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Abstract In this paper, we present the construction of the Moore-Penrose inverse of matrix
over the symmetrized max-plus algebra using the singular value decomposition. The Moore-
Penrose inverse is defined in a similar manner to linear algebra, by replacing equations into
balance. The construction of this Moore-Penrose inverse utilizes the balanced inverse in the
context of the symmetrized max-plus algebra. The main result of this paper is the form of the
Moore-Penrose inverse of a matrix over the symmetrized max-plus algebra, which is constructed
using the singular value decomposition.

1 Introduction

Let R be the set of all real numbers. The max-plus algebra, denoted by Rmax, is a semiring
R ∪ {−∞}, with addition defined as "maximum" and multiplication defined as "plus". In this
algebra, the zero element is −∞ and the unity element is 0 [6, 8]. Unlike in linear algebra, there
is no additive inverse for elements in the max-plus algebra, except for the zero element. The
max-plus algebra can be extended to a larger set using a process called symmetrization, which
is discussed in [2, 5]. The result of symmetrization is called the symmetrized max-plus algebra,
denoted by S. Furthermore, Rmax can be viewed as the positive part of S. The construction is
similar to the extension of natural numbers to integers in conventional algebra, but complications
arise due to the idempotency of the "max" operator. The generalization of the notion of an
equation is called a balance, denoted by ∇. Since Rmax can be viewed as the positive part of S,
Rmax is a subset of S.

The relationship between symmetrized max-plus algebra and conventional algebra is dis-
cussed in [3, 4]. This connection enables problems in symmetrized max-plus algebra to be trans-
formed into the context of conventional algebra. Solving problems in symmetrized max-plus
algebra can be approached similarly to conventional algebra, and the solutions obtained in con-
ventional algebra can be transformed back to symmetrized max-plus algebra. In reference [4],
the QR and singular value decompositions of the symmetrized max-plus algebraic matrix can
be determined using the link between symmetrized max-plus algebra and conventional algebra.
Similarly, other matrix decompositions such as the LU decomposition [11] and the Cholesky
decomposition [12] can be found using this link. Then, characterization of rank of matrix over
the symmetrized max-plus algebra also uses this link [13].

In conventional algebra, the Moore-Penrose inverse of a matrix is the most well-known gen-
eralization of the inverse matrix [1, 9]. The term generalized inverse is sometimes used inter-
changeably with pseudoinverse. The Moore-Penrose inverse can be used to calculate a least
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squares solution for a system of linear equations that has no solution, find the minimum norm
solution for a system of linear equations with multiple solutions, and aid in stating and proving
results in linear algebra. The Moore-Penrose inverse can be determined using matrix decom-
position methods such as full-rank decomposition, singular value decomposition, and Cholesky
decomposition [7]. The discussion of some useful direct (sub)decompositions is explained in
[10], decompositions of total graph in [14] and matrix polynomial in [15].

The connection between the symmetrized max-plus algebra and conventional algebra enables
the development of the Moore-Penrose inverse in the symmetrized max-plus algebraic matrix.
This paper focuses on determining the construction of the Moore-Penrose inverse of a matrix
over the symmetrized max-plus algebra using matrix decomposition, specifically the singular
value decomposition as discussed in [4]. The results of this paper have the potential to be used
in solving linear balance systems problems over the symmetrized max-plus algebra.

Section 1 provides an introduction to motivate this paper. Section 2 discusses the sym-
metrized max-plus algebra as preliminaries. The main result, which discusses the construction
of the Moore-Penrose inverse in the symmetrized max-plus algebraic matrix, is presented in
Section 3. Finally, Section 4 concludes the paper.

