF♭(X1)F

♭(X2) (1.7)

for any X1,X2 ∈ X(M), where σ : M → R is a smooth function and F♭ is the dual 1-form of
F ∈ X(M), where r∗ is the ∗-scalar curvature of M defined by above. This notion is denoted by
(g,F, λ, σ). Furthermore, if σ = 0, then the ∗-quasi-Yamabe soliton (g,F, λ, σ) reduces to the
∗-Yamabe soliton (g,F, λ).

On the other hand, a nowhere-vanishing smooth vector field ν on a Riemannian or pseudo-
Riemannian manifold (M, g) is called torse-forming [24] if it obeys the equation

∇X1ν = ψX1 + θ(X1)ν (1.8)

for any X1 ∈ X(M), where ∇ is the Levi-Civita connection on M and ψ : M → R is a smooth
function and θ is a 1-form. It should be noticed that for special values of the function ψ and the
1-form θ in (1.8), we find the following:

• ν ∈ X(M) is called concircular [25], if θ ≡ 0 in (1.8),

• ν ∈ X(M) is called concurrent [21, 26], if θ ≡ 0 and ψ = 1 in (1.8),

• ν ∈ X(M) is called recurrent, if ψ = 0 in (1.8),

• ν ∈ X(M) is called parallel, if θ = ψ = 0 in (1.8).

In [7], B. Y. Chen initiated a new smooth vector field called torqued vector field. If ν ∈ X(M)
satisfies the equation (1.8) with θ(ν) = 0, then ν is called torqued vector field. In the case of
torqued vector field, the function ψ is known as the torqued function on M and the 1-form θ is
the torqued form of ν.

The paper is organized as follows: After the brief introduction, we discuss some fundamental
definitions related to N(k)-contact metric manifolds and curvature formulas, which are contained
in Section 2. Section 3 is devoted to the study of ∗-Einstein solitons on N(k)-contact metric
manifolds with different kinds potential vector fields on M. Section 4 deals with the study of
N(k)-contact metric manifolds whose metric g satisfies ∗-quasi-Yamabe soliton. In Section 5,
we have discussed some properties of potential vector fields on N(k)-contact metric manifold
admitting ∗-Einstein soliton. Finally, we present an example of three-dimensional N(k)-contact
metric manifolds and validate some of our results.
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2 Preliminaries

A smooth manifold M of dimension (2n+ 1) is said to have an almost contact structure if it
admits a (1, 1) tensor field ϕ, a Reeb vector field ζ, and a 1-form η on M such that

ϕ2(X1) = −X1 + η(X1)ζ, η(ζ) = 1 (2.1)

for any X1 ∈ X(M). An immediate consequence of the relations (2.1) is that

ϕ(ζ) = 0, η(ϕX1) = 0. (2.2)

If M with an almost contact structure (ϕ, ζ, η) admits a Riemannian metric g such that

g(ϕX1, ϕX2) = g(X1,X2)− η(X1)η(X2), g(X1, ζ) = η(X1) (2.3)

for any X1,X2 ∈ X(M), then (ϕ, ζ, η, g) is called an almost contact metric structure and is de-
noted by (M, ϕ, ζ, η, g). From (2.3), it follows that

g(ϕX1,X2) + g(X1, ϕX2) = 0. (2.4)

On the other hand, D. E. Blair [1] defined the fundamental 2-form Φ associated with the
structure (M, ϕ, ζ, η, g) as follows:

Φ(X1,X2) = g(X1, ϕX2)

for any X1,X2 ∈ X(M). Furthermore, an almost contact metric manifold (M, ϕ, ζ, η, g) becomes
a contact metric manifold if

Φ(X1,X2) = dη(X1,X2), (2.5)

where d stands for the exterior differentiation. On a contact metric manifold, the (1, 1)-tensor
field h is defined as h = 1

2£ζϕ, where £ζ is the Lie derivative operator along ζ. The tensor field
h is symmetric and satisfies

hϕ+ ϕh = 0, trace(h) = trace(ϕh) = 0, hζ = 0. (2.6)

Also, we have
∇X1ζ = −ϕX1 − ϕhX1 (2.7)

for any X1 ∈ X(M), where ∇ is the Levi-Civita connection of g on M.

