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Abstract The purpose of this article is to present a generalization of the well-known ultra-
hyperbolic kernel of Nozaki using weighted generalized functions associated with nondegenerate
quadratic forms. Some of its properties related to the iterated ultrahyperbolic Bessel differential
operator are presented; for example, that for a certain value of the parameter, it is an elementary
solution.

1 Introduction and Preliminaries.

The importance of Marcel Riesz’s works in the field of Fractional Calculus is well known, espe-
cially in the study of the Riemann-Liouville integral both in Euclidean and hyperbolic spaces. It
is just necessary to see his extensive and interesting work [1] to understand it. In his desire to
introduce the Riemann-Liouville integral in a space with the ultrahyperbolic metric, generalizing
what was done by Riesz [1], Y. Nozaki [2] introduced his kernel, which allows him to define it
via the convolution operation.

Indeed, given x = (x1, x2, ..., xn) and y = (y1, y2, ...yn) as two points in Rn with xi ≥ 0,
yi ≥ 0, i = 1, 2, ...n; Riesz considered the hyperbolic or Lorenzian distance between these points
given by

rxy =
√
(x1 − y1)2 − (x2 − y2)2 − ...− (xn − yn)2, (1.1)

where x is taken as a fixed point and y as a variable point.
The set r2

xy > 0 and x1 − y1 > 0 is the retrograde light cone, while the condition x1 − y1 < 0
defines the direct cone. Under these conditions, the Riemann-Liouville integral of order α of the
function f(x) is introduced as

Iαf(x) =
1

Hn(α)

∫
f(y)rα−n

xy dy (1.2)

where

Hn(α) = π
n−2
n 2α−1

Γ

(α
2

)
Γ

(
α+ 2 − n

2

)
(1.3)

and the integral converges for α > n − 2. It can be seen that Iαf satisfies some important
relationships, such as:

IαIβ = Iα+β; (1.4)

2Iα+2 = Iα (1.5)

where 2 denotes the wave operator

2 =
∂2

∂x1
− ∂2

∂x2
− ...− ∂2

∂xn
. (1.6)
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Nozaki [2], generalized results due to Riesz. To do this, given the points x = (x1, x2, ..., xn)
and y = (y1, y2, ...yn) he considered the ultrahyperbolic distance

r2
xy =

p∑
i=1

(xi − yi)
2 −

p+q∑
i=p+1

(xi − yi)
2; p+ q = n, (1.7)

where n is the dimension of the space.
Analogously to what was done by Riesz, considering P = x as a fixed point and Q = y as a

variable point, he took the inverse cone with vertex at P defined by the relations as DP

r2
PQ > 0, x1 − y1 > 0, (1.8)

and defined ϕ(P,Q) to the kernel given by

ϕ(P,Q) =
rα−n
PQ

Kn(α)
=

rα−n
+

Kn(α)
, (1.9)

where

Kn(α) = π
n−1

2
Γ
( 2+α−n

2

)
Γ
( 1−α

2

)
Γ(α)

Γ

(
2+α−p

2

)
Γ
(
p−α

2

) . (1.10)

It can be observed that if in (1.10) we consider p = 1, Kn(α) reduce to the hyperbolic given
by (1.3).

According Remmark 1, page 76 of [2], we denote the convolution of f(y) with the kernel
ϕα(P,Q) by (f ∗ ϕα)(P ), we may write the Riemann-Liouville integral in the form

Jαf(P ) = (f ∗ ϕα)(P ). (1.11)

Among other properties, it is proved (Theorem 3, [2]) that

2 (f ∗ ϕα+2) = f ∗ ϕα, (1.12)

where

2 =
p∑

i=1

∂2

∂x2
i

−
p+q∑

i=p+1

∂2

∂x2
i

; p+ q = n. (1.13)

The property (1.12) is analogous to (1.5).
The generalized functions associated with quadratic forms and denoted by rλ, Pλ

+ , Pλ
−,

(P + i0)λ, (P − i0)λ,
(
m2 + P + i0

)λ,
(
m2 + P − i0

)λ are important contributions due to
Gelfand and Shilov [3] that allow to express the solutions of differential equations and also
of potentials.

