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Abstract Let δ and ∆ be the minimum and maximum valency (degree) of a simple connected
graphG(V,E). A mapping σ : V (G) → {0, 1, 2 . . .} is called a minimum valency radio labeling,
if it satisfies the inequality d(x, z) + |σ(x)− σ(z)| ≥ 1 + δ(G) for all x, z ∈ V (G). The span of
a minimum valency radio labeling σ is the largest number in the range of σ and it’s denoted by
rδ(σ). The minimum valency radio number of G, denoted by rδ(G), is the minimum span taken
over all minimum valency radio labelings σ of G. If we replace ∆ instead of δ in the definition
of minimum valency radio labeling, the labeling technique formulated is called the maximum
valency radio number of G, denoted by r∆(G). In this paper, we have investigated the maximum
and minimum valency radio numbers of certain chemical structures such as poly-silicates and
poly-oxides.

1 Introduction

Today, due to various unexpected situations in our world, the survival of life has completely
reformed and raised affording to the area of telecommunication. By the progressive usage of the
electromagnetic waves, especially the radio waves, today the radio communication have reached
the nook and corner of the Earth. Resulting the discovery of electromagnetic waves by Hertz
in1887 [1], Griggs [2] exploit the notion of distance and frequency difference between trans-
mitters, presented a labeling technique termed distance two labeling. This method is used to
make best use of the bandwidth for Amplitude modulation (AM) radio stations with null channel
co-channel interference. Numerous research papers were published by different research studies
in this area; see [3, 4, 5, 6, 7 ]. Further, in 2001, Chartrand et.al [8] was motivated by distance
two labeling technique and anticipated a labeling technique called radio labeling which is used
to maximize the number of channels in a specified geographical area for Frequency Modulation
(FM) radio stations. For the previous two decades, plentiful results were published for both
graphs and interconnection networks; see [9, 10, 11, 12, 13].

More recently, Yenoke [14] was motivated by the applications of maximum and minimum
valency in traffic congestion [15] and broadcasting problems [16], introduced a new labeling
technique called maximum and minimum valency radio labelings. The formal graph theoretical
definition is as follows: Let δ and ∆ be the minimum and maximum valency (degree) of a simple
connected graph G(V,E). A mapping σ : V (G) → {0, 1, 2 . . .} is called a minimum valency ra-
dio labeling, if it satisfies the inequality d(x, z)+ |σ(x)− σ(z)| ≥ 1+ δ(G) for all x, z ∈ V (G).
The span of a minimum valency radio labeling σ is the largest number in the range of σ and
it’s denoted by rδ(σ). The minimum valency radio number of G, denoted by rδ(G), is the min-
imum span taken over all minimum valency radio labelings σ of G. If we replace ∆ instead of
δ in the definition of minimum valency radio labeling, the problem obtained is called the maxi-
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mum valency radio number of G, denoted by r∆(G). This problem highlights the importance of
finding the maximum number of channels in a stipulated bandwidth based on the parameters (i)
frequency difference between the transmitters (ii) the distance between the transmitters (iii) the
maximum valency and minimum valency of communication networks. Compared to the radio
number problem, instead of concentrating on the diameter of the geographical area, here we are
focusing on the congestion of the graph [17].

Yenoke [14] proved the following general results for any simple connected graph. (i) ψ(G) ≤
rδ(G) ≤ r∆(G), where ψ(G)is the chromatic number of a connected graph G. (ii) r∆(G) =
rδ(G), whenever G is a r-regular graph. (iii) If we add any pendant edge e to the graph G,
then rδ(G + e) = ψ(G + e). In addition, for (i) the path pn (n > 2), r∆(G) = λ2,1(G)
and rδ(G) = ψ(G), where λ2,1(G)is the L(2,1) labeling number (ii) the complete binary tree
BT (k), r∆(G) = λ3,2,1(G) and rδ(G) = ψ(G), where λ3,2,1(G) is radio-3-chromatic number
(iii) the complete bi-partite graph Km,n, r∆ (Km,n) = (m− 1)(n+m− 1)+ 1 and rδ (Km,n) =
(n−1)(n+m−1)+1 (iv) the wheel graph Wn+1, r∆ (Wn+1) = n(n−1)+1 and rδ (Wn+1) =
n + 2 (v) the fan graph Fn = Pn + K1, r∆(Fn) = n(n − 1) + 1 and rδ(G) = n + 1
(vi) the windmill graph Km

n (m > 1) is r∆ (Km
n ) ≤ m (m(n− 1)− 1) (n − 1) + 1 and

rδ (Km
n ) ≤ m(n − 2)(n − 1) + 1. Further, he obtained the upper bound for the maximum

valency radio number of complete binary tree as 17.

In this research work, we have studied the properties of few poly-silicate and poly-oxide sili-
cates. Next, we have determined the maximum and minimum valency radio labelings separately
for certain chemical structures such as rectangular silicate and oxide networks, triangulane ox-
ide networks, triangulane silicate networks, m ×m silicate and oxide sheets. Finally, we have
concluded this paper with a list of chemical structures yet to be found.