In [5], Blair et al. defined the notion of (k, µ)-nullity distribution on contact metric manifold
as follows:

N(k, µ) = {X3 ∈ T(M) : R(X1,X2)X3 = (kI+ µh)[g(X2,X3)X1 − g(X1,X3)X2]} (2.8)

for any X1,X2,X3 ∈ X(M), where (k, µ) ∈ R2, I is an identity map. If the Reeb vector field ζ
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belongs to (k, µ)-nullity distribution N(k, µ), then we call a contact metric manifold as (k, µ)-
contact metric manifold. Also, the contact metric manifold M is called N(k)-contact metric
manifold [22] if it satisfies (2.8) with µ = 0. In the case of N(k)-contact metric manifold, the
k-nullity distribution N(k) is given by [22]:

N(k) = {X3 ∈ T(M) : R(X1,X2)X3 = k[g(X2,X3)X1 − g(X1,X3)X2]}

for any X1,X2,X3 ∈ X(M). Further, if k = 1, then a N(k)-contact metric manifold M is Sasakian.
Also, if k = 0, then the manifold M is locally isometric to En+1(0)× Sn(4) for n > 1 and flat for
n = 1 [2, 4].

For a (2n+ 1)-dimensional N(k)-contact metric manifold M the following relations also hold
[1, 3]:

h2 = (k− 1)ϕ2, (2.9)

R(X1,X2)ζ = k{η(X2)X1 − η(X1)X2}, (2.10)

R(ζ,X1)X2 = k{g(X1,X2)ζ − η(X2)X1}, (2.11)

(∇X1η)X2 = g(X1 + hX1, ϕX2), (2.12)

(∇X1ϕ)X2 = g(X1 + hX1,X2)ζ − η(X2)(X1 + hX1), (2.13)

Ric(X1,X2) = 2(n− 1){g(X1,X2) + g(hX1,X2)}

+2{nk− n+ 1}η(X1)η(X2), n ≥ 1

(2.14)

for any X1,X2 ∈ X(M), where R is the curvature tensor of type (1, 3), Ric is the symmetric Ricci
tensor of type (0, 2), Q is the Ricci operator, and it is defined as Ric(X1, X2) = g(QX1, X2)
for any X1,X2 ∈ X(M). For more details about the N(k)-contact metric manifolds, we cite
[12, 16, 17] and the references therein.

Definition 2.1. On a (2n+ 1)-dimensional Riemannian manifold (M, g), a smooth vector field F
is said to be a conformal Killing vector field on M [27, 28] if it obeys the equation

(£Fg)(X1,X2) = 2γg(X1,X2) (2.15)

for any X1,X2 ∈ X(M), where γ : M → R is a smooth function. The function γ is also known as
conformal coefficient. Moreover, the conformal Killing vector field F is called proper if γ is not
constant. Also, the conformal Killing vector field F is called homothetic if γ is constant and F
is called a proper homothetic vector field if γ is non-zero constant. Finally, the vector field F is
called Killing if it satisfies (2.15) with γ = 0.

Definition 2.2. A smooth vector field F on a contact metric manifold M is said to be an infinites-
imal contact transformation [23] if it preserves the contact form η, i.e., there exists a smooth
function ρ : M → R that satisfies

(£Fη)(X1) = ρη(X1) (2.16)

for any X1 ∈ X(M), where £Fη denotes the Lie derivative of η by F. In particular, if ρ vanishes
identically in (2.16), then the smooth vector field F is said to be a strict infinitesimal contact
transformation.



1304 J. Das, K. Halder and A. Bhattacharyya

3 Main results

This section is devoted to the study of N(k)-contact metric manifold admitting a ∗-Einstein soli-
ton. To produce our prime theorems, we need the following Lemma:

Lemma 3.1. ([11]) On a (2n+ 1)-dimensional N(k)-contact metric manifold M, the ∗-Ricci
tensor Ric∗ is given by

Ric∗(X1,X2) = −k{g(X1,X2)− η(X1)η(X2)} (3.1)

for any X1,X2 ∈ X(M).

