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Abstract In this note we study the connections between the cosedness of the algebraic sum
A+B and the closedness of a combination sA+ tB where s, t ∈ R (Theorem 2.7). In theorem
2.8 we give sufficient conditions for closedness of the set sA+ tB. We give also some conditions
when we can cancel the set B from the inclusion A+B ⊂ B + C (Theorem 2.2)

1 Introduction

Let X be a real topological vector space. For A,B ⊂ X and λ ∈ R we define a sets

A+B = {a+ b : a ∈ A, b ∈ B},

λA = {λa : a ∈ A}.

The first of the above two sets is called a Minkowski sum of sets A and B or a algebraical sum
of sets A and B.
Since for any λ ∈ R, λ ̸= 0 the function fλ : X → X is an homeomorphism therefore if A is
closed set then so is the set λA. The situation with a closedness of algebraic sum A+B, where
A and B are closed is more complicated.
For instance, if g : (0,∞) → R is lower semicontinous function, then by taking

A = {(0, y) : y ∈ R}

and
B = {(x, v) : x > 0, v ≥ g(x)} ⊂ R2,

we obtain a two closed sets such that the sum A+B = (0,∞)×R ⊂ R2 is evidently not closed
subset of R2. Moreover if the function g is convex then we have a two closed and convex sets
which algebraic sum is not closed.
This example shows that the sum A + B need not to be closed even if A and B are closed
and convex subsets in finite dimensional topological vector space. But, it is well known that if
A,B are closed subsets of topological vector space X and one of these sets is compact then the
algebraic sum A+B is closed. Also, it can be proved ([7]) that if X is a Banach space such that
the algebraic sum of any two closed bounded and convex subsets of X is a closed set, then X is
reflexive.
Closedness of the algebraic sum and the cancellation law were study in many works ([1] ,[2] ,
[4] , [5], [7] , [8] ,[9] ) some related studies you can also find in ([3],[6]).
In this note we study the connections between the cosedness of the algebraic sum A + B and
the closedness of a combination sA+ tB where s, t ∈ R. Futhermore we give some conditions
when we can cancel the set B from the inclusion A+B ⊂ B + C.
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A very simple observation shows that the closedness of the set A + B, does not imply, the
closedness of the set A−B = A+ (−1)B. To see this let us take

A =

{
n+

1
n+ 1

: n ∈ N
}

and
B = N ⊂ R.

Then the sets A,B,A+B are closed but A−B is not closed. So in general the closednes of the
set A+B does not imply the closedness of the set sA+ tB for all s, t ∈ R.

We can noticed an easy facts in the following propositions:

Proposition 1.1. Let X be a topological vector space and A,B ⊂ X. The following conditions
are equivalent:

a) The sets sA+ tB are closed for all s, t > 0

b) The sets A+ uB are closed for all u > 0

c) The sets uA+B are closed for all u > 0

d) The sets sA+ tB are closed for all 0 < s, t < 1.

Proposition 1.2. Let X be a topological vector space and A,B ⊂ X. The following conditions
are equivalent:

a) The sets sA+ tB are closed for all s, t ∈ R \ {0}

b) The sets A+ uB are closed for all u ̸= 0

c) The sets uA+B are closed for all u ̸= 0

d) The sets sA+ tB are closed for all −1 < s, t < 1, s ̸= 0, t ̸= 0.

Let us remind that for A,B ⊂ X the set

A−̇B =
⋂
x∈B

(A+ {−x})

is called a Minkowski-Pontryagin difference of the sets A and B.
If A is closed or convex set, then so is the set A−̇B, as an intersection of such sets. More prop-
erties of the set A−̇B can be found in [1].

The next proposition constitute the connections between the cancellation law and Minkowski-
Pontryagin difference.

Proposition 1.3. Let X be a vector space and let A,B,C ⊂ X. Then

a) C ⊂ (C +B)−̇B

b) The equality C = (C +B)−̇B is equivalent to the following cancellation property:

If A+B ⊂ B + C then A ⊂ C.

Proof. We prove only b) since a) is obvious. For if let us assume that C = (C + B)−̇B and
A+B ⊂ B + C then

A ⊂ (A+B)−̇B ⊂ (B + C)−̇B = C.

On the other hand if the implication
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If A+B ⊂ B + C then A ⊂ C.

holds true. Then by taking any u ∈ (C + B)−̇B we have {u} + B ⊂ B + C therefore by
assumption {u} ⊂ C and hence (C +B)−̇B = C.

It can be proved (see [8] ) that if B,C are subsets of topological vector space such that B is
bounded and C is closed and convex then (C +B)−̇B = C. Further we obtain this fact as a part
of corollary 2.5.

2 Closedness of linear combination of sets and the cancellation property

At the start of this section let us remind definition of the asymptotic cone of an subset of topo-
logical vector space.