2 Preliminaries

Let R be the set of all real numbers. The max-plus algebra is defined as the semiring R∪ {−∞}
with operations ⊕ (maximum) and ⊗ (plus) defined as follows

a⊕ b = max(a, b)
a⊗ b = a+ b

for all a, b ∈ R ∪ {−∞}, where max(a,−∞) = a and a + (−∞) = −∞ [6, 8]. Then, the
max-plus algebra is denoted by Rmax. The process of max-plus algebraic symmetrization can be
used to obtain the negative form instead of the inverse role of addition. This process is similar to
expanding natural numbers into integers, and it is carried out to obtain a balanced element. The
discussion of max-plus algebra symmetrization is covered in [5].

Definition 2.1. [5] Let (a, b), (c, d) ∈ Rmax×Rmax The balance relation (denoted by ∇) is defined
as follows

(a, b)∇(c, d) iff a⊕ d = b⊕ c.

The relation is reflexive and symmetric but not transitive, so it is not an equivalence relation,
and the quotient set of Rmax ×Rmax by ∇ cannot be defined.

Definition 2.2. [5] Let (a, b), (c, d) ∈ Rmax × Rmax. The relation B in Rmax × Rmax is defined as
follows

(a, b)B(c, d) =

{
(a, b)∇(c, d) ; a ̸= c and b ̸= d

(a, b) = (c, d) ; a = c or b = d.

There are three types of equivalence classes generated by B i.e (w,−∞) is called max-
positive (simply written as w), (−∞), w is called max-negative (simply written as ⊖w), and
(w,w) is called balanced (simply written as w•). The max-zero class is denoted by (ε, ε) and
simply written as ϵ. The quotient set of Rmax × Rmax by B is (Rmax × Rmax)/B and it is denoted
by S, where the zero element is ε = (ε, ε) and the unity element is e = (0, ε). Furthermore,
S is called the symmetrized max-plus algebra. Then, the set of all max-positive or zero classes
is denoted by S⊕, the set of all max-negative or zero classes is denoted by S⊖, the set of all
balanced classes is denoted by S•, and the set of all signed elements is denoted by S∨, where
S∨ = S⊕ ∪ S⊖, S = S⊕ ∪ S⊖ ∪ S•, {(ε, ε)} = S⊕ ∩ S⊖ ∩ S•. The set of all elements that have
multiplication inverse is denoted by (S∨)∗, where (S∨)∗ = S∨ − S•.

Theorem 2.3. [5] If x, y ∈ Rmax, then

x⊕ (⊖y) =


x ;x > y

⊖y ;x < y

x• ;x = y.
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In the symmetrized max-plus algebra, similar to conventional algebra, for all a, b, c ∈ S,
a ⊖ c∇b if and only if a∇b ⊕ c. However, there is a difference for the symmetrized max-plus
algebraic substitution. For all a, b, c ∈ S and x ∈ S∨, if x∇a and c ⊗ x∇b then c ⊗ a∇b.
This substitution property in the symmetrized max-plus algebra is called the weak substitution.
Consequently, if a, b ∈ S∨ where a∇b, then a = b, which is known as reduction of balance to
equation.

The connection between the symmetrized max-plus algebra and conventional algebra is stud-
ied in [4]. This link is used to solve problems in the symmetrized max-plus algebra using con-
ventional algebraic methods, and the mapping will be explained in the following definition.

Definition 2.4. [4] A mapping F with domain of definition S×R0 ×R0
+ is defined as follows

F(a, µ, s) =


|µ| eas ; a ∈ S⊕

− |µ| e|a|⊕s ; a ∈ S⊖

|µ| e|a|⊕s ; a ∈ S•.

where a ∈ S, µ ∈ R0 and s ∈ R+
0 .

Let f and g is a function, respectively. The function f is asymtotically equivalent to g in the
neighborhood of ∞ is denoted by f ∼ g for x → ∞.

Definition 2.5. [4] Let f(s) ∼ ve|a|⊕s in the neighbourhood of ∞. The reverse function R is
defined as

R(f) =

{
|a|⊕ ; v positive
⊖ |a|⊕ ; v negative.