Taking X1 = X2 = ei in (3.1), where {ei}2n+1
i=1 is an orthonormal basis of the tangent space at

each point of M and summing over 1 ≤ i ≤ (2n+ 1) we get

r∗ = −2nk. (3.2)

Theorem 3.2. Let M be a (2n+ 1)-dimensional N(k)-contact metric manifold admitting a ∗-
Einstein soliton (g,F, τ) whose non-zero potential vector field F is pointwise collinear with the
Reeb vector field ζ. Then,

(i) The vector field F is constant multiple of ζ.
(ii) The ∗-Einstein soliton (g,F, τ) is steady.
(iii) The manifold M is ∗-Ricci flat.
(iv) The the manifold M is locally isometric to En+1(0)× Sn(4) for n > 1 and flat for n = 1.
(v) The vector field F is a strict infinitesimal contact transformation.

Proof. Let the non-zero potential vector field F be pointwise collinear with the Reeb vector field
ζ. That is, F = cζ, where c : M → R is a non-zero smooth function. Then from (1.2) and (3.2),
we have

(£cζg)(X1,X2) + 2Ric∗(X1,X2) + 2(τ + nk)g(X1,X2) = 0 (3.3)

for any X1,X2 ∈ X(M).

Now, from the definition of Lie derivative and from (2.7), we have

(£cζg)(X1,X2) = cg(∇X1ζ,X2) + cg(X1,∇X2ζ) + X1(c)η(X2) + X2(c)η(X1)

= 2cg(hX1, ϕX2) + X1(c)η(X2) + X2(c)η(X1). (3.4)

Therefore, with the help of (3.1) and (3.4), equation (3.3) becomes

2cg(hX1, ϕX2) + X1(c)η(X2) + X2(c)η(X1)− 2k{g(X1,X2)− η(X1)η(X2)}

+2(τ + nk)g(X1,X2) = 0.
(3.5)

Replacing X2 by ζ in (3.5) yields

X1(c) = −{2(τ + nk) + ζ(c)}η(X1). (3.6)

Again replacing ζ instead of X1 and X2 in (3.5) we get

ζ(c) = −(τ + nk). (3.7)
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Take a local orthonormal basis {es}2n+1
s=1 on a (2n+ 1)-dimensional N(k)-contact metric mani-

fold. Then setting X1 = X2 = es in (3.5) and summing over 1 ≤ s ≤ (2n+ 1), we obtain

ζ(c) = −(τ + nk)(2n+ 1) + 2nk. (3.8)

Equating (3.7) with (3.8) we arrive at

τ = −k(n− 1). (3.9)

Further, with the help of (3.7), the equation (3.6) becomes

X1(c) = −(τ + nk)η(X1)

and hence we have
d(c) = −(τ + nk)η, (3.10)

where d stands for the exterior derivative operator.

Taking exterior derivative of (3.10) and using Poincare lemma d2 ≡ 0, we obtain τ + nk = 0.
Thus we conclude from (3.10) that d(c) = 0, which implies that c is constant and therefore F is
a constant multiple of ζ. This proves (i).

On substituting τ + nk = 0 in (3.9) leads to k = 0, which eventually implies that τ = 0 and
hence the soliton is steady. This proves (ii).

Now using k = 0 in the identity (3.1) we get Ric∗ = 0 and hence the manifold M is ∗-Ricci
flat, and this proves (iii).

Furthermore, the manifold M is locally isometric to En+1(0)× Sn(4) for n > 1 and flat for
n = 1 as k = 0 and hence the part (iv) of the theorem 3.2 is proved.

Again replacing X2 by ζ in (3.3) and using the equation (3.1) and the fact that τ + nk = 0,
we obtain

(£Fg)(X1, ζ) = 0

and hence
(£Fη)(X1) = g(X1,£Fζ) (3.11)

for any X1 ∈ X(M).

Since F = cζ and c is a constant it can be easily evaluated that £Fζ = 0. Thus from (3.11)
finally we have (£Fη)(X1) = 0 for any X1 ∈ X(M). Hence from definition 2.2, it follows that
the potential vector field F is a strict infinitesimal contact transformation. This result ends the
proof of Theorem 3.2.

Theorem 3.3. Let M be a (2n+ 1)-dimensional N(k)-contact metric manifold admitting a ∗-
Einstein soliton (g,F, τ). If the potential vector field F is orthogonal to the Reeb vector field
ζ, then the ∗-Einstein soliton is steady if and only if the manifold M is locally isometric to
En+1(0)× Sn(4) for n > 1 and flat for n = 1.