2 Poly-oxide and Poly-Silicate structures

There is an extensive discussion of the chemical structures such as poly-oxide and poly-silicate
in [18, 19, 20]. Essentially, all silicates are made up of SiO4 tetrahedra and are created when
sand and metal oxides or metal carbonates combine together. In chemistry, the silicon ion is rep-
resented by the centre node of the SiO4 (aluminium calcium oxide silicate) tetrahedron, while the
oxygen ions are represented by the corner nodes. We designated the SiO4 tetrahedron's central
vertex as the silicon node and its corner vertices as oxygen nodes in graph theory terminology.
Different silicate structures are created depending on how these SiO4 tetrahedrons are arranged.
Pyro silicates, orthosilicates, chain silicates, sheet silicates, and cyclic silicates are the terms
given to them.

2.1 Rectangular Silicate and Oxide Networks

A rectangular silicate[20] denoted by RSL(m, l) is constructed in such a way that it consists
of m (m > 2) row lines and l number of edges in a row line. It has
m(3l+ 1)−

(⌈(
l−1

2

) ⌊
m
2

⌋
+

(
l+1

2

) ⌊
m−1

2

⌋⌉)
vertices and 6ml edges. Also, the rectangular oxide

[19] of m (m > 2) row lines and l number of edges in a row line is denoted by ROX(m, l).
It has m(2l + 1) −

(⌈(
l−1

2

) ⌊
m
2

⌋
+

(
l+1

2

) ⌊
m−1

2

⌋⌉)
vertices and 3ml edges. The maximum and

minimum degrees of RSL(m, l) and ROX(m, l) are (6, 3) and (4, 2) respectively. It is demon-
strated in figure 2.

2.2 Triangulane Silicate and Oxide Networks

A triangulane oxide network [20] of m row lines are designated by TOX(m) and is built so
that the number of vertices in the kth line from top to bottom is 2k + 2, 1 ≤ k ≤ m. It has
the same maximum and minimum degrees as in ROX(m, l). The number of vertices and edges
of TOX(m) are 3m2+9m+2

2 and 3m2 + 6m respectively. It can be seen in figure 1. Similarly,
the network constructed using the m row lines for silicate structure is called triangulane silicate
networks. It is denoted by TSL(m). See figure 3.
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2.3 An m×m Silicate and Oxide sheets

An m ×m oxide sheets are formed by two copies of triangulane oxide networks TOX(m)
by the fusion of the bottommost m+ 1 oxygen nodes. It is denoted by (OX)m×m. The number
of vertices and edges of (OX)m×m are 3m2+8m+1 and 6(m2

+2m) respectively. In the same
manner, if we replace triangulane oxide by triangulane silicate, we can construct the m × m
silicate sheet and it’s denoted by (SL)m×m. It is visible in figure 4.

2.4 Silicate and Oxide Networks

Silicate networks have been created in different ways in the literature [19, 20]. A honeycomb
network of dimension m yields one approach as follows: The honeycomb network is divided
into its individual edges, the oxide ions are added to the new vertices, 6m new pendant edges
are connected, one at a time, to the 2-degree silicon ions of HC(m), and lastly oxygen ions are
added to the pendent vertices. Finally, each silicon ion joins forces with three nearby oxygen
ions to produce SiO4. The created network is known as the silicate network of dimension m
and is represented by the symbol SL (m). The SL(m) network has 36m2 edges and 15m2 +3m
vertices, respectively. The resulting network, which is known as an oxide network of dimension
m and is denoted by OX(m), is generated if we remove all the silicon vertices from the silicate
network of dimensionm.Vertex set and edge set ofOX(m) have cardinality values of 9m2+3m
and 18m2 respectively.

Result 1.The maximum and minimum valency (degree) of the silicate network of dimension
m are ∆ (SL(m)) = 6 and δ((SL(m)) = 3 respectively.

Result 2. The oxide network of dimension m has a maximum valency (degree) of 4 and a
minimum valency (degree) of 2, respectively.

Result 3. If ∆(G) or δ(G) equals to 2, then the corresponding valency radio number of the
graph G is equal to the L(2, 1) labeling number of the graph G.

3 Main Results

In this section we have investigated the maximum and minimum valency radio numbers of poly-
silicate and poly-oxide network such as rectangular silicate, rectangular oxide, triangulane sil-
icate, triangulane oxide, m×m silicate and oxide sheets.

In this paper, we have named the vertices of TSL(m) from top to bottom as follows: For any
k lies between 1 and m, the kth- row line vertices are named as ukj , j = 1, 2 . . . 2k + 2 and the
oxide vertices in between the kth and (k + 1)th row lines are named as vkj , j = 1, 2 . . . k + 1.
The silicate vertices which are below and adjacent to kth row vertices are named as wk

j , j =
1, 2 . . . k + 1. Also, for 1 ≤ k ≤ m − 1, the silicate vertices which are above and adjacent to
(k + 1)th row vertices are named as skj , j = 1, 2 . . . k + 1. The remaining two vertices, namely
a silicate and an oxide vertex just above the first row are named as s0

0 and v0
0 respectively.