The study on matrix decomposition in the symmetrized max-plus algebra presented in [4] can
be determined by establishing a connection between the symmetrized max-plus algebra and the
conventional algebra, as defined in Definition (2.4) and (2.5). The following theorem shows the
existence of singular value decomposition in matrices over the symmetrized max-plus algebra.

Theorem 2.6. [4] Let A ∈ Sm×n and r = min(m,n). Then there are a diagonal max-plus
matrix S ∈ (Rmax)

m×n and U ∈ (S∨
)m×m, V ∈ (S∨

)n×n such that

A∇U ⊗ S ⊗ V T

where UT ⊗ U∇Im, V T ⊗ V∇In and ∥ A ∥⊕= σ1 ≥ σ2 ≥ ... ≥ σr with σr = [S]ii for
i = 1, 2, ..., r.

3 Main Result

This section is main result of this paper. The main result of this paper is the construction of
the Moore-Penrose inverse in the symmetrized max-plus algebraic matrix using singular value
decomposition. First, we discuss the balanced inverse and the Moore-Penrose inverse. Then,
we demonstrate the existence of the rank decomposition of the symmetrized max-plus algebraic
matrix. Finally, we construct the Moore-Penrose inverse in the symmetrized max-plus algebraic
matrix using singular value decomposition, by utilizing balanced inverse and rank decomposi-
tion. The following definition and theorem explain the balanced inverse and its existence in the
symmetrized max-plus algebra. The definition of the balanced inverse is analogous to linear
algebra, but with balance replacing the equation.

Definition 3.1. Let A ∈ Sn×n.If there exists B ∈ Sn×n such that A⊗B∇In and B⊗A∇In then
A is said to be balanced invertible and B is the balanced inverse of A. The balanced inverse of
A is denoted by A∇

−1.

The following theorem explains the existence of a balanced inverse in the symmetrized max-
plus algebraic matrix.

Theorem 3.2. Let A ∈ Sn×n. If det(A) is not balance ε, then there exists A∇
−1 ∈ (S∨)n×n such

that
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A⊗A−1
∇ ∇In and A−1

∇ ⊗A∇In.

Proof. Let aij is an entry of A ∈ Sn×n for i, j = 1, 2, . . . , n. If there exists balanced entry in
A ∈ Sn×n, then it is defined a signed matrix Â = [âij ] ∈ (S∨)n×n such that

âij =

{
aij ; aij signed element
|aij |⊕ ; aij balanced element

for all i, j. Since âij∇aij for all i, j then Â∇A. If Â∇A, Â ⊗ A−1
∇ ∇In and A−1

∇ ⊗ Â∇In then
A⊗A−1

∇ ∇In and A−1
∇ ⊗A∇In, respectively. It is sufficient to prove for a signed matrix A.

Let Ã(s) = [ãij(s)] is matrix which corresponds to A = [aij ] ∈ Sn×n. Since det(A) is not
balance with ε then det(Ã(s)) ̸= 0. Let cof(Ã(s))T is transpose of cofactor matrix in Ã(s), then
we have

Ã(s).cof(Ã(s))T

det(Ã(s))
and cof(Ã(s))T .Ã(s)

det(Ã(s))

for s → −∞. Let

Ã
′
(s) = cof(Ã(s))T

det(Ã(s))

then

Ã(s).Ã
′
(s) ∼ Ĩn and Ã

′
(s).Ã(s) ∼ Ĩn.

Consequently, it corresponds to

A⊗A−1
∇ ∇In and A−1

∇ ⊗A∇In

respectively. It is obtained the balanced inverse A−1
∇ ∈ (S∨)n×n of a signed matrix A. By the

weak substitution properties, the existence of A−1
∇ ∈ (S∨)n×n also satisfies for a non-signed

matrix.

The following definition explains about the Moore-Penrose inverse of matrices over the sym-
metrized max-plus algebra. The Moore-Penrose inverse of matrices over the symmetrized max-
plus algebra is defined analogously to linear algebra.