Proof. Let (g,F, τ) be a ∗-Einstein soliton on a (2n+ 1)-dimensional N(k)-contact metric man-
ifold M, where F is orthogonal vector field and orthogonal to ζ. Then from (1.2) and (3.1), we
have

(£Fg)(X1,X2)− 2k{g(X1,X2)− η(X1)η(X2)}+ 2(τ + nk)g(X1,X2) = 0 (3.12)
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for any X1,X2 ∈ X(M).

Replacing ζ instead of X1 and X2 in (3.12) and using (2.1), we get

(£Fg)(ζ, ζ) + 2(τ + nk) = 0. (3.13)

On the other hand, as ∇ζζ = 0 we deduce that

(£Fg)(ζ, ζ) = 2g(∇ζF, ζ) = 2∇ζ(g(F, ζ)) = 0. (3.14)

With the help of (3.14) and from (3.13) we arrive at

τ = −nk. (3.15)

Hence the proof.

In view of (3.15), we can state the following:

Corollary 3.4. Let M be a (2n+ 1)-dimensional N(k)-contact metric manifold admitting a ∗-
Einstein soliton (g,F, τ) whose the potential vector field F is orthogonal to the Reeb vector field
ζ. If k = 1, i.e., the manifold M is Sasakian, then the ∗-Einstein soliton is shrinking.

Theorem 3.5. Let M be a (2n+ 1)-dimensional N(k)-contact metric manifold admitting a ∗-
Einstein soliton (g,F, τ). If the potential vector field F is an infinitesimal contact transforma-
tion, then the manifold M is locally isometric to En+1(0)× Sn(4) for n > 1 and flat for n = 1.
Furthermore, the ∗-Einstein soliton is steady and the potential vector field F is Killing.

Proof. Let (g,F, τ) be a ∗-Einstein soliton on a (2n+ 1)-dimensional N(k)-contact metric man-
ifold M, where F is an infinitesimal contact transformation. Then from (1.2) and (3.1), we have

(£Fg)(X1,X2)− 2k{g(X1,X2)− η(X1)η(X2)}+ 2(τ + nk)g(X1,X2) = 0 (3.16)

for any X1,X2 ∈ X(M).

Replacing X1 and X2 by ζ in (3.16) and using (2.1), we get

g(£Fζ, ζ) = (τ + nk). (3.17)

Again replacing X2 by ζ in (3.16), then recalling (2.16) infers that

£Fζ = (ρ+ 2τ + 2nk)ζ. (3.18)

Feeding (3.18) in (3.17) we have

ρ = −(τ + nk). (3.19)

This implies that ρ is constant.

On the other hand, as £F and d commutes, from (2.16) we deduce that

£Fdη = d(ρη) = (dρ) ∧ η + ρ(dη)

and hence

£Fdη = ρ(dη). (3.20)
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Since a volume form, ω is closed, so, from Cartan’s formula we have

£Fω = div(F)ω. (3.21)

Taking the Lie-derivative of the volume form ω = η ∧ (dη)n along F and using (3.20) and (3.21)
we obtain

div(F) = (n+ 1)ρ. (3.22)

Now integrating the forgoing equation over M and then applying Divergence theorem, we find

ρ = 0

and hence
div(F) = 0. (3.23)

Recalling (3.16), (3.19) and the fact that ρ = 0, one can easily obtain

(£Fg)(X1,X2)− 2k{g(X1,X2)− η(X1)η(X2)} = 0 (3.24)

for any X1,X2 ∈ X(M).

Taking contraction of (3.24) over X1 and X2 we get

div(F) = 2nk. (3.25)

This eventually implies that k = 0 as div(F) = 0. Therefore, the manifold M is locally isometric
to En+1(0)× Sn(4) for n > 1 and flat for n = 1. Also, from (3.24), we have (£Fg)(X1,X2) = 0
for any X1,X2 ∈ X(M). This shows that F is Killing. On taking ρ = k = 0 in (3.19), we obtain
τ = 0. Thus, the ∗-Einstein soliton is steady. This is the desired result.

Theorem 3.6. Let M be a (2n+ 1)-dimensional N(k)-contact metric manifold admitting a ∗-
Einstein soliton (g,F, τ). If the potential vector field F is the gradient of a smooth function ψ
defined on M, then the Laplacian equation satisfied by ψ is

∆(ψ) = 2nk− (τ + nk)(2n+ 1).