Theorem 3.1. Let TOX(m) be a triangulane oxide network containing m row lines, then the
maximum valency radio labeling of TOX(m) satisfies r∆ (TOX(m) ) ≤ 45, m > 3.

Proof. First we define a labeling pattern σ from V (TOX(m)) to the set of whole numbers as fol-
lows: For the case when k = 1, 5, 9 . . . 4

(⌈
m
4

⌉
− 1

)
+ 1, define σ

(
ukj+8(t−1)

)
= 4(j− 1), j =

1, 2, 3, 4, t = 1, 2 . . .
⌈
k
4

⌉
and σ

(
ukj+8t−4

)
= 4(j− 1)+ 2, j = 1, 2, 3, 4, t = 1, 2 . . .

⌈
k−1

4

⌉
.

Again, for the case k = 3, 7, 11 . . . 4
(⌈

m
4

⌉
− 1

)
+3, define σ

(
ukj+8(t−1)

)
= 4(j−1)+1, j =
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Figure 1. A triangulane oxide network TOX(m) with m = 6 and a maximum valency radio
labeling which attains the upper bound.

1, 2, 3, 4, t = 1, 2 . . .
⌈
k
4

⌉
and σ

(
ukj+8t−4

)
= 4(j − 1) + 2, j = 1, 2, 3, 4, t = 1, 2 . . .

⌈
k
4

⌉
.

Also, when k = 2, 6, 10 . . . 4
(⌈

m
4

⌉
− 1

)
+ 2, define σ

(
ukj+8(t−1)

)
= 4(j − 1) + 18, j =

1, 2, 3, 4, t = 1, 2 . . .
⌈
k
4

⌉
, σ

(
ukj+8t−4

)
= 4(j−1)+ 20, j = 1, 2, 3, 4, t = 1, 2 . . .

⌈
k−1

4

⌉
and

σ
(
ukj+8t−4

)
= 20+4(j−1), j = 1, 2, t =

⌈
k
4

⌉
. Likewise, when k = 4, 8, 12 . . . 4

⌈
m
4

⌉
, define

σ
(
ukj+8(t−1)

)
= 4(j−1)+19, j = 1, 2, 3, 4, t = 1, 2 . . .

⌈
k
4

⌉
, σ

(
ukj+8t−4

)
= 4(j−1)+21, j =

1, 2, 3, 4, t = 1, 2 . . .
⌈
k
4

⌉
and σ

(
ukj+8t−4

)
= 19+4(j−1), j = 1, 2, t =

⌈
k+1

4

⌉
. In addition,

the vertices in the set
{
vkj /j = 1, 2 . . . k + 1

}
are labelled as follows: If k ≡ 1(mod 4), then

σ
(
vkj

)
=

{
42, j is odd
44, j is even

and σ
(
vkj

)
=

{
37, j is odd
39, j is even

whenever k ≡ 2(mod 4). Likewise,

if k ≡ 3(mod 4), then σ
(
vkj

)
= 43, j is odd and σ

(
vkj

)
= 45, j is even. Last of all except

the vertex σ
(
v0

0

)
, label the vertices vkj for odd j and even j separately as 36 and 38 whenever

k ≡ 0(mod 4). Finally, label σ
(
v0

0

)
as 36. As, the maximum valency of TOX(m) is 4, we must

verify the inequality d(x, z)+|σ(x)− σ(z)| ≥ 5 must satisfy for any pair of vertices in TOX(m).

Case 1. Assume both the vertices are the row line vertices, then they are of the form
ukj , 1 ≤ k ≤ m, 1 ≤ j ≤ 2k+ 2. That is, if x = uqp and z = uts, 1 ≤ q, t ≤ m, 1 ≤ p, s ≤ 2k+ 2,
then the following possibilities arises.

Case 1.1. If p = s, then from the above defined labeling pattern, either d
(
uqp, u

t
s

)
≥ 8 and∣∣σ (uqp)− σ (uts)

∣∣ ≥ 0 or d
(
uqp, u

t
s

)
≥ 2 and

∣∣σ (uqp)− σ (uts)
∣∣ ≥ 4. Hence, in both the chances,

d
(
uqp, u

t
s

)
+

∣∣σ (uqp)− σ (uts)
∣∣ ≥ 5.

Case 1.2. Supposing p ̸= s, then x and z lie in two different row lines or in the same row line.
Here, if |p−s| = 1, then d

(
uqp, u

t
s

)
= 1 and

∣∣σ (uqp)− σ (uts)
∣∣ ≥ 4, otherwise, from the mapping

either one of the following conditions holds and satisfies the required labeling condition. That
is, d

(
uqp, u

t
s

)
≥ 2 and

∣∣σ (uqp)− σ (uts)
∣∣ ≥ 8 or d

(
uqp, u

t
s

)
≥ 8 and

∣∣σ (uqp)− σ (uts)
∣∣ ≥ 0 or

d
(
uqp, u

t
s

)
≥ 4 and

∣∣σ (uqp)− σ (uts)
∣∣ ≥ 2.