Definition 3.3. Suppose M ∈ Sm×n. The Moore-Penrose inverse of M is an n × m matrix
denoted as M+ that satisfies the following properties:

(i) M ⊗M+ ⊗M∇M

(ii) ⊗M+ ⊗M ⊗M+∇M+

(iii) (M ⊗M+)T∇M ⊗M+

(iv) (M+ ⊗M)T∇M+ ⊗M

Let A ∈ Sn×n and A−1
∇ be the balanced inverse of A. It’s important to note that A−1

∇ also
fulfills conditions 1, 2, 3, and 4 in Definition (3.3). Therefore, the balanced inverse of A, denoted
as A−1

∇ , is also the Moore-Penrose inverse of A in the symmetrized max-plus algebra.
The discussion about the rank in a matrix over the symmetrized max-plus algebra is based

on the definition of the minor rank as in [2]. Let A be a matrix over S. The rank of A is defined
using minors of A and is called the max-algebraic minor rank of A. The term max-algebraic
minor rank will be simply referred to as the minor rank. The characterization of rank in a matrix
over S using the linear independence approach, as in linear algebra, has been discussed in [13].
The rank of a matrix over S can be determined by calculating the maximum number of rows or
columns that are linearly independent in a balanced sense. The following theorem explains the
existence of rank decomposition in a matrix over the symmetrized max-plus algebra.

Theorem 3.4. If A ∈ Sm×n and minor rank of A is t, then there exist C ∈ (S∨)m×t and F ∈
(S∨)t×n such that A∇C ⊗ F .

Proof. In this proof, we will prove only for a signed matrix A. If A ∈ Sm×n has balanced entries,
then it is defined Â = [âij ] ∈ (S∨)m×n such that
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âij =

{
aij ; aij signed element
|aij |⊕ ; aij balanced element

for all i, j. For each a, b ∈ S, if a∇b then a•∇b. Therefore, if we show A∇C ⊗ F , it is enough
to show Â∇C ⊗ F .

Let Ã(s) = [ãij(s)] is conventional matrix which corresponds to A = [aij ∈ Sm×n]. Thus,
elementary row operations in Ã(s) can be performed. The first step is to perform elementary row
operations in Ã(s) until the reduced row echelon form is obtained. Let P̃ (s) be a permutation
matrix such that can be partitioned in the form [C̃(s) D̃(s)], where C̃(s) is a matrix whose
columns are t pivot columns of Ã(s). Furthermore, the columns of D̃(s) can be expressed in the
form

d̃i(s) = k̃1(s).c̃1(s) + k̃2(s).c̃2(s) + · · ·+ k̃t(s).c̃t(s)

for i = 1, 2, · · · , t − 1.Thus it is obtained the form D̃(s) = C̃(s).G̃(s) where G̃(s) is a matrix
corresponding to the coefficients in the equation d̃i(s). Furthermore,

Ã(s).P̃ (s) = [C̃(s) D̃(s)] = [C̃(s) C̃(s).G̃(s)]

By using the elementary matrix Ẽ(s) the process of changing Ã(s) is carried out until a
reduced echelon matrix form B̃(s) is obtained. So,

Ẽ(s)(Ã(s).P̃ (s)) = B̃(s).P̃ (s) = Ẽ(s)[C̃(s) D̃(s)] = Ẽ(s).C̃(s)[Ĩt(s) G̃(s)]

with Ẽ(s).C̃(s) of the form

[
Ĩt(s)

0

]
. Therefore,

B̃(s)(P̃ (s) =

[
Ĩt(s) G̃(s)

0 0

]

where
[
Ĩt(s) G̃(s)

]
is a nonzero row of reduced row echelon form. By supposing

[
Ĩt(s) G̃(s)

]
=

F̃ (s).P̃ (s) then we have

Ã(s).P̃ (s) = C̃(s)
[
Ĩt(s) G̃(s)

]
= C̃(s).F̃ (s).P̃ (s).