Let
P (x) = x2

1 + · · ·+ x2
p − x2

p+1 − · · ·x2
p+q, p+ q = n, (1.14)

and let Γ+ = {x ∈ Rn, P (x) > 0, x1 > 0} and Γ− = {x ∈ Rn, P (x) > 0, x1 < 0}. Let λ be a
complex number. According to Gelfand [3], the generalized function Pλ

+ is defined by means of
the integral (

Pλ
+ , φ

)
=

∫
P>0

Pλ(x)φ(x)dx, (1.15)

this integral converges for Re(α) ≥ 0 and is an analytic function of λ. For the values Re(λ) ≤ 0
the analytic continuation is used to extend the definition of

(
Pλ
+ , φ

)
. Trione [5] considers the

family of functions R introduced by Nozaki

Rα (P (x)) =


P

α−n
2 (x)

Kn(α)
if x ∈ Γ+

0 if x /∈ Γ+,

(1.16)
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where α is a complex parameter, n the dimension of the space and Kn(α) is given by (1.10) and
in a simple and synthetic way, that we will adopt in this work, she proves the properties that we
gather below:

2 P
α+2−n

2 = α(α+ 2 − n)P
α−n

2 , (1.17)

Kn(α+ 2) = α(α+ 2 − n)Kn(α), (1.18)

2Rα+2(P ) = Rα(P ), (1.19)

R−2k(P ) = 2kδ, k = 0, 1, 2, ... (1.20)

R0(P ) = δ, (1.21)

2kR2k(P ) = δ, k = 0, 1, 2, ... (1.22)

2kRα(P ) = Rα−2k(P ), (1.23)

where δ is the Dirac delta and 2 is the ultrahyperbolic operator given by (1.13).
Now let’s define the Bessel ultrahyperbolic operator as

2B
γ = Bx1 +Bx2 + ...+Bxp −Bxp+1 − ...−Bxp+q , p+ q = n, (1.24)

where

Bxi
=

∂2

∂x2
i

+
γi
xi

∂

∂xi
; γi > 0, i = 1, 2, ..., n. (1.25)

H. Yildirim et. al. [6] demonstrated that the generalized functions RB
2k is the unique elementary

solution of the ultrahyperbolic Bessel operator (1.24), iterated k-times. Then,

(2B
γ )

kRB
2k(x) = δ, (1.26)

where

RB
2k(x) =

(
x2

1 + ...+ x2
p − x2

p+1 − ...− x2
p+q

) 2k−n−2|ν|
2

Kn(2k)
, (1.27)

and

Kn(2k) =
π

n+2|ν|−1
2 Γ

(
2+2k−n−2|ν|

2

)
Γ
( 1−2k

2

)
Γ(2k)

Γ

(
2+2k−p−2|ν|

2

)
Γ

(
p−2k

2

) . (1.28)

Aguirre [7] demonstrated certain relations between the ultrahyperbolic Bessel operator iter-
ated k-times and the RB

α (x) kernel, and studied in particular the kernel RB
0 .

2 Elements of the theory of weighted generalized functions associated with
quadratic forms

In this paragraph some elements of the theory of weighted generalized functions associated with
quadratic forms introduced by E. Shishkina [8] are present.

