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Abstract In current study, we use the definition of convolution (or Hadamard product) and
consider the Noor type differential operator to define a new class Ωp (λ, α; Ψ) of multivalent
functions in open unit disk. We also give some interesting applications of this operator for
multivalent functions by using the method of convolution and derive some useful results.
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1 Introduction

Let A(p) be the class of analytic and p-valent functions which have the form

r (z) = zp +
∞∑
j=2

bj+p−1z
j+p−1 p ∈ N = {1, 2, 3, ...} , (1.1)

in the open unit disk ∆ = {z ∈ C : |z| < 1}. For p = 1, it is clear that A = A(1).
If r ∈ A(p) satisfies the following condition

ℜ

(
zr

′
(z)

r (z)

)
> β (z ∈ ∆; 0 ≤ β < p; p ∈ N) ,

the function r ∈ A(p) is p-valently starlike of order β in ∆.
If r ∈ A(p) holds the following condition

ℜ

(
(zr

′
(z))

′

r′ (z)

)
> β (z ∈ ∆; 0 ≤ β < p; p ∈ N) ,

the function r ∈ A(p) is p-valently convex of order β in ∆.
The convolution of r1 (z) and r2 (z)

(r1 ∗ r2) (z) = zp +
∞∑
j=2

bj+p−1,1bj+p−1,2z
j+p−1 = (r2 ∗ r1) (z) ,

where

ri (z) = zp +
∞∑
j=2

bj+p−1,iz
j+p−1 ∈ A(p) (i = 1, 2) .

Let P denotes the class of functions Ψ with Ψ (0) = 1. If r1 and r2 are analytic in ∆, we know
that r1 is subordinate to r2, written as r1 ≺ r2, if there is a analytic Schwarz function w, in ∆
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which holds the conditions of w (0) = 0 and |w (z) | < 1 such that r1 = r2(w(z)). Moreover, we
get the equivalence given below if r2 is univalent in ∆, see [8].

r1(z) ≺ r2(z) ⇐⇒ r1(0) = r2(0) and r1 (∆) ⊂ r2 (∆) . z ∈ ∆.

Operators theory has an important act in the field of Geometric Function Theory. Generally,
operators are used to define new subclasses. The method of convolution has extraordinary role
in the evolution of this field. Several integral and differential (linear operators) can be appointed
in view of convolution. Alexander [1] presented the first integral operator for the class analytic
functions. Further, numerous common integral operators are researched by authors, such as Lib-
era [14], Bernardi [5], El-Ashwah and Aouf [6]. Srivastava et al. [23] geometrically investigated
the class of complex fractional operators (differential and integral) and Ibrahim [4] defined differ-
ential operator and investigated a new class of analytic functions into two-dimensional fractional
parameters in the open unit disk. For more details see [2, 3, 24]For complex or real number
a, b, c /∈ {0,−1,−2, ...} , the hypergeometric series is denoted by

2F1 (a, b; c; z) = 1 +
ab

c

z

1!
+

a (a+ 1) b (b+ 1)
c (c+ 1)

z2

2!
+ ..., (1.2)

It is important that the series (1) converges absolutely for z ∈ ∆ and hereby it presents a function
which is analytic in ∆. Patel and Cho [21] presented the operator Dδ+p−1 : A(p) → A(p) given
by

Dδ+p−1r (z) =
zp

(1 − z)
δ+p

∗ r (z) (δ > −p) , (1.3)

on an equality with

Dδ+p−1r (z) =
zp
(
zn−1r (z)

)n+p−1

(n+ p− 1)!
,

where n > −p. From the equality, (1.2) and r (z) is presented by (1.1), following equality
occurs

Dn+p−1r (z) = zp +
∞∑

j=p+1

(
n+ j + p− 2

j − 1

)
bj+p−1z

j+p−1 (p ∈ N ; n > −p) .