Since P̃ (s) is a permutation matrix, the asymptotically equivalent form Ã(s) ∼ C̃(s).F̃ (s) for
s → ∞ is obtained, which is the rank decomposition form of Ã(s). By implementing the reverse
function R, and suppose

A = R(Ã(s)), C = R(C̃(s)), F = R(F̃ (s))

then we get A∇C ⊗ F where C ∈ (S∨)m×t and F ∈ (S∨)t×n.

The matrix S in Theorem (2.6) is a diagonal max-plus matrix in (Rmax)m×n. When m ≤ n,
S can be represented as: 

σ1 ε . . . ε . . . ε

ε σ2 . . . ε . . . ε
...

...
. . .

... . . .
...

ε . . . . . . σm . . . ε

.

If the value of σ1 = ε is E, then ∥ A ∥⊕= ε, and consequently σ2 = σ3 = · · · = σm = ε.
Additionally, A is a matrix where each entry is ε. Therefore, in this paper, we assume that
σ1 =∥ A ∥⊕ ̸= ε. Since ∥ A ∥⊕= σ1 ≥ σ2 · · · ≥ σm, there is a t × t submatrix of S whose
determinant is a non-zero element of Rmax, for 1 ≤ t ≤ m. Consequently, the minor rank of S
is t. For m ≥ n, this can be done analogously by taking the transpose.

Corollary 3.5. Let A ∈ Sm×n and A∇U ⊗ S ⊗ V T is singular value decomposition of A. If the
minor rank of S is t, then there are C ∈ (Rmax)m×t and F ∈ (Rmax)t×n such that S = C ⊗ F .
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Proof. According to Theorem (3.4), there exist matrices C ∈ (S∨)m×t and F ∈ (S∨)t×n such
that S = C ⊗ F . Since S is a max-plus algebraic matrix, then both C and F are also max-plus
algebraic matrices. By using the reduction of balance in the symmetrized max-plus algebra, we
have S = C ⊗ F .

For t = m ≤ n, it can be taken
σ1 ε . . . ε

ε σ2 . . . ε
...

...
. . .

...
ε ε . . . σm


m×m

.

and 
0 ε . . . ε . . . ε

ε 0 . . . ε . . . ε
...

...
. . .

...
...

...
ε ε . . . 0 . . . ε


m×n

.

Then, it is obtained

CT ⊗ T =


σ2

1 ε . . . ε

ε σ2
2 . . . ε

...
...

. . .
...

ε ε . . . σ2
m


m×m

and

CT ⊗ T =


0 ε . . . ε

ε 0 . . . ε
...

...
. . .

...
ε ε . . . 0


m×m

.

The minor ranks of (CT ⊗ C) and (F ⊗ FT ) are m, respectively. Balanced inverses of
(CT ⊗ C) and (F ⊗ FT ) are guaranteed to exist. For m ≥ m, this can be achieved by taking
the transpose in a similar manner. The following theorem explains how to construct the Moore-
Penrose inverse of S using the rank decomposition of S.

Theorem 3.6. Suppose A ∈ Sm×n and A∇U ⊗ S ⊗ V T is singular value decomposition of A. If
the minor rank of S is t = min(m,n) and S = C ⊗ F is the rank decomposition of S, then

S+ = FT ⊗ (F ⊗ FT )−1
∇ ⊗ (CT ⊗ C)−1

∇ ⊗ CT

is the Moore-Penrose inverse of S.