Case 2. Assume x = vqp and z = vts, where 1 ≤ p, s ≤ k+ 1 and 1 ≤ q, t ≤ m. If p = s, then
either σ

(
vqp
)
= σ (vts) and d

(
vqp, v

t
s

)
≥ 5 or

∣∣σ (vqp)− σ (vts)
∣∣ ≥ 4 and d

(
vqp, v

t
s

)
≥ 2. Otherwise,

either d
(
vqp, v

t
s

)
≥ 3 and

∣∣σ (vqp)− σ (vts)
∣∣ ≥ 2 or d

(
vqp, v

t
s

)
≥ 8. Hence, the required condition

is verified in these possibilities.

Case 3. Suppose x = uqp and z = vts, where 1 ≤ q, t ≤ m, 1 ≤ p ≤ 2k + 2, 1 ≤ s ≤ k + 1.
Then for the least possibility of the vertices labelled with 33 and 36,

∣∣σ (uqp)− σ (vts)
∣∣ = 2
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Figure 2. A rectangular silicate RSL(6, 13) and its minimum valency radio labeling.

and d
(
uqp, v

t
s

)
= 3 Otherwise, the conditions are easily verified. Consequently, for any pair of

vertices in TOX(m), the maximum valency radio labeling condition is true for the mapping σ.
Moreover, for k ≡ 3(mod 4), the vertices σ

(
vkj

)
, whenever j is even, attains the maximum value

45. This concludes the proof of the theorem.

Theorem 3.2. The minimum valency radio labeling of a rectangular silicate RSL(m, l) with
minimum two row lines and atleast four edges in a row line satisfies rδ (RSL(m, l) ) ≤ 31.

Proof. First we name the vertices of RSL(m, l) as follows: Let the m(l + 1) oxide vertices
of the m row lines are names as as {ukj / j = 1, 2 . . . l + 1, k = 1, 2 . . .m}. The oxide and
silicate vertices just above the (2k − 1)th, ( k = 1, 2 . . . m2 ) row lines are named as {vkj /j =

1, 2 . . . l+1
2 − 1} and {xkj /j = 1, 2 . . . l+1

2 − 1} respectively. Again, the silicate vertices and
the rest of the oxide vertices just above the (2k)th, ( k = 1, 2 . . . m2 ) row lines are named as
{ykj /j = 1, 2 . . . l+1

2 } and {wk
j /j = 1, 2 . . . l+1

2 } respectively. Finally, the rest of the silicate
vertices just below the (2k − 1)th, ( k = 1, 2 . . . m2 ) row lines and (2k)th, ( k = 1, 2 . . . m2 ) row
lines are named as {zkj /j = 1, 2 . . . l+1

2 } and {skj /j = 1, 2 . . . l+1
2 − 1} respectively.

Next, we label the vertices ofRSL(m) with non-negative integers under the mapping σ as fol-
lows: For the set of vertices

{
ukj /j = 1, 2 . . . l+ 1, k = 1, 2 . . .m

}
, define σ

(
u2k−1
j+4(t−1)+1

)
=

4(j − 1), j = 1, 2, 3, 4, t = 1, 2 . . .
⌈
l
4

⌉
, k = 1, 2 . . . m2 , σ

(
u2k
j+4(t−1)+1

)
= 4(j − 1) + 2, j =

1, 2, 3, 4, t = 1, 2 . . .
⌈
l
4

⌉
, k = 1, 2 . . . m2 , σ

(
uk1

)
=

{
12, k is odd

14, k is even
. Also, for the set of

vertices {vkj /j = 1, 2 . . . l+1
2 − 1}, if j is odd, then σ

(
vkj

)
= 17 else σ

(
vkj

)
= 18. Again, for

the vertices {wk
j /j = 1, 2 . . . l+1

2 }, σ
(
wk

j

)
= 20 or σ

(
wk

j

)
= 21 according to j is odd or even.

The silicate vertices, {xkj /j = 1, 2 . . . l+1
2 − 1}, {ykj /j = 1, 2 . . . l+1

2 } , {zkj /j = 1, 2 . . . l+1
2 }

and {skj /j = 1, 2 . . . l+1
2 − 1} are mapped as σ

(
xkj

)
=

{
23, j odd

24, j even
, σ

(
ykj

)
=

{
25, j odd

26, j even
,

σ
(
zkj

)
=

{
28, j odd

29, j even
and σ

(
skj
)
=

{
30, j odd

31, j even
. It is visible in Figure 2.

Finally, we verify the given labeling is a valid minimum valency radio labeling by showing
that d(x, z) + |σ(x)− σ(z)| ≥ 4 ∀ x, z ∈ V (RSL(m, l)) . Choose two arbitrary vertices x and z
in RSL(m, l).