Upon p = 1, Dn+p−1 was presented by Ruscheweyh [22] and Goel and Sohi [7]. Dn+p−1 is
known as the Ruscheweyh derivative of (n+ p− 1) th order. Lately, similar to Dn+p−1, Iλ+p−1 :
A(p) → A(p), which is an integral operator, was introduced by Liu and Noor [15]. Let

rλ+p−1 (z) =
zp

(1 − z)
λ+p

(λ > −p) ,

and let
(
rλ+p−1 (z)

)† be given as

rλ+p−1 (z) ∗
(
rλ+p−1 (z)

)†
=

zp

(1 − z)
p+1 . (1.4)

Then

Iλ+p−1r (z) =
(
rλ+p (z)

)† ∗ r (z) = ( zp

(1 − z)
λ+p

)†

∗ r (z) r ∈ A(p) (1.5)

If r (z) of (1.1) , is used, then from the equations (1.4) and (1.5) , we get

Iλ+p−1r (z) = zp +
∞∑

j=p+1

(p+ 1) (p+ 2) ... (j + p− 1)
(λ+ p) (λ+ p− 1) ... (λ+ j + p− 2)

bj+p−1z
j+p−1

= zp2F1 (1, p+ 1;λ+ p; z) ∗ r (z) (λ > −p) . (1.6)
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Now, we introduce the function Qλ
j+p−1 ∈ A(p) by:

Qλ
j+p−1 = zp +

∞∑
j=2

Φj+p−1z
j+p−1, (1.7)

where
Φj+p−1 =

(j + p− 1)!Γ (p+ λ)

Γ (λ+ j + p− 1)
, (1.8)

and
Γ (λ+ 1) = λ!. = λ (λ− 1) (λ− 2) ..., (λ > −p, p ∈ N)

For r ∈ A(p), using the knowledgements about Noor type operator given above, we introduce a
new operator Iλ+p−1 : A(p) → A(p) by:

Iλ+p−1r (z) = Qλ
j+p−1 ∗ r (z) = zp +

∞∑
j=2

Φj+p−1bj+p−1z
j+p−1. (1.9)

Note that; upon taking λ = 1, we get

Ipr (z) = Q1
j+p−1 ∗ r (z) = zp +

∞∑
j=2

Γ (p+ 1) bj+p−1z
j+p−1.

upon taking λ = 0, we obtain

Ip−1r (z) = Q0
j+p−1 ∗ r (z) = zp +

∞∑
j=2

(j + p− 1)Γ (p) bj+p−1z
j+p−1.

upon taking λ = 1 and p = 1, we obtain r (z) as follows:

Ir (z) = Qj ∗ r (z) = z +
∞∑
j=2

bjz
j .

Furthermore, Noor integral operator of (λ+ p− 1) th order of r is indicated by Iλ+p−1r and
given in (1.6), [15]. Several authors have studied on the concept of some analytic classes con-
nected with Noor operator, [17, 18, 19]. Lately, Noor [20] mentioned new analytic subclasses
connected with Noor integral operator and their geometric perspective. Now, from the equality
(1.9) , we have easily the following identity:

(λ+ p) Iλ+p−1r (z) = z
(
Iλ+pr (z)

)′
+ λIλ+pr. (z) (1.10)

Definition 1.1. The function r ∈ A(p) is belong to Ωp (λ, α; Ψ) , if the first order differential
subordinate condition, given below, holds:

(1 − α) z−pIλ+p−1r (z) +
α

p
z−p+1 (Iλ+p−1r (z)

)′
≺ Ψ (z) ,

where α ∈ C, α > −p, p ∈ N and Ψ ∈ P .

Remark 1.2. For special cases of λ = 1, α = 1 and p = 1, we can obtain following classes
respectively

(i) Ωp (1, α; Ψ) = Ωp (α,Ψ) =
{
r(z) ∈ A(p) : (1 − α) z−pr (z) + α

p z
−p+1 (r (z))

′
≺ Ψ (z)

}
(ii) Ωp (λ, 1; Ψ) = Ωp (λ,Ψ) =

{
r(z) ∈ A(p) : 1

pz
−p+1

(
Iλ+p−1r (z)

)′
≺ Ψ (z)

}
(iii) Ω1 (λ, α; Ψ) = Ω (λ, α,Ψ) =

{
r(z) ∈ A(p) : (1 − α) 1

z I
λr (z) + α

(
Iλr (z)

)′
≺ Ψ (z)

}
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Lemma 1.3. [16] Let s (z) = 1+
∞∑

n=m
bnz

n (m ∈ N) be analytic in ∆. If Re (s (z)) > 0 (z ∈ ∆) ,

then

Re (s (z)) ≥
1 − |z|m

1 + |z|m
(z ∈ ∆) .