Proof. Note that

(i) S ⊗ S+ ⊗ S
= C ⊗ F ⊗ FT ⊗ (F ⊗ FT )−1

∇ ⊗ (CT ⊗ C)−1
∇ ⊗ CT ⊗ C ⊗ F

∇C ⊗ It ⊗ It ⊗ S
= C ⊗ F
= S

(ii) S+ ⊗ S ⊗ S+

= FT ⊗ (F ⊗ FT )−1
∇ ⊗ (CT ⊗C)−1

∇ ⊗CT ⊗ S ⊗ FT ⊗ (F ⊗ FT )−1
∇ ⊗ (CT ⊗C)−1

∇ ⊗CT

∇FT ⊗ (F ⊗ FT )−1
∇ ⊗ It ⊗ It ⊗ (CT ⊗ C)−1

∇ ⊗ CT

= S+
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(iii) (S ⊗ S+)T

= [C ⊗ F ⊗ FT ⊗ (F ⊗ FT )−1
∇ ⊗ (CT ⊗ C)−1

∇ ⊗ CT ]T

∇[C ⊗ IT ⊗ (CT ⊗ C)−1
∇ ⊗ CT ]T

= [C ⊗ (CT ⊗ C)−1
∇ ⊗ CT ]T

∇C ⊗ (CT ⊗ C)−1
∇ ⊗ CT

∇S ⊗ S+

(iv) (S+ ⊗ S)T

= [FT ⊗ (F ⊗ FT )−1
∇ ⊗ (CT ⊗ C)−1

∇ ⊗ CT ⊗ C ⊗ F ]T

∇[FT ⊗ (F ⊗ FT )−1
∇ ⊗ It ⊗ F ]T

= [FT ⊗ (F ⊗ FT )−1
∇ ⊗ F ]T

∇FT ⊗ (F ⊗ FT )−1
∇ ⊗ F

∇S+ ⊗ S

Since S+ satisfies condition 1, 2, 3 and 4 in Definition (3.3), then S+ is the Moore-Penrose
inverse of S

Example 3.7. Suppose that

A =

[
⊖5 1 ⊖0
−3 ε (−2)•

]
and the singular value decomposition of A is U ⊗ S ⊗ V T is, where

U =

[
⊖0 ⊖(−8)
8 ⊖0

]

S =

[
5 ε ε

ε −2 ε

]
and

V =

 0 −5 ⊖(−4)
⊖(−4) ⊖(−5) ⊖0
−5 ⊖0 −5

.

Since S+ =

−5 ε

ε 2
ε ε

 fullfils condition 1, 2, 3 and 4 in Definition (3.3), then S+ is the Moore-

Penrose of S.

The main theorem discusses the construction of the Moore-Penrose inverse of A using the
singular value decomposition of A.

Theorem 3.8. If A ∈ Sm×n and A∇U ⊗ S ⊗ V T is singular value decomposition of A, then
A+ = V ⊗ S+ ⊗ UT is the Moore-Penrose inverse of A.

Proof. In [4], the discussion of singular value decomposition of A is obtained using an assump-
tion for a signed matrix A. We use the singular value decomposition of the signed matrix A i.e
A∇U ⊗ S ⊗ V T . Note that A+ = V ⊗ S+ ⊗ UT satisfies

(i) A⊗A+ ⊗A
∇U ⊗ S ⊗ V T ⊗ V ⊗ S+ ⊗ UT ⊗ U ⊗ S ⊗ V T

∇U ⊗ S ⊗ V T

∇A

(ii) A+ ⊗A⊗A+

∇V ⊗ S+ ⊗ UT ⊗ U ⊗ S ⊗ V T ⊗ V ⊗ S+ ⊗ UT

∇V ⊗ S+ ⊗ UT

= A+



142 Suroto

(iii) (A⊗A+)T

∇[U ⊗ S ⊗ V T ⊗ V ⊗ S+ ⊗ UT ]T

= U ⊗ S ⊗ V T ⊗ V ⊗ S+ ⊗ UT

= A⊗AT

(iv) (A+ ⊗A)T

∇[V ⊗ S+ ⊗ UT ⊗ U ⊗ S ⊗ V T ]T

= V ⊗ S+ ⊗ UT ⊗ U ⊗ S ⊗ V T

= A+ ⊗A

Thus, A+ is a Moore-Penrose inverse for A.