For this, the space Rn
+ is considered:

Rn
+ = {x = (x1, ..., xn); xi > 0, i = 1, 2, ..., n} (2.1)

and Ω is an open set in Rn, symmetric with respect to each hyperplane xi = 0, i = 1, 2, ..., n.
Let Ω+ = Ω ∩Rn

+ and Ω+ = Ω ∩Rn
+ be its closure, where

Rn
+ = {x = (x1, ..., xn); xi ≥ 0, i = 1, 2, ..., n}. (2.2)

Let

C0,∞
ev (Ω+) =

{
f ∈ C∞(Ω+) with compact support, even with respect

to each variable xi, i = 1, ..., n

}
(2.3)
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A multi-index γ = (γ1, ..., γn) consists of fixed positive real numbers γi > 0, i = 1, 2, ..., n
and |γ| = γ1 + ... + γn. Let P = P (x) be given by (1.14) and let φ be a function in the space
C0,∞

ev (Ω+), the weighted generalized function Pλ
γ,+ is defined by the integral(

Pλ
γ,+, φ

)
=

∫
{P (x)>0}+

P (x)λφ(x)xγdx, (2.4)

where {P (x) > 0}+ = {x ∈ Rn
+ : P (x) > 0}, λ ∈ C y xλ = xλ1

1 xλ2
2 ...xγn

n .
The generalized convolution product is defined by the formula

(f ∗ g)γ (x) =
∫
Rn

+

f(y) (γT y
x g) (x)y

γdy, f, g ∈ Sev (2.5)

where

Sev =

{
f ∈ C∞

ev : sup
x∈Rn

+

|xαDβf(x)| < ∞,∀ α, β ∈ Zn
+

}
(2.6)

and γT y
x is the multidimensional generalized traslation given by

(γT y
x f) (x) =

(
γ1T y1

x1
f, ...,γn T yn

xn
f
)
(x) (2.7)

and the unidimensional generalized traslations(
γiT yi

xi
f
)
(x) =

Γ

(
γi+1

2

)
√
πΓ

(
γi

2

) ∫ π

0
f(x1, ..., xi−1,

√
x2
i + τ 2

i − 2xiyi cosφi, xi+1, ..., xn) sinγi−1 φidφi. (2.8)

For u a weighted generalized function belongs to S′
ev and f ∈ Sev, we have

(u ∗ f)γ (x) = (u,γ T y
x f) (x). (2.9)

In the development of this work the Hankel transform we will be used, which for a function
f ∈ Lγ

1 is defined as

Fγ [f ](ξ) = Fγ [f(x)](ξ) =

∫
Rn

+

f(x)jγ(x; ξ)xγdx (2.10)

where

j(x, ξ) =
n∏

i=1

jn−1
2
(xi, ξi), γi > 0, i = 1, 2, ..., n; (2.11)

and

jν(r) =
2νΓ(γ + 1)

rν
Jγ(r); (2.12)

Jγ(r) is the Bessel function of the first kind of order ν.
Among the properties it verifies, we can point out:

Fγδγ(x) = 1 (2.13)

Fγ [f ∗ g](x) = Fγ [f ](x)Fγ [g](x) (2.14)

As Shishkina [8] stated, the weighted generalized function Pλ
γ,+ associated with quadratic forms

are rised for finding fundamental solutions of iterated B-ultrahyperbolic differential equations,
i.e.

2k
Bu = δγ(x) (2.15)

when k ∈ N, x ∈ Rn, xi > 0, i = 1, 2, ..., n and δγ(x) is the Dirac delta defined by

(δγ , φ)γ =

∫
Rn

+

δ(x)φ(x)xγdx = φ(0), φ(x) ∈ Sev. (2.16)

Another interesting application is the construction of ultrahyperbolic Riesz potentials with
the Bessel operator.
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3 Ultrahyperbolic Bessel-Riesz kernel with weighted generalized function.

We start by defining the kernel that will be the main object of study will be defined and it will
called Marcel Riesz’s B-ultrahyperbolic kernel.