Definition 2.1. Let X be a topological vector space and let A ⊂ X. The asymptotic cone of the
set A is defined as

A∞ =
{
x : x = lim

n→∞
(βnan), βn → 0, βn > 0, an ∈ A

}
Ii is easy to observe that if A is closed and convex then A+A∞ ⊂ A.

Theorem 2.2. Let X be a topological vector space and B,C ⊂ X . Assume that C is convex and

∞⋂
n=1

(
C +

1
n
B

)
⊂ C.

Then (C +B)−̇B = C.

Proof. Without lost of generality, we may assume that 0 ∈ B. Let x ∈ (B + C)−̇B hence
x+B ⊂ B + C and thus

2x+B ⊂ x+ (x+B) ⊂ x+B + C ⊂ B + C + C = B + 2C

since C is a convex set. In a similar way as above, we can see that

nx+B ⊂ B + nC,

for all n ∈ N.
Dividing the last inclusion by n we get that

x ∈
(
x+

1
n
B

)
⊂ C +

1
n
B

and thus

x ∈
∞⋂
n=1

(
C +

1
n
B

)
hence by assumption x ∈ C.

Lemma 2.3. Let X be a topological vector space and B,C ⊂ X. If the set B is bounded and the
set C is closed, then

∞⋂
n=1

(
C +

1
n
B

)
⊂ C.
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Proof. Take any neighbourhood U of 0 in X. Since the set B is bounded therefore 1
kB ⊂ U for

some k ∈ N. Therefore
∞⋂
n=1

(
C +

1
n
B

)
⊂ C +

1
k
B ⊂ C + U.

Hence
∞⋂
n=1

(
C +

1
n
B

)
⊂ C = C.

Lemma 2.4. Let X be a topological vector space and B,C ⊂ X. If the set C is compact and
B∞ = {0}, then

∞⋂
n=1

(
C +

1
n
B

)
⊂ C.

Proof. If the set C is compact, then

∞⋂
n=1

(
C +

1
n
B

)
⊂ C +

∞⋂
n=1

(
1
n
B

)
⊂ C +B∞ = C.

From theorem 2.2 and lemma 2.3 and lemma 2.4 we get the following

Corollary 2.5. Let X be a topological vector space and B,C ⊂ X. Then

a) If the set C is closed and convex and the set B is bounded then (C +B)−̇B = C(see [8]).

b) If the set C is compact and convex and B∞ = {0}, then (C +B)−̇B = C.

Remark 2.6. Notice that in any infinite dimensional normed space there exists a unbounded set
B such that B∞ = {0}, (see [2]).

Theorem 2.7. Let A,B,A+B be a closed subsets of topological vector space X and 0 < s < 1.
If A+sB = (A+B)−̇(1−s)B then A+sB is closed. Moreover if A+sB is closed and convex
and B is bounded and convex then A+ sB = (A+B)−̇(1 − s)B.

Proof. The proof follows immediately from equality A+B = A+ sB + (1 − s)B.

Now we prove the following theorem

Theorem 2.8. Let X be a normed space and A,B be a closed and convex subsets X. Assume
that the one of sets

A1 =

{
x

||x||
: x ∈ A

}
, B1 =

{
x

||x||
: x ∈ B

}
is sequentially compact in some linear Hausdorff topology τ on X which is weaker than the
norm topology and the second of coresponding sets A,B is closed in this topology. If (A−̇A) ∩
(−B−̇B) = {0}, then for all s, t ∈ R the set sA+ tB is closed.

Proof. First observe that A,B satisfies the assumptions of these theorem then for all s ̸= 0, t ̸= 0
(the case s = 0 or t = 0 is trivial) the sets sA and tB also satisfies assumptions of this theorem.
Hence it is enough to prove that A+B is a closed set. In our proof we assume that the set A1 is
seqentially compact in some linear topology weaker than norm topology and B is closed in this
topology.
Let zn = an + bn ∈ A+ B, an ∈ A, bn ∈ B and suppose that zn → z0 ∈ X. We will show that
z0 ∈ A+B.
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At first let us consider the case when the sequence an is norm bounded. Hence there exists a
subsequence ank

such that

ank
= ||ank

|| · ank

||ank
||
→ a0 ∈ A.

Now fom the equality bnk
= znk

− ank
→ z0 − a0 in topology τ, and since B is closed in τ

therefore z0 − a0 ∈ B. But this implies that z0 = a0 + (z0 − a0) ∈ A+B.
Consider now the case when the sequence an is not norm bounded. We may assume that ||an|| →
∞. From the equality

zn
||an||

=
an

||an||
+

bn
||an||

the compactness of A1 and convergence of zn we conclude that there exists x0 ̸= 0 and subse-
qence ank

such that ank

||ank
|| → x0 ∈ A−̇A and bnk

||ank
|| → −x0 ∈ B−̇B but this contradicts to the

assumption that (A−̇A) ∩ (−B−̇B) = {0}.

Remark 2.9. In many situations as topology τ in the above theorem we may use the weak topol-
ogy or weak-star topology.
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