Example 3.9. Suppose

A =

[
⊖5 1 ⊖0
−3 ε (−2)•

]
in Example (3.7), where

S+ =

−5 ε

ε 2
ε ε


is the Moore-Penrose invere of S. Note that

A+ = V ⊗ S+ ⊗ UT =

⊖(−5) ⊖(−3)
−9 −3
−6 2


satisfies conditions 1, 2, 3 and 4 in Definition (3.3). Then, A+ is a Moore-Penrose inverse of A.

4 Conclusion

The Moore-Penrose inverse in the symmetrized max-plus algebraic matrix is defined similarly
to linear algebra and can be determined using singular value decomposition. This inverse is
constructed using the balanced inverse and the full-rank decomposition of the matrix in the
symmetrized max-plus algebra. Future research could focus on constructing the Moore-Penrose
inverse in the symmetrized max-plus algebraic matrix using QR decomposition and Cholesky
decomposition.

References
[1] A. Ben-Israel and T. N. E. Greville, Generalized inverses: theory and applications, Springer, New York,

(2003).

[2] B. De Schutter, Max-algebraic system theory for discrete event systems, Departemen of Electrical Engi-
neering Katholieke Universiteit Leuven, Leuven (1996).

[3] B. De Schutter and B. De Moor, The QR decomposition and the singular value decomposition in the
symmetrized max-pLus algebra, SIAM Journal on Matrix Analysis and Applications, 19(2), 378–406,
(1998).

[4] B. De Schutter and B. De Moor, The QR decomposition and the singular value decomposition in the
symmetrized max-pLus algebra revisited, SIAM Journal on Matrix Analysis and Applications Rev, 44(3),
417–454, (2002).

[5] F. Baccelli, G. Cohen, G. J. Olsder, and J.P. Quadrat, Synchronization and linearity: an algebra for
discrete event systems, Wiley, New York (2001).

[6] G.L. Litvinov, V.P. Maslov, A.G. Kushner and S.N. Sergeev, Tropical and idempotent mathematics, Insti-
tute for Information Transmission Problems of RAS, (2012).

[7] J. C. A. Barata and M. S. Hussein, The moore–penrose pseudoinverse: A tutorial review of the theory,
Brazilian Journal of Physics, 42(1), 146–165, (2012).



THE SYMMETRIZED MAX-PLUS ALGEBRAIC 143

[8] J.E. Pin, Tropical semirings, Publications of the Newton Institute, 11 , 50–69, (1998).

[9] K. Manjunatha Prasad and R. B. Bapat, The generalized moore-penrose inverse, Linear Algebra and its
Applications, 165, 59–69, (1992).

[10] M. Kauers and G. Pilz, Which (sub)direct decompositions are useful?, Palestine Journal of Mathematics,
13(III), 1–5, (2024).

[11] Suroto, A. Suparwanto, and D. J. E. Palupi, The LU-decomposition in the symmetrized max-plus algebra,
Far East Journal of Mathematical Sciences, 108(2), 253–272, (2018).

[12] Suroto, A. Suparwanto, and D. J. E. Palupi, The cholesky decomposition of matrices over the symmetrized
max-plus algebra, IAENG International Journal of Applied Mathematics, 52(3), 678–683, (2022).

[13] Suroto, A. Suparwanto, and D. J. E. Palupi, Characterization of rank of a matrix over the symmetrized
max-plus algebra, Jordan Journal of Mathematics and Statistics (JJMS), 15(4A), 843–856, (2022).

[14] A.S. Issacraj and J.P. Joseph, Fork-decomposition of some total graphs, Palestine Journal of Mathematics,
12(Special Issue II), 65–72, (2023).

[15] A. Shehata, A note on Konhauser matrix polynomials, Palestine Journal of Mathematics, 9(1), 549–556,
(2020).

Author information
Suroto, Department of Mathematics, Universitas Jenderal Soedirman, Indonesia.
E-mail: suroto@unsoed.ac.id

Received: 2023-04-01

Accepted: 2024-10-11


	1 Introduction
	2 Preliminaries
	3 Main Result
	4 Conclusion