RB
α,γ (Pγ,+(x)) =


P

α−n−|γ|
2

γ,+ (x)

K̃n,γ(α)
si x ∈ Γ+

0 si x /∈ Γ+,

(3.1)

where Γ+ = {x ∈ Rn, P (x) > 0, xi > 0, i = 1, 2, ..., n} and α ∈ C,

K̃n,γ(α) =

∏n
i=1 Γ

(
γi+1

2

)
Γ

(
2+α−n−|γ|

2

)
Γ
( 1−α

2

)
Γ(α)

√
π Γ

(
2+α−p−|γ′|

2

)
Γ

(
p+|γ′|−α

2

) (3.2)

where p is the number of positive terms of the quadratic form (1.14) and γ′ = (γ1, ..., γp). It
can be easily seen that if |γ| = 0, RB

α,γ (Pγ,+(x)) coincides with (1.16) and in the case of being
p = 1 and |γ| = 0 it turns out that (3.1) coincides with the kernel of M. Riesz ([1], p.31).

We also observe that the kernel defined by (3.1) is formally analogous to the one introduced
and studied by Yildirim et. al. ([6], f. 10) and they share similar properties.

To study the action of the operator 2B
γ on the kernel given by (3.1) it is necessary to take into

account that, from formula (23) of [8] it follows

2B
γ P

λ+1(x) = 4(λ+ 1)
(
λ+

n+ |γ|
2

)
Pλ(x). (3.3)

Taking λ = α−n−|γ|
2 we have

α(2 + α− n− |γ|)2B
γ P

α−n−|γ|
2 +1(x) = P

α−n−|γ|
2 (x). (3.4)

According to Shishkina (cf.[8], f.(28)) we have(
P

α−n−|γ|
2

γ,+ , φ

)
γ

=
1

α(2 + α− n− |γ|)

(
P

α−n−|γ|
2 +1

γ,+ ,2B
γ φ

)
γ

(3.5)

then
2B

γ P
α−n−|γ|

2 +1
γ,+ = α(2 + α− n− |γ|)P

α−n−|γ|
2

γ,+ . (3.6)

Remark 3.1. It can be seen that if γ = (0, ..., 0), (3.6) coincides with (1.17).

Taking into account the same procedure performed by Trione in [5], to prove (1.18), after
long but simple operations we obtain

K̃n,γ(α+ 2) = α(α+ 2 − n− |γ|)K̃n,γ(α). (3.7)

Therefore, from what has been exposed above, the following can be stated

Lemma 3.2. Given RB
α,γ , the kernel defined by (3.1) and 2B

γ the operator given by (1.24). Then
it is verified

(2B
γ )

kRB
α,γ(Pγ(x)) = RB

α−2·k,γ(P (x)), k = 0, 1, 2, ... (3.8)

Proof. From (3.1), (3.6) and (3.7), we have

2B
γ R

B
α+2,γ(Pγ(x)) = RB

α,γ(Pγ(x)). (3.9)

Applying 2B
γ on both side of (3.9)

2B
γ

(
2B

γ R
B
α+2,γ(Pγ(x))

)
= 2B

γ R
B
α,γ(Pγ(x)) = RB

α−2,γ(Pγ(x)) (3.10)

that is
(2B

γ )
2RB

α,γ(P (x)) = RB
α−4,γ(Pγ(x)) = RB

α−2·2,γ(Pγ(x)), (3.11)

and in general
(2B

γ )
kRB

α,γ(Pγ(x)) = RB
α−2·k,γ(P (x)), k = 0, 1, 2, ... (3.12)

which is what was intended to be proved.
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Remark 3.3. It can be seen that if γ = (0, ..., 0), (3.8) coincides with (1.23).

Lemma 3.4. RB
2k,γ(P (x)) is a convolutor in D′(Rn).