In this study, we continue our investigations in the some properties of the class Ωp (λ, α; Ψ)
connected with Noor type operator.

2 Main Results

In present section, we will derive our main theorems as characters of the class Ωp (λ, α; Ψ).

Theorem 2.1. Let α ≥ 0 and

ri (z) = zp +
∞∑
j=2

bj+p−1,iz
j+p−1 ∈ Ωp (λ, α; Ψ) (i = 1, 2) , (2.1)

where

Ψi (z) =
1 + Ciz

1 +Diz
and − 1 ≤ Di < Ci ≤ 1. (2.2)

If r ∈ A(p) is given by

Iλ+p−1r (z) =
(
Iλ+p−1r1 (z)

)
∗
(
Iλ+p−1r2 (z)

)
, (2.3)

then r ∈ Ωp (λ, α; Ψ) , where

Ψ (z) = τ + (1 − τ)
1 + z

1 − z
, (2.4)

and τ is given by

τ =


1 − 4(C1−D1)(C2−D2)

(1−D1)(1−D2)

(
1 − p

α

) 1∫
0

t
p
α

−1

1+t dt, α > 0

1 − 2(C1−D1)(C2−D2)
(1−D1)(1−D2)

, α = 0.

(2.5)

the bound τ is sharp when D1 = D2 = −1.

Proof. For α > 0. Since ri (z) ∈ Ωp (λ, α; Ψ) , it follows that

si (z) = (1 − α) z−pIλ+p−1ri (z) +
α

p
z−p+1 (Iλ+p−1ri (z)

)′
≺ 1 + Ciz

1 +Diz
(i = 1, 2) , (2.6)

and

Iλ+p−1ri (z) =
p

α
z−

p(1−α)
α

z∫
0

t
p
α−1si (t) dt

=
p

α
zp

1∫
0

t
p
α−1si (tz) dt (i = 1, 2) . (2.7)
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Now, if r ∈ A(P) is defined by (2.3), using the condition (2.6), we derive that

Iλ+p−1r (z) =
(
Iλ+p−1r1 (z)

)
∗
(
Iλ+p−1r2 (z)

)
=

 p

α
zp

1∫
0

t
p
α−1s1 (tz) dt

 ∗

 p

α
zp

1∫
0

t
p
α−1s2 (tz) dt


=

p

α
zp

1∫
0

t
p
α−1s0 (tz) dt, (2.8)

where

s0 (z) =
p

α

1∫
0

t
p
α−1 (s1 ∗ s2) (tz) dt. (2.9)

Further, by using (2.6) and Herglotz theorem [8], we have

ℜ
{(

s1 (z)− τ1

1 − τ1

)
∗
(

1
2
+

s2 (z)− τ2

2 (1 − τ2)

)}
> 0 (z ∈ ∆) ,

which leads to

ℜ{(s1 ∗ s2) (z)} > τ0 = 1 − 2 (1 − τ1) (1 − τ2) (z ∈ ∆) ,

where
0 ≤ τi =

1 − Ci

1 −Di
< 1 (i = 1, 2) .

Moreover, according to Lemma 1.3, we have

ℜ{(s1 ∗ s2) (z)} ≥ τ0 + (1 − τ0)
1 − |z|
1 + |z| (z ∈ ∆) . (2.10)

Thus, it concludes from (2.8) to (2.10) that

ℜ{s0 (z)} = ℜ
{
(1 − α) z−pIλ+p−1r (z) +

α

p
z−p+1 (Iλ+p−1r (z)

)′}

=
p

α

1∫
0

t
p
α−1ℜ{(s1 ∗ s2)} (tz) dt

≥ p

α

1∫
0

t
p
α−1

(
τ0 + (1 − τ0)

1 − |z| t
1 + |z| t

)
dt

> τ0 +
p (1 − τ0)

α

1∫
0

t
p
α−1

(
1 − t

1 + t

)
dt

= 1 − 4 (1 − τ1) (1 − τ2)

1 − p

α

1∫
0

t
p
α−1

1 + t
dt


= τ,

which proves that r ∈ Ωp (λ, α; Ψ) for Ψ presented by (2.4) .
To justify the sharpness of the bound τ , we get ri ∈ A(p) (i = 1, 2) defined by