Case 1. Suppose x and z are oxide vertices. Assume x = uqp and z = uts, 1 ≤ q, t ≤ m,
1 ≤ p, s ≤ l + 1, then either d

(
uqp, u

t
s

)
≥ 4 or

∣∣σ (uqp)− σ (uts)
∣∣ ≥ 4 or d

(
uqp, u

t
s

)
≥ 2 and
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∣∣σ (uqp)− σ (uts)
∣∣ ≥ 2. If x = vqp and z = vts, 1 ≤ p, s ≤ l+1

2 − 1, 1 ≤ q, t ≤ m or x = wq
p

and z = wt
s, 1 ≤ p, s ≤ l+1

2 , 1 ≤ q, t ≤ m, then either d(x, z) ≥ 4 and |σ(x)− σ(z)| ≥ 0
or d(x, z) = 1 and |σ(x)− σ(z)| ≥ 4. Again if, x ∈ {vkj /j = 1, 2 . . . l+1

2 − 1} and z ∈
{wk

j /j = 1, 2.. l+1
2 } then d

(
vkj , w

k
j

)
≥ 2 and

∣∣σ (vkj )− σ
(
wk

j

)∣∣ ≥ 2. Also, if x ∈ {ukj / j =

1, 2 . . . l + 1, k = 1, 2 . . .m} and z ∈ {wk
j /j = 1, 2 . . . l+1

2 } then
∣∣σ (ukj )− σ

(
wk

j

)∣∣ > 8. Fi-
nally, if x ∈ {vkj /j = 1, 2.. l+1

2 − 1} and z ∈ {ukj / j = 1, 2 . . . l + 1, k = 1, 2 . . .m}, then
d
(
vkj , u

k
j

)
≥ 1 and

∣∣σ (vkj )− σ
(
ukj

)∣∣ ≥ 3. Hence, d(x, z) + |σ(x)− σ(z)| ≥ 4 is satisfied.

Case 2. Surmise that x and y are silicate vertices. If x = xqp and z = xts, 1 ≤ p, s ≤
l+1

2 − 1, 1 ≤ q, t ≤ m or x = yqp and z = yts, 1 ≤ p, s ≤ l+1
2 , 1 ≤ q, t ≤ m or x = zqp

and z = zts, 1 ≤ p, s ≤ l+1
2 − 1, 1 ≤ q, t ≤ m or x = sqp and z = sts, 1 ≤ p, s ≤ l+1

2 ,
1 ≤ q, t ≤ m then either d(x, z) ≥ 3 and |σ(x)− σ(z)| ≥ 1 or d(x, z) > 4. Again, if
x ∈

{
xkj / j = 1, 2 . . . l+1

2 − 1
}

and z ∈ {ykj /j = 1, 2 . . . l+1
2 }, then d

(
xkj , y

k
j

)
≥ 3 and∣∣σ (vkj )− σ

(
wk

j

)∣∣ ≥ 1. Similarly, if x ∈
{
xkj / j = 1, 2 . . . l+1

2 − 1
}

and z ∈
{
zkj /j = 1, 2 . . . l+1

2 − 1
}

or x ∈
{
xkj / j = 1, 2 . . . l+1

2 − 1
}

and z ∈
{

skj
j = 1, 2 . . . l+1

2

}
or x ∈

{
ykj / j = 1, 2 . . . l+1

2

}
and z ∈

{
zkj /j = 1, 2 . . . l+1

2 − 1
}

or x ∈
{
ykj / j = 1, 2 . . . l+1

2

}
and z ∈

{
skj /j = 1, 2 . . . l+1

2

}
or x ∈

{
zkj / j = 1, 2 . . . l+1

2 − 1
}

and z ∈
{
skj /j = 1, 2 . . . l+1

2

}
, then d

(
xkj , y

k
j

)
≥ 3 and

∣∣σ (vkj )− σ
(
wk

j

)∣∣ ≥ 1. Thus, differ-
ent possibilities in this case satisfies d(x, z) + |σ(x)− σ(z)| ≥ 4 .

Case 3. Assume that x is an oxide vertex and z is a silicate vertex. Except for the subcase
that x = wq

p, 1 ≤ q ≤ m, 1 ≤ p ≤ l+1
2 and z = xts, 1 ≤ s ≤ l+1

2 − 1, 1 ≤ t ≤ m, all other
possibilities trivially satisfy the condition, since |σ(x)− σ(z)| > 4. If x ∈ {wk

j /j = 1, 2... l+1
2 }

and z ∈
{
xkj / j = 1, 2 . . . l+1

2 − 1
}

, then
∣∣σ (wq

p

)
− σ (xts)

∣∣ ≥ 2 and d
(
xkj , y

k
j

)
≥ 2. Thus, the

minimum valency radio labeling condition is true for all cases in RSL(m, l). Therefore, we have
accomplished the result, rδ (RSL(m, l) ) ≤ 31, m > 1, l > 4.

Theorem 3.3. Suppose there are m row lines in a triangulane oxide network TOX(m), then
rδ (TOX(m) ) ≤ 8, m > 2.

Proof. First define the mapping σ for the vertex set
{
ukj /j = 1, 2 . . . 2k + 2, k = 1, 2 . . .m

}
as σ

(
u2k−1
j+3(t−1)

)
= 2(j−1), j = 1, 2, 3, t = 1, 2 . . .

⌈ 2k+2
3

⌉
, k = 1, 2 . . . m2 and σ

(
u2k
j+3(t−1)

)
=

2j − 1, j = 1, 2, 3, t = 1, 2 . . .
⌈ 2k+2

3

⌉
, k = 1, 2 . . . m2 . Again, for the set of vertices{

vkj /j = 1, 2 . . . k + 1, k = 1, 2 . . .m
}

in TOX(m), define σ
(
vkj

)
=

{
7, k is odd

8, k is even
. Also,

the vertex v0
0 is labelled as 6. As the verification part is similar to Theorem 3.2, we leave the

verification part to the reader.

Theorem 3.4. For the triangulane silicate network TSL(m), the minimum valency radio
labeling satisfies rδ (TSL(m, l) ) ≤ 31, m > 2.

Proof. As the minimum valency of TSL(m)is 3, in order to achieve the desired upper bound,
we have given a labeling pattern for oxide and silicate vertices separately. For the oxide vertices{{
ukj /j = 1, 2 . . . 2k + 2, k = 1, 2 . . .m

}
∪
{
vkj /j = 1, 2 . . . k + 1, k = 1, 2 . . .m

}
∪
{
v0

0

}}
,

we define σ
(
u2k−1
j+6(t−1)

)
= 3(j − 1), j = 1, 2, 3, t = 1, 2 . . .

⌈ 2k+2
3

⌉
, k = 1, 2 . . .

⌈
m
2

⌉
,

σ
(
u2k−1
j+6(t−1)+1

)
= 3(j − 1) + 1, j = 1, 2, 3, t = 1, 2 . . .

⌊ 2k+2
3

⌋
, k = 1, 2 . . .

⌈
m
2

⌉
and

σ
(
u2k
j+6(t−1)

)
= 3(j+2), j = 1, 2, 3, t = 1, 2 . . .

⌈ 2k+2
3

⌉
, k = 1, 2 . . .

⌊
m
2

⌋
, σ

(
u2k−1
j+6(t−1)+1

)
=

3(j + 2) + 1, j = 1, 2, 3, t = 1, 2 . . .
⌊ 2k+2

3

⌋
, k = 1, 2 . . .

⌊
m
2

⌋
. Again, for both k and j are

odd, then σ
(
vkj

)
= 27, if k is odd and j is even, then σ

(
vkj

)
= 28, if both k and j are even then

σ
(
vkj

)
= 30, otherwise σ

(
vkj

)
= 31, where j = 1, 2 . . . k+1. Lastly, the oxide vertex v0

0 is label
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Figure 3. A minimum valency radio labeling of triangulane silicate network TSL(6)

as 24. Next, we consider the silicate vertex set{{
wk

j /j = 1, 2 . . . k + 1, k = 1, 2 . . .m
}
∪
{
skj /j = 1, 2 . . . k + 1, k = 1, 2 . . .m

}
∪ {v0

0}
}

. For

k ≡ 1(mod 3), σ
(
wk

j

)
=

{
18, j is odd

19, j is even
, if k ≡ 2(mod 3), then σ

(
wk

j

)
=

{
24, j is odd

25, j is even
,

otherwise, σ
(
wk

j

)
=

{
21, j is odd

22, j is even
. Likewise, for k ≡ 1(mod 3), σ

(
skj
)
=

{
21, j is odd

22, j is even
,

if k ≡ 2(mod 3) then σ
(
skj
)
=

{
18, j is odd

19, j is even
, otherwise, σ

(
skj
)
=

{
24, j is odd

25, j is even
. The

left-out silicate vertex s0
0 is labelled as 9. It can be seen through figure 3. The rest of the proof is

left to the reader.

Theorem 3.5. For the rectangular oxide ROX(m, l) with m > 1 and l > 4, the minimum
valency radio number satisfies rδ (ROX(m, l) ) ≤ 8.

Proof. First we name the vertices of ROX(m, l) as in Theorem 3.4. Define a mapping
σ : V (ROX(m, l)) → N ∪ {0} as follows. σ

(
u2k−1
j+3(t−1)

)
= 2(j − 1), j = 1, 2, 3, t =

1, 2 . . .
⌈
l+1

3

⌉
, k = 1, 2 . . . m2 , σ

(
u2k
j+3(t−1)

)
= 2(j−1)+1, j = 1, 2, 3, t = 1, 2 . . .

⌊
l+1

3

⌋
, k =

1, 2 . . . m2 . Also, for the vertices in the set {vkj /j = 1, 2 . . . l+1
2 − 1} are labeled as 7. Rest of the

vertices in the set {wk
j /j = 1, 2 . . . l+1

2 } are labelled as 8. As in Theorem 3.1, it is easy to verify
the labeling condition gets satisfied. Hence, rδ (ROX(m, l) ) ≤ 8.

Theorem 3.6. Let ROX(m, l) (m > 1, l > 4) be a rectangular oxide network, where
m denotes the number of row lines and l denotes the number of edges in a row line. Then,
r∆ (ROX(m, l) ) ≤ 45.

Proof. The following labeling pattern attains the proof of this theorem. Define σ from
V (ROX(m, l)) to non-negative integers as follows. For the subset set{
ukj , j = 1, 2 . . . l+ 1, k = 1, 2 . . .m

}
of V (ROX(m, l)), define σ

(
u4k−3
j+5(t−1)

)
= 4(j−1), j =

1, 2 . . . 5, t = 1, 2 . . .
⌈
l+1

5

⌉
, k = 1, 2 . . .

⌈
m
4

⌉
, σ

(
u4k−1
j+5(t−1)

)
= 4(j − 1) + 1, j =

1, 2 . . . 5, t = 1, 2 . . .
⌈
l+1

5

⌉
, k = 1, 2 . . .

⌊
m
4

⌋
, σ

(
u4k−2
j+5(t−1)

)
= 4(j − 1) + 16, j =

1, 2 . . . 5, t = 1, 2 . . .
⌈
l+1

5

⌉
, k = 1, 2 . . .

⌈
m
4

⌉
, σ

(
u4k
j+5(t−1)

)
= 4(j − 1) + 17, j =

1, 2 . . . 5, t = 1, 2 . . .
⌈
l+1

5

⌉
, k = 1, 2 . . .

⌊
m
4

⌋
. Again, for the vertices in the set {vkj /j =

1, 2 . . . l+1
2 −1} are mapped as σ

(
v2k−1

2j−1

)
= 37, j = 1, 2 . . .

⌈
l+1

2 −1
2

⌉
, k = 1, 2 . . . m2 , σ

(
v2k−1

2j

)
=

39, j = 1, 2 . . .
⌊

l+1
2 −1

2

⌋
, k = 1, 2 . . . m2 , σ

(
v2k

2j−1

)
= 38, j = 1, 2 . . .

⌈
l+1

2 −1
2

⌉
, k = 1, 2 . . . m2 −

1 and σ
(
v2k

2j

)
= 40, j = 1, 2 . . .

⌊
l+1

2 −1
2

⌋
, k = 1, 2 . . . m2 − 1. Moreover, for the vertex set
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Figure 4. A maximum valency radio labeling of 6 × 6 silicate sheet which attains the bound of
Theorem 3.7.

{wk
j /j = 1, 2 . . . l+1

2 }, the vertices are labelled as 43 if both j and k are odd, 45 if j is odd and k
is even, 44 if j is even and k is odd, 45 if both j and k are even. Next, we can follow the same
steps as in Theorem 3.4, to attained the required result.

Theorem 3.7. Let (SL)m×m be a m ×m silicate sheet which contains twice the number of
row lines as in TOX(m). Then, the maximum valency radio labeling satisfies r∆

(
(SL)m×m

)
≤

237, m > 3 .

Proof. Let us address the oxide and silicate vertices of (SL)m×m in the following manner.
Start addressing the horizontal row line oxide vertices from the top leftmost to bottom rightmost
as {ukj / j = 1, 2 . . . 2m, k = 1, 2 . . .m}. The rest of the oxide vertices in the vertical column
lines are addressed from top to bottom as {v1

1 , v
2
1 . . . v

m
1 } ∪ {vkj /k = 1, 2 . . .m, j = 2, 3 . . .m+

1} ∪ {v1
m, v

2
m . . . vmm}. Also, the silicate vertices are addressed from the topmost left to bottom

right most as {s1
1, s

1
2 . . . s

1
m}∪{skj /j = 1, 2 . . .m+1, k = 2, 3 . . . 2m−1}∪{s2m

1 , s2m
2 . . . s2m

m }.
Next, we define a labeling pattern which will fulfil the required maximum radio labeling condi-
tion.

For the set of vertices
{
ukj /j = 1, 2 . . . 2m, k = 1, 2 . . .m

}
, if exists, then assign the labels

as σ
(
u

4(k−1)+1
j+5(t−1)

)
= 6(j−1), j = 1, 2 . . . 5, t = 1, 2 . . .

⌈ 2m
10

⌉
, k = 1, 2 . . .

⌈
m
4

⌉
, σ

(
u

4(k−1)+1
j+5t

)
=

6(j − 1) + 3, j = 1, 2 . . . 5, t = 1, 2 . . .
⌈ 2m−5

10

⌉
, k = 1, 2 . . .

⌈
m
4

⌉
, σ

(
u

4(k−1)+2
j+5(t−1)

)
= 6(j −

1) + 32, j = 1, 2 . . . 5, t = 1, 2 . . .
⌈ 2m

10

⌉
, k = 1, 2 . . .

⌈
m
4

⌉
, σ

(
u

4(k−1)+2
j+5t

)
= 6(j − 1) +

35, j = 1, 2 . . . 5, t = 1, 2 . . .
⌈ 2m−5

10

⌉
, k = 1, 2 . . .

⌊
m
4

⌋
, σ

(
u4k−1
j+5(t−1)

)
= 6(j − 1) + 64, j =

1, 2 . . . 5, t = 1, 2 . . .
⌈ 2m

10

⌉
, k = 1, 2 . . .

⌈
m
4

⌉
, σ

(
u

4(k−1)+2
j+5t

)
= 6(j−1)+67, j = 1, 2 . . . 5, t =

1, 2 . . .
⌈ 2m−5

10

⌉
, k = 1, 2 . . .

⌊
m
4

⌋
, σ

(
u4k
j+5(t−1)

)
= 6(j−1)+82, j = 1, 2 . . . 5, t = 1, 2 . . .

⌈ 2m
10

⌉
,

k = 1, 2 . . .
⌈
m
4

⌉
, σ

(
u4k
j+5t

)
= 6(j − 1) + 85, j = 1, 2 . . . 5, t = 1, 2 . . .

⌈ 2m−5
10

⌉
, k =

1, 2 . . .
⌊
m
4

⌋
.

Likewise, for the set
{
vkj /k = 1, 2 . . .m, j = 1, 2, 3 . . .m+ 1

}
of oxide vertices, we define

σ
(
v

4(k−1)+1
j+3(t−1)

)
= 4(j−1)+115, j = 1, 2, 3, t = 1, 2 . . .

⌈
m+1

3

⌉
, k = 1, 2 . . .

⌈
m
4

⌉
, σ

(
v

4(k−1)+2
j+3(t−1)

)
= 4(j − 1) + 128, j = 1, 2, 3, t = 1, 2 . . .

⌈
m+1

3

⌉
, k = 1, 2 . . .

⌈
m
4

⌉
, σ

(
v4k−1
j+3(t−1)

)
= 4(j −
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1) + 141, j = 1, 2, 3, t = 1, 2 . . .
⌈
m+1

3

⌉
, k = 1, 2 . . .

⌊
m
4

⌋
, σ

(
v4k
j+3(t−1)

)
= 4(j − 1) +

154, j = 1, 2, 3, t = 1, 2 . . .
⌈
m+1

3

⌉
, k = 1, 2 . . .

⌊
m
4

⌋
. Finally for the set of silicate ver-

tices, {{s1
1, s

1
2 . . . s

1
m} ∪ {skj /j = 1, 2 . . .m + 1, k = 2, 3 . . . 2m − 1} ∪ {s2m

1 , s2m
2 . . . s2m

m }},

we have σ
(
s1
j+3(t−1)

)
= 4(j − 1) + 168, j = 1, 2, 3, t = 1, 2 . . .

⌈
m
3

⌉
, σ

(
s6k+1
j+3(t−1)

)
=

4(j − 1) + 168, j = 1, 2, 3, t = 1, 2 . . .
⌈
m+1

3

⌉
, k = 1, 2 . . .

⌈ 2m−7
6

⌉
, σ

(
s

6(k−1)+2
j+3(t−1)

)
= 4(j −

1)+177, j = 1, 2, 3, t = 1, 2 . . .
⌈
m+1

3

⌉
, k = 1, 2 . . .

⌈ 2m−2
6

⌉
, σ

(
s

6(k−1)+3
j+3(t−1)

)
= 4(j−1)+190,

j = 1, 2, 3, t = 1, 2 . . .
⌈
m+1

3

⌉
, k = 1, 2 . . .

⌈ 2m−3
6

⌉
, σ

(
s

6(k−1)+4
j+3(t−1)

)
= 4(j − 1) + 203,

j = 1, 2, 3, t = 1, 2 . . .
⌈
m+1

3

⌉
, k = 1, 2 . . .

⌈ 2m−4
6

⌉
, σ

(
s

6(k−1)+5
j+3(t−1)

)
= 4(j − 1) + 216,

j = 1, 2, 3, t = 1, 2 . . .
⌈
m+1

3

⌉
, k = 1, 2 . . .

⌈ 2m−5
6

⌉
, σ

(
s6k
j+3(t−1)

)
= 4(j − 1) + 229,

j = 1, 2, 3, t = 1, 2 . . .
⌈
m+1

3

⌉
, k = 1, 2 . . .

⌈ 2m−6
6

⌉
. Also, for the rest of the silicate ver-

tices {s2m
1 , s2m

2 . . . s2m
m }}, label any one of the labeling patterns for silicate vertices based on the

value 2m. The mapping is visible in figure 4. As the proofs for the following results are parallel
to the previous theorems, we have left the entire proof to the reader.

Theorem 3.8. Let G be an m×m oxide sheet (OX)m×m. Then, the minimum valency radio
labeling of G satisfies rδ(G ) ≤ 8, m > 2.

Theorem 3.9. For m > 2, the minimum valency radio labeling of an m ×m silicate sheet,
satisfies rδ

(
(SL)m×m

)
≤ 31.

Theorem 3.10. Let OX(n) be the oxide network of dimension n, then the minimum valency
radio number of OX(n) satisfies rδ (OX(n) ) ≤ 8.

Proof. As, δ(OX(n)) = 2, the minimum valency radio number is equal to theL(2, 1) labeling
number. Kins et.al. [21] determined an upper bound for the L(2, 1) labeling number of oxide
network as λ2,1(OX(n)) ≤ 8. Hence, rδ(OX(n)) ≤ 8.

4 Conclusion remarks

In this paper we have investigated the upper bounds for the maximum and minimum valency
radio labellings for certain categories of Poly-oxides and Poly-silicates structures such as trian-
gulane oxide and silicate networks, rectangular oxide and silicate networks andm×m oxide and
silicate sheets. The problem of finding the maximum valency radio labelling of silicate network,
oxide network, triangulane silicate, rectangular silicate and m×m oxide sheets are still open. In
addition, determining the minimum valency radio labelling of silicate network is also undeter-
mined. Further this research work can be extended to other interconnection networks and graphs.
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