Proof. We will prove that the kernel RB
2k,γ(Pγ(x)) is a distribution whose support is the origin 0,

i.e. it is a combination of δ. We start by considering K̃n,γ(α) given by (3.2). Indeed, we rewrite

K̃n,γ(α) =

∏n
i=1 Γ

(
γi+1

2

)
Γ

(
2+γ−n−|γ|

2

)
Γ
( 1−α

2

)
Γ(α)

√
π Γ

(
2+α−p−|γ′|

2

)
Γ

(
p+|γ′|−α

2

) . (3.13)

Taking into account the duplication formula of the Gamma function ([9], Theorem 2.10)

Γ(α) =
2α−1

π1/2 Γ

(α
2

)
Γ

(
α+ 1

2

)
, (3.14)

then

Γ

(
1 − α

2

)
Γ(α) =

2α−1

π1/2 Γ

(α
2

)
Γ

(
1 + α

2

)
Γ

(
1 − α

2

)
, (3.15)

and
Γ

(
1 + α

2

)
Γ

(
1 − α

2

)
=

π

cos
(
πα
2

) . (3.16)

While the product of the denominator of (3.13) can be written as

Γ

(
2 + α− p− |γ′|

2

)
Γ

(
p+ |γ′| − α

2

)
=

π

sin
[
π
(

p+|γ′|−α
2

)] . (3.17)

The function Γ

(
2+γ−n−|γ|

2

)
is holomorphic in α = −2k, n+ |γ| odd and n odd. Then |γ| must

be even, and then:

(i) |γ′| and |γ′′| are odd;

(ii) or |γ′| and |γ′′| are even.

Therefore, in α = −2k, taking into account ([9], Theorem 2.12) we have

Γ

(
1 − 2k + n+ |γ|

2

)
=

π

Γ

(
n+|γ|

2 + k
)

sin
[
π
(

n+|γ|
2 + k

)] . (3.18)

On the other hand, according to Shishkina ([8], Theorem 39), and taking into account that the
function Γ(z) has a single pole at z = −k, k a nonegative integer with residues Resz=−kΓ(z) =
(−1)k

k! we have

lim
α→−2k

P
α−n−|γ|

2
γ,+

Γ
(
α
2

) lim
α→−2k

 Γ

(
2+α−p−|γ′|

2

)
Γ

(
p+|γ′|−α

2

)
∏n

i=1 Γ
(
αi+1

2

)
π−1/2Γ

(
2+α−n−|γ|

2

)
Γ
( 1−α

2

)
Γ(α)

 . (3.19)

Finaly, from (3.14),(3.15), (3.16), (3.17), (3), (3.18) and (3.19) we have

RB
−2k,γ(Pγ(x)) = lim

α→−2k

P
α−n−|γ|

2
γ,+

K̃n,γ(α)
= (2B

γ )
kδγ(x) (3.20)

Remark 3.5. If in (3.20) we consider γ = (0, 0, ..., 0), we obtain the formula (1.20).

Remark 3.6. This formula (3.20) was obtained taking into consideration the hypotheses of The-
orem 2, by Shishkina, [8].
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Theorem 3.7. RB
2k,γ(Pγ(x)) is an elementary solution of the n-dimensional Bessel ultrahyper-

bolic differential operator iterated k-times.

Proof. By Lemma 1, taking α = 2k, we have(
2B

γ

)k
RB

2k,γ(Pγ(x)) = RB
0,γ(P (x)) (3.21)

and taking in (3.20) k = 0, we get

RB
0,γ(Pγ(x)) = δγ . (3.22)

Then, from (3.21) y (3.22) we have(
2B

γ

)k
RB

2k,γ(Pγ(x)) = δγ(x), k = 0, 1, 2, ... (3.23)

which is what we wanted to prove.

4 Conclusion remarks.

We have considered and studied a family of kernels depending on a weighted generalized func-
tion associated with quadratic forms that generalize both elliptic, hyperbolic and ultrhyperbolic
ones. It has also been demonstrated that it is possible to define the Riemann-Liouville integral
in Lorentzian spaces via the generalized convolution operation. In addition, several properties
of the introduced kernels have been proved, among them the one of being an elementary solu-
tion of the ultrahyperbolic Bessel operator. Finally, it has been shown that they turn out to be a
convolutor in S′

ev for certain values of the parameter.
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