Iλ+p−1ri (z) =
p

α
z−

p(1−α)
α

z∫
0

t
p
α−1

(
1 + Cit

1 − t

)
dt (i = 1, 2) , (2.11)
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for which we have

si (z) = (1 − α) z−pIλ+p−1ri (z) +
α

p
z−p+1 (Iλ+p−1ri (z)

)′
≺ 1 + Ciz

1 − z
(i = 1, 2) ,

and

(s1 ∗ s2) (z) =

(
1 + C1z

1 − z

)
∗
(

1 + C2z

1 − z

)
= 1 − (1 + C1) (1 + C2) +

(1 + C1) (1 + C2)

1 − z
.

Hence, for the function r in (2.3) , we get

(1 − α) z−pIλ+p−1r (z) +
α

p
z−p+1 (Iλ+p−1r (z)

)′
=

p

α

1∫
0

t
p
α−1

(
1 − (1 + C1) (1 + C2) +

(1 + C1) (1 + C2)

1 − z

)
dt

→ τ (z → −1) ,

which shows that the number τ is the best possible when D1 = D2 = −1.
For α = 0, the proof of Theorem 2.1 is obvious, and we do not need to show details.

Corollary 2.2. Let α ≥ 0 and

ri (z) = z +
∞∑
j=2

bj,iz
j ∈ Ωp (λ, α; Ψ) (i = 1, 2) ,

where
Ψi (z) =

1 + Ciz

1 +Diz
and − 1 ≤ Di < Ci ≤ 1.

If r ∈ A is defined by
Iλr (z) =

(
Iλr1 (z)

)
∗
(
Iλr2 (z)

)
,

then r ∈ Ωp (λ, α; Ψ) , where

Ψ (z) = τ + (1 − τ)
1 + z

1 − z
,

and τ is given by

τ =


1 − 4(C1−D1)(C2−D2)

(1−D1)(1−D2)

(
1 − 1

α

) 1∫
0

t
1
α

−1

1+t dt, α > 0

1 − 2(C1−D1)(C2−D2)
(1−D1)(1−D2)

, α = 0.

(2.12)

the bound τ is sharp when D1 = D2 = −1.

Theorem 2.3. Let α be a positive real number. Let r (z) = zp +
∞∑
j=2

bj+p−1z
j+p−1 ∈ A(p),

h1 (z) = zp and hm = zp +
m∑
j=2

bj+p−1z
j+p−1 (m ≥ 2) . Suppose that

∞∑
j=2

dj |bj+p−1| ≤ 1, (2.13)
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where

dj =
1 −D

C −D
Φj+p−1

(
1 +

α

p
(j − 1)

)
, (2.14)

Φj+p−1 =
(j + p− 1)!Γ (p+ λ)

Γ (λ+ j + p− 1)
and − 1 ≤ D < C ≤ 1.

(i) If −1 ≤ D ≤ 0, then r ∈ Ωp (λ, α; Ψ), where

Ψ (z) =
1 + Cz

1 +Dz
.

(ii) If {dj}∞1 is nondecreasing, then

ℜ
{

r (z)

hm (z)

}
> 1 − 1

dm+1
, (2.15)

and

ℜ
{
hm (z)

r (z)

}
>

dm+1

1 + dm+1
, (2.16)

for z ∈ ∆. the estimates in (2.15) and (2.16) are sharp for each m ∈ N.

Proof. From the assumptions of Theorem 2.3, we get dj > 0 (j ∈ N) . Let

S (z) = (1 − α) z−pIλ+p−1r (z) +
α

p
z−p+1 (Iλ+p−1r (z)

)′
= 1 +

∞∑
j=2

(j + p− 1)!Γ (p+ λ)

Γ (λ+ j + p− 1)

(
1 +

α

p
(j − 1)

)
bj+p−1z

j+p−1. (2.17)

(i) For −1 ≤ D ≤ 0 and z ∈ ∆, it continues from (2.13) , (2.14) and , (2.17) that∣∣∣∣ S (z)− 1
C −DS (z)

∣∣∣∣
=

∣∣∣∣∣∣∣∣
∞∑
j=2

(j+p−1)!Γ(p+λ)
Γ(λ+j+p−1)