Proof. Let (g,F, τ) be a ∗-Einstein soliton on a (2n+ 1)-dimensional N(k)-contact metric man-
ifold M, where F = grad(ψ). Then from (1.2) and (3.1), we have

(£Fg)(X1,X2)− 2k{g(X1,X2)− η(X1)η(X2)}+ 2(τ + nk)g(X1,X2) = 0 (3.26)

for any X1,X2 ∈ X(M).

Now consider an orthonormal basis {es}2n+1
s=1 on a (2n+ 1)-dimensional N(k)-contact metric

manifold. Then setting X1 = X2 = es in (3.26) and summing over 1 ≤ s ≤ (2n+ 1) we get

div(F)− 2nk+ (τ + nk)(2n+ 1) = 0. (3.27)

Since F = grad(ψ), equation (3.27) becomes

∆(ψ) = 2nk− (τ + nk)(2n+ 1), (3.28)
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where ∆ is the Laplacian operator. Hence the proof.

Also, if we consider F as solenoidal i.e., div(F) = 0, then from (3.27) we have

τ =
nk(1− 2n)

2n+ 1
. (3.29)

Again if τ = nk(1−2n)
2n+1 , then it follows from (3.27) that div(F) = 0, which means F is solenoidal.

This leads to the following:

Theorem 3.7. If a (2n+ 1)-dimensional N(k)-contact metric manifold M admits a ∗-Einstein
soliton (g,F, τ), then the potential vector field F is solenoidal if and only if τ = nk(1−2n)

2n+1 .

Theorem 3.8. Let M be a (2n+ 1)-dimensional N(k)-contact metric manifold admitting a ∗-
Einstein soliton (g,F, τ), where F is a conformal Killing vector field on M. Then F is a homothetic
vector field on M, and the manifold M is ∗-Ricci flat. Furthermore, F is
(i) proper homothetic vector field if τ ̸= 0.
(ii) Killing vector field if and only if the ∗-Einstein soliton (g,F, τ) is steady.

Proof. Let (g,F, τ) be a ∗-Einstein soliton on a (2n+ 1)-dimensional N(k)-contact metric man-
ifold M, where F is a conformal Killing vector field on M. Then from (1.2), (3.1) and (2.15) we
derive

{γ − k+ τ + nk}g(X1,X2) + kη(X1)η(X2) = 0 (3.30)

for any X1,X2 ∈ X(M).

Now replacing X2 by ζ in (3.30) and using (2.1) we get

{γ + τ + nk}η(X2) = 0. (3.31)

Since the equation (3.31) holds for all X2 ∈ X(M), we have

γ = −(τ + nk). (3.32)

Putting this value of γ in (3.30) we get

k{g(X1,X2)− η(X1)η(X2)} = 0 (3.33)

for any X1,X2 ∈ X(M).

In view of (2.3) and (2.5), the equation (3.33) becomes

kdη(ϕX1,X2) = 0. (3.34)

This implies that k = 0 as dη ̸= 0. So, from (3.32), we have γ = −τ and hence γ = constant.
Also, from (3.1) it follows that Ric∗ = 0. This reflects that the manifold M is ∗-Ricci flat. Again
in the sense of the definition (2.1), the vector field F is proper homothetic vector field if τ ̸= 0.
Moreover, F is Killing vector field if and only if τ = 0. This is the desired result.
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4 ∗-Quasi-Yamabe soliton on N(k)-contact metric manifold

Theorem 4.1. If a (2n+ 1)-dimensional N(k)-contact metric manifold M admits a ∗-quasi-
Yamabe soliton (g,F, λ, σ) with the non-zero potential vector field F being pointwise collinear
with the Reeb vector field ζ, then the following are satisfied:

(i) The ∗-quasi-Yamabe soliton reduces to the ∗-Yamabe soliton (g,F, λ).
(ii) The vector field F becomes a constant multiple of ζ.
(iii) The vector field F is a strict infinitesimal contact transformation.
(iv) The manifold M becomes a Sasakian manifold.
(v) The ∗-quasi-Yamabe soliton (g,F, λ, σ) is expanding.

Proof. Let F = βζ, where β : M → R is a non-zero smooth function. Then, from (1.7) and (3.2),
we have

1

2
(£βζg)(X1,X2) = (r∗ − λ)g(X1,X2) + σβ2η(X1)η(X2) (4.1)

for any X1,X2 ∈ X(M).

Now,

(£βζg)(X1,X2) = β{g(∇X1ζ,X2) + g(X1,∇X2ζ)}+ X1(β)η(X2) + X2(β)η(X1)

which, in view of (2.7) and (2.4) becomes

(£βζg)(X1,X2) = 2βg(hX1, ϕX2) + X1(β)η(X2) + X2(β)η(X1). (4.2)

Therefore, from (4.1) and (4.2) we get

2βg(hX1, ϕX2) + X1(β)η(X2) + X2(β)η(X1) = 2(r∗ − λ)g(X1,X2) + 2σβ2η(X1)η(X2).
(4.3)

Replacing X2 by ζ in (4.3) yields

X1(β) = {2(r∗ − λ) + 2σβ2 − ζ(β)}η(X1). (4.4)

Again replacing ζ instead of X2 in (4.4) we get

ζ(β) = (r∗ − λ) + σβ2. (4.5)

Take a local orthonormal basis {es}2n+1
s=1 on a (2n+ 1)-dimensional N(k)-contact metric mani-

fold. Then setting X1 = X2 = es in (4.3) and summing over 1 ≤ s ≤ (2n+ 1), we obtain

ζ(β) = (r∗ − λ)(2n+ 1) + σβ2. (4.6)

Comparing (4.5) with (4.6) we arrive at

r∗ = λ. (4.7)

Further, in view of (4.7) and (4.5), the equation (4.4) becomes

X1(β) = σβ2η(X1)
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and hence
d(β) = σβ2η. (4.8)

Taking exterior derivative of (4.8) and using Poincare lemma d2 ≡ 0, we obtain σβ2 = 0, which
implies that σ = 0 and hence the ∗-quasi-Yamabe soliton reduces to the ∗-Yamabe soliton (g,F, λ).
This proves (i).

Using σ = 0 in (4.8), we obtain d(β) = 0, which implies that β is constant and therefore F is
a constant multiple of ζ. This proves (ii).

On putting r∗ = λ in (4.1) and the fact that σ = 0 leads to

(£Fg)(X1,X2) = 0. (4.9)

Now replacing X2 by ζ in (4.9), we obtain

(£Fg)(X1, ζ) = 0

and hence
(£Fη)(X1) = g(X1,£Fζ) (4.10)

for any X1 ∈ X(M).

Since the potential vector field F is a constant multiple of ζ, so, we have £Fζ = 0. Thus from
(4.10) we have (£Fη)(X1) = 0 for any X1 ∈ X(M). Hence, from definition 2.2, it follows that
the potential vector field F is a strict infinitesimal contact transformation. This proves (iii) of
Theorem 4.1.

From (4.2), (4.9) and the fact that β = non-zero constant, one has

g(hX1, ϕX2) = 0. (4.11)

Replacing hX1 instead of X1 in (4.11) and making use of (2.9) and (2.1), we lead

(k− 1)g(X1, ϕX2) = 0,

which in view of (2.5) becomes

(k− 1)dη(X1, ϕX2) = 0. (4.12)

Since dη ̸= 0,we immediately have k = 1 and hence the manifold M is Sasakian. This prove (v).

Finally making use of (3.2) in (4.7) gives

λ = −2nk. (4.13)

Using k = 1 in (4.13) yields λ = −2n, and therefore the ∗-quasi-Yamabe soliton is expanding.
This result ends the proof of Theorem 4.1.

5 Application of torse-forming vector field on N(k)-contact metric manifold
admitting ∗-Einstein soliton

Let (g, ν, τ) be a ∗-Einstein soliton on a (2n+ 1)-dimensional N(k)-contact metric manifold M,
where ν is a torse-forming vector field on M. Then, we have from (1.2) and (3.1) that

(£νg)(X1,X2)− 2k{g(X1,X2)− η(X1)η(X2)}+ 2(τ + nk)g(X1,X2) = 0 (5.1)
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for any X1,X2 ∈ X(M), where £ν denotes the Lie derivative in the direction of ν.

Also, from (1.8) we derive that

(£νg)(X1,X2) = 2ψg(X1,X2) + θ(X1)g(ν,X2) + θ(X2)g(ν,X1) (5.2)

for any X1,X2 ∈ X(M).

Therefore, from (5.1) and (5.2), we have

2{(ψ + τ + nk− k)g(X1,X2) + kη(X1)η(X2)}+ θ(X1)g(ν,X2)

+θ(X2)g(ν,X1) = 0.

(5.3)

Contracting the forgoing equation over X1 and X2, we infer

(ψ + τ + nk− k)(2n+ 1) + k+ θ(ν) = 0

and therefore

τ = k(1− n)− ψ − k+ θ(ν)

2n+ 1
. (5.4)

This leads to the following:

Theorem 5.1. Let M be a (2n + 1)-dimensional N(k)-contact metric manifold admitting a ∗-
Einstein soliton (g, ν, τ). If the potential vector field ν is a torse-forming vector field on M, then
τ = k(1− n)− ψ − k+θ(ν)

2n+1 and the ∗-Einstein soliton (g, ν, τ) is expanding, steady, or shrinking
according to whether k(1− n)− ψ − k+θ(ν)

2n+1 ⪌ 0.

Also, it is obvious from (5.4) that

τ =



k(1− n)− ψ − k
2n+1 , if θ ≡ 0

k(1− n)− 1− k
2n+1 , if θ ≡ 0 and ψ = 1

k(1− n)− k+θ(ν)
2n+1 , if ψ = 0

k(1− n)− k
2n+1 , if θ = ψ = 0

k(1− n)− ψ − k
2n+1 , if θ(ν) = 0.

This leads to the following:

Corollary 5.2. Let M be a (2n + 1)-dimensional N(k)-contact metric manifold admitting a ∗-
Einstein soliton (g, ν, τ), where ν is a torse-forming vector field defined on M. Then if ν is

(i) concircular, then τ = k(1− n)− ψ − k
2n+1 and the ∗-Einstein soliton (g, ν, τ) is expanding,

steady, or shrinking according as k(1− n)− ψ − k
2n+1 ⪌ 0.

(ii) concurrent, then τ = k(1− n)− 1− k
2n+1 and the ∗-Einstein soliton (g, ν, τ) is expanding,

steady, or shrinking according as k(1− n)− 1− k
2n+1 ⪌ 0.

(iii) recurrent, then τ = k(1− n)− k+θ(ν)
2n+1 and the ∗-Einstein soliton (g, ν, τ) is expanding, steady,
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or shrinking according as k(1− n)− k+θ(ν)
2n+1 ⪌ 0.

(iv) parallel, then τ = k(1− n)− k
2n+1 and the ∗-Einstein soliton (g, ν, τ) is expanding, steady,

or shrinking according as k(1− n)− k
2n+1 ⪌ 0.

(v) torqued, then τ = k(1− n)− ψ − k
2n+1 and the ∗-Einstein soliton (g, ν, τ) is expanding,

steady, or shrinking according as k(1− n)− ψ − k
2n+1 ⪌ 0.

6 Example

Here we give an example of a ∗-Einstein soliton on a 3-dimensional N(1− α2)-contact metric
manifold M as constructed in [9]. In this example we can calculate the components of ∗-Ricci
tensor as follows

Ric∗(e1, e1) = 0, Ric∗(e2, e2) = Ric∗(e3, e3) = −(1− α2).

Therefore in view of the above values of ∗-Ricci tensor, we have

r∗ = −2(1− α2).

Also we can easily calculate Lie derivative of g along e1 as

(£e1g)(X1,X2) = 0 ∀ X1,X2 ∈ {ei : i = 1, 2, 3}.

For α = 1, the curvature tensor R vanishes and also Ric∗ = 0. Now tracing the equation (1.2)
we get τ = 0. Thus for this value of τ the data (g, e1, τ) defines a ∗-Einstein soliton on this 3-
dimensional N(0)-contact metric manifold M. Moreover we can easily see that e1 is a Killing
vector field and hence the Theorem 3.5 and also the Theorem 3.8 are verified.

Again if e1 = ζ, then from (1.7) and considering α = 1 we obtain

λ = σ = 0.

Hence for this values of λ and σ the data (g, e1, λ, σ) defines a ∗-quasi-Yamabe soliton on this
3-dimensional N(0)-contact metric manifold M and ∗-quasi-Yamabe soliton (g, e1, λ, σ) reduces
to a Yamabe soliton as σ = 0. Hence the Theorem 4.1 is verified.
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