(
1 + α

p (j − 1)
)
bj+p−1z

j+p−1

(C −D)−D
∞∑
j=2

(j+p−1)!Γ(p+λ)
Γ(λ+j+p−1)

(
1 + α

p (j − 1)
)
bj+p−1zj+p−1

∣∣∣∣∣∣∣∣
≤

∞∑
j=2

dj |bj+p−1|

(1 −D) +D
∞∑
j=2

dj |bj+p−1|

≤ 1,

which implies that

(1 − α) z−pIλ+p−1r (z) +
α

p
z−p+1 (Iλ+p−1r (z)

)′
≺ 1 + Cz

1 +Dz
= Ψ,

hence, r ∈ Ωp (λ, α; Ψ) .
(ii) Under the hypothesis in part (ii) of Theorem 2.3, we see from (2.14) that

dj+1 > dj > 1 (j ∈ N) .

Therefore, we have

m∑
j=2

|bj+p−1|+ dm+1

∞∑
j=m+1

|bj+p−1| ≤
∞∑
j=2

dj |bj+p−1| ≤ 1. (2.18)
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By setting

s1 (z) = dm+1

{
r (z)

hm (z)
−
(

1 − 1
dm+1

)}

= 1 +

dm+1

∞∑
j=m+1

bj+p−1z
j−1

1 +
∞∑
j=2

bj+p−1zj−1
,

and applying (2.18) , we deduce that

∣∣∣∣s1 (z)− 1
s1 (z) + 1

∣∣∣∣ ≤
dm+1

∞∑
j=m+1

|bj+p−1|

2 − 2
m∑
j=2

|bj+p−1| − dm+1

∞∑
j=m+1

|bj+p−1|

≤ 1 (z ∈ ∆) ,

which readily yields (2.15) .
If we take

r (z) = zp − zm+p

dm+1
, (2.19)

then
r (z)

hm (z)
= 1 − zm

dm+1
→ 1 − 1

dm+1
and z → 1−,

which shows that the inequality in (2.15) is the best likelihood for every m ∈ N.
Similarly, if we take

s2 (z) = (1 + dm+1)

(
hm (z)

r (z)
− dm+1

1 + dm+1

)
,

then we can obtain that

∣∣∣∣s2 (z)− 1
s2 (z) + 1

∣∣∣∣ ≤
(1 + dm+1)

∞∑
j=m+1

|bj+p−1|

2 − 2
m∑
j=2

|bj+p−1| − (dm+1 − 1)
∞∑

j=m+1
|bj+p−1|

≤ 1 (z ∈ ∆) ,

which yields (2.16) . The inequality in (2.15) is the best likelihood for every m ∈ N, with the
extreme a function r given by (2.19) .

Corollary 2.4. Let α be a positive real number. Let r (z) = z +
∞∑
j=2

bjz
j ∈ A, h1 (z) = z and

hm = z +
m∑
j=2

bjz
j (m ≥ 2) . Suppose that

∞∑
j=2

dj |bj | ≤ 1,

where

dj =
1 −D

C −D
Φj (1 + α (j − 1)) ,

Φj =
j!Γ (1 + λ)

Γ (λ+ j)
and − 1 ≤ D < C ≤ 1.
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(i) If −1 ≤ D ≤ 0, then r ∈ Ω (λ, α; Ψ), where

Ψ (z) =
1 + Cz

1 +Dz
.

(ii) If {dj}∞1 is non decreasing, then

ℜ
{

r (z)

hm (z)

}
> 1 − 1

dm+1
,

and

ℜ
{
hm (z)

r (z)

}
>

dm+1

1 + dm+1
,

for z ∈ ∆. the estimates in (ii) are sharp for every m ∈ N.

Conclusion: Many differential and integral operator have been defined for analytic and
multivalent functions. In this paper we used the definition of convolution (or Hadamard product)
defined the Noor type differential operator. We consider this operator and investigated a new
class Ωp (λ, α; Ψ) of multivalent functions in open unit disk disk. We also gave some interesting
applications of this operator for multivalent functions by using the method of convolution and
derive some useful results. For the future work on the subject of our study, we cite a number
of articles [9, 10, 11, 12, 13] for the developments of geometric function theory related with
q-calculus operator theory.
Acknowledgement: We record our sincere thanks to the referees for their insightful suggestions
to improve the paper in